
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Plan Evaluation with Incomplete Action
Descriptions

Andrew Garland and Neal Lesh

TR2002-05 April 2002

Abstract

This paper presents a framework that justifies an agent’s goal-directed behavior, even in the ab-
sence of a provably correct plan. Most prior planning systems rely on a complete causal model
and circumvent the ’frame problem’ by implicitly assuming that no unspecified relationships
exist between actions and the world. In our approach, a domain modeler provides explicit state-
ments about which actions have been incompletely specified. Thus, an agent can minimize its
dependence on implicit assumptions when selecting an action sequence to achieve its goals.

AAAI-02

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2002
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Submitted January 2002.
Revised April 2002.



Plan Evaluation with Incomplete Action Descriptions

Andrew Garland and Neal Lesh
Cambridge Research Laboratory, MERL
201 Broadway, Cambridge, MA 02139

{garland,lesh}@merl.com

Abstract

This paper presents a framework that justifies an agent’s goal-
directed behavior, even in the absence of a provably cor-
rect plan. Most prior planning systems rely on a complete
causal model and circumvent theframe problemby implic-
itly assuming that no unspecified relationships exist between
actions and the world. In our approach, a domain mod-
eler provides explicit statements about which actions have
been incompletely specified. Thus, an agent can minimize its
dependence on implicit assumptions when selecting an action
sequence to achieve its goals.

1 Introduction
Traditional work on planning makes the simplifying
assumption that the planner is given a complete and correct
description of the current state of the world, and a complete
and correct model of actions it can perform. Past research
on dealing with incomplete information has developed two
kinds of approaches:acquirebetter information orminimize
dependence on incomplete information.

Both approaches have been used to overcome incom-
plete state information. The acquisition approach involves
plans with sensing actions (Etzioni et al., 1992), while the
minimization approach typically involves constructing plans
that will succeed in all states of the world consistent with
the known information (Smith & Weld, 1998). To date,
however, only the acquisition approach has been used to
overcome incompleteness in action models. In particular,
machine learning techniques have been applied to the results
of executing actions in order to acquire more accurate action
descriptions (Gil, 1994; Wang, 1995; Oates & Cohen, 1996).

We describe novel techniques for minimizing dependence
on incomplete information in a given action model. We
present a tractable algorithm for identifying therisks of a
plan, each of which represents a potential source of execu-
tion failure due to incompleteness of the action model. Our
work is motivated by the observation that producing com-
plete action descriptions is an exceedingly difficult and time-
consuming task. In our approach, the domain experts who
generate the action descriptions can provide additional infor-
mation about the completeness of the model, similar to state-
ments used to reason about incomplete states (Levesque,

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1996; Golden, 1998; Babaian & Schmolze, 2000). For
example, the experts can indicate which actions have been
completely described, or that executing an action will not
change the truth value of a predicate. This information can
be used to eliminate risks of candidate plans.

Essentially, we are revisiting the infamousframe problem
(McCarthy & Hayes, 1969), which motivated the traditional
completeness assumptions (Reiter, 1991). Without the com-
pleteness assumptions, it is necessary for the effects of an
action description to include all facts whose truth value does
not change as a result of executing it. The conceptual shift
we make is to a willingness to execute plans with some risk
of failure if the action model is incomplete. Our methods
simply prefer to execute plans with fewer risks.

The advantage of our approach is to execute plans that
achieve their goal more often. As a simple example, a plan
composed of completely-modeled actions is more likely to
succeed than one with incompletely-modeled actions. Addi-
tionally, our techniques will sometimes prefer a plan because
of certain orderings of actions, the inclusion of “extra” steps
that reestablish conditions that could have been clobbered,
or the substitution of an action by one with similar effects.
We show that even in the case where the domain expert pro-
vides no information about the completeness of the model,
our techniques can select plans that are more likely to suc-
ceed than if the incompleteness of the model is ignored.

In this paper, we present a linear-time algorithm for iden-
tifying risks and a flexible framework for evaluating plans
based on risks. We prove that plans with certaincritical
risks cannot be guaranteed to succeed. Finally, we describe
two experimental case studies that measure the impact of our
techniques on plan success.

2 Formulation
We assume a traditional planning representation. We also
assume that for any planning domain, there exists a set of
complete and correct action descriptions, which we will
refer to asDtrue. The set of action descriptionsD avail-
able to a planner (or plan evaluator) will be a subset of the
information inDtrue.

Each action description consists of a specification of its
preconditions and effects as sets of fluent literals. Thus,
each action descriptiona in D may include only a subset
of a’s preconditions and effects inDtrue. In future work,



we will look to extend the representations and techniques in
this work to accommodate action descriptions that include
conditional effects.

A plan is a sequence of actions that is intended to achieve
a goal when executed in an initial state. Executing an action
in a state in which all of its preconditions are true will pro-
duce a new state in which all of its effects are true and all
other fluents remain unchanged. Executing an action with
any false preconditions has no effect on the state.

In order to focus on issues related to incomplete action
models, we do not address uncertainty about the state in
this paper. Instead, we assume that the planner is given a
complete state of the world,s0. However, this does not
sidestep any fundamental issues because executing actions
with incompletely modeled effects creates uncertainty about
the state of the world.

In our discussion, we will often need to reason about
whether a plan will be successful given the information con-
tained inD. We defineachieves(D,s0,g,p) as returning true
iff the goalg is true in the state that results from simulating
the execution of planp from states0 assuming thatD is cor-
rect and complete.

2.1 Representing incomplete action descriptions

We now present a language for supplementingD with state-
ments about the completeness of action descriptions. Our
approach follows the use of locally closed-world (LCW)
statements that are used to overcome incomplete state infor-
mation. In that setting, an LCW statement expresses limited
knowledge of the state, such as that all the files that exist in a
particular directory are known by a software agent (Golden,
1998; Babaian & Schmolze, 2000).

In our work, an LCW statement expresses limited com-
pleteness of action descriptions. These statements are
defined in terms of three predicates:DoesNotRelyOn,
DoesNotMakeTrue, and DoesNotMakeFalse. The
truth value of these predicates is directly specified by the
user; no inference is performed.

The statementDoesNotRelyOn(a, x) asserts that action
a does not have preconditionx or ¬x in Dtrue, wherex
is an atom. We defineCompletePreconditions(a) as a
shorthand for the formula:

∀x.x /∈ preconditions(a) ⊃ DoesNotRelyOn(a, x)
which is equivalent to explicitly stating that the complete-
ness of preconditions assumption is valid fora.

The statementDoesNotMakeTrue(a, x) asserts that
a does not have effectx in Dtrue, where x is a lit-
eral. The statementDoesNotMakeFalse(a, x) asserts
that a does not have effect¬x in Dtrue. We define
CompleteEffects(a) as a shorthand for the formula:

∀x.x /∈ effects(a) ⊃ DoesNotMakeTrue(a, x)∧
DoesNotMakeFalse(a, x)

which is equivalent to explicitly stating that the complete-
ness of effects assumption is valid fora.

There is a set of potential LCW statements that warrant
special consideration. If an actionamaintains (i.e., does not
clobber) a listed preconditionx, it is possible thatx will not

be listed as an effect (since it is implied by the complete-
ness of effects assumption). However, in most domains,
DoesNotMakeFalse(a, x) can safely be assumed to be
true. Thus, our implementation can, optionally, automat-
ically add such frame axioms to the user-specified LCW
statements.1

2.2 Plan selection
A plan selection problemis a 5-tuple(g, C, s0, D, L), where
g is a goal,C is a set of candidate plans,s0 describes the ini-
tial state,D is a potentially incomplete action model, andL
is a set of locally closed world statements. The ideal solu-
tion to this problem is to find the plan that will achieve its
goal given the actual action descriptions. More precisely, the
objective is to findci ∈ C so thatachieves(Dtrue, s0, g, ci).
The quality of a plan selection algorithm can be measured
by how frequently it chooses a plan that actually achievesg.
Another measure is how often the plan selection algorithm
indicates that no plan should be executed if, in fact, no plan
in C will achieveg givenDtrue.

3 Algorithm and Analysis
We consider the following four types of risks, each of which
is a potential source of execution failure, for a plan com-
posed of actionsa1, ..., an. Without loss of generality, we
encode the initial state as an actiona0 with no preconditions
and effectss0 and encode the goalg as actionan+1 which
has preconditionsg and no effects.

• POSSCLOB(ai, x) :: actionai might have the effect¬x,
and there exists actionaj , for i < j that has precondition
x inD and no action betweenai andaj has effectx inD.

• PRECOPEN(ai) :: actionai might have an unlisted pre-
condition that will not be true whenai is executed in
a0, .., an.

• PRECFALSE(ai, x) :: ai has a preconditionx in D which
will be false when executed ina0, .., an, according toD.

• HYPOTHESIZEDEFFECT(ai, x) :: the correctness of the
plan relies on an effectx of ai that is not listed inD, but
might be part ofDtrue. This means thatx is consistent
with the description ofai in D, but there is no evidence
to support the hypothesis thatx is part of the description
of ai in Dtrue.

The first two types of risks correspond to relying on
knowledge implied by completeness assumptions, i.e., that
D is a good approximation toDtrue. In contrast, the latter
two risks rely on the incompleteness of the model in order
to justify plans that would fail ifD = Dtrue. For example,
an action with a PRECFALSE(ai, x) risk cannot successfully
execute unless a previous action has an effectx that is not in
D, or the action that negatesx has an unlisted precondition.

If no plan justified by the action descriptions inD can
achieve goalg then it is worth considering plans with other
possible risks. For example, it seems preferable to execute a
plan with one hypothesized effect than one with five such

1This can be done trivially by a pre-processor.

2



FINDRISKS (<a1, . . . , an>, g, L) ≡
RiskSet← ∅
Unsupported← g
for i = n to 1
Supported← Unsupported ∩ EFFECTS(ai)
Supported← Supported \ PRECONDITIONS(ai)
Unsupported← Unsupported \ Supported
forall literalsx in Unsupported

if DoesNotMakeFalse(ai, x) /∈ L
RiskSet← RiskSet ∪ { POSSCLOB(ai, x) }

if CompletePreconditions(ai) /∈ L
RiskSet← RiskSet ∪ { PRECOPEN(ai) }

Unsupported← Unsupported ∪ PRECONDITIONS(ai)
return RiskSet

Figure 1: Finding risks in a provably correct plan.

effects.2 However, these plans must be weighed against
the alternative of doing nothing, which can be the best
option if the chance of achieving a goal is small. Assessing
these options would be more practical within a probabilistic
framework.

The functionFINDRISKS, shown in Figure1, produces the
set of risks of a planc = a1, . . . , an, a goalg, and a set of
locally closed world statementsL. The algorithm requires
O(nm) time, wheren is the length of the plan, andm is
the number of literals inD. The pseudo-code is stream-
lined by assuming thatc is a provably-correct plan inD;
therefore, there is no need to check for hypothesized effects,
false preconditions, or thatg is achieved.3

FINDRISKS requires one pass over the plan, working
backwards from the last action. During processing, it keeps
track of the set of literals that must eventually be achieved
by an earlier action or be true in the initial state of the world.
Each actionai may provide support for some of these lit-
erals, namely the literals that are made true by the action.
For each remaining unsupported literalx, the set of LCW
statementsL is checked to see ifai might clobberx; if so,
POSSCLOB(ai, x) is added to the result. Also,L is checked
to see ifai’s preconditions are completely modeled; if not,
PRECOPEN(ai) is added to the result. It might seem strange
that PRECONDITIONS(ai) is not checked to be true; how-
ever, this is not needed since we assume that the input plan
is provably correct inD.

3.1 Analysis

We now discuss the implications of risks. We show that a
plan without risks cannot fail. We then describe a tractable
method for identifying a subset of risks which imply the pos-
sibility of plan failure.

Roughly speaking, we say that it is possible for a plan to
fail if there exists a possible world that is consistent with the

2How and why a planner would hypothesize such effects are
beyond the scope of this paper.

3A more general version of this algorithm exists that efficiently
finds these risks as well. When simulating the execution of the plan
usingD, if an action’s preconditions are false, we treat it as having
no effects and add a PRECFALSE risk toRiskSet.

information given the planner in whichp does not achieve its
goals. More precisely, we mean there exists someD′ such
thatD ⊆ D′, D′ is consistent with the locally-closed world
statementsL, and¬achieves(D′, s0, g, c).

Determining if a plan will succeed involves reasoning
over all possible states that might occur in the execution of
the plan, which is exponential in the length of the the plan
if there is uncertainty in the outcome of the actions. Under
our assumption of a correct but incomplete model, any plan
that can fail inDtrue will have at least one risk. The fol-
lowing theorem states that a plan that has no risks and will
succeed given action modelD will also succeed given any
action model that is a superset ofD (and a subset ofDtrue).
As a corollary, the plan will succeed givenDtrue.

Theorem: if D ⊆ D′ ⊆ Dtrue and FINDRISKS(c, g, L)
contains no risks and achieves(D, s0, g, c) then
achieves(D′, s0, g, c).

Proof sketch: Consider the first actiona1 in c. Given that
there are no PRECFALSE risks, all ofa1’s preconditions in
D must be true ins0. Since there are no PRECOPEN risks,
all of a1’s preconditions inD′ must be true ins0 and thusa1

will execute successfully ins0. A similar argument says that
a2 will execute successfully as long as no effect of actiona1

clobbered a preconditionx of a2 that was true ins0. How-
ever, if such a clobbering existed andx were inD then there
would be a POSSCLOB(a1, x) risk. If x were not inD then
there would have to be an PRECOPEN(a2) risk. Thusa2 will
execute successfully. By induction, the entire plan will exe-
cute successfully, including the last action which can encode
the goal, as described above.

A plan with risks may also succeed when executed in the
world because the actions are, in fact, completely modeled
or the omissions in the model do not adversely effect the
plan or because the plan succeeds with all possible action
descriptions that are consistent withD. We can, however,
define a subset of risks which arecritical. A critical risk is
not guaranteed to cause plan failure, but it does guarantee
the possibility of failure.

In order to identify the critical risks, we first identify a set
of vulnerableconditions inp. Intuitively, a condition is vul-
nerable if has only one source of support in a plan. Formally,
we define vulnerability recursively as follows. A conjunct
of the goal is vulnerable in a plan iff it is established exactly
once by an action in the plan or the initial states0. A precon-
dition x of an action in a plan is vulnerable iff the action has
an effect which establishes a vulnerable condition andx is
established exactly once by either a prior action in the plan
or by the initial state. The set of vulnerable conditions in a
plan can be quickly computed in a simple pass backwards
through the plan.

We can now define critical risks for the actions in
a plan p = a1, ..., an. A PRECOPEN(ai) risk is
critical if ai establishes a vulnerable condition. A
HYPOTHESIZEDEFFECT(ai, x) condition is critical ifx is
vulnerable. A POSSCLOB(ai, x) is critical if x is vulnerable
andai would execute successfully under the assumption that
D is complete. A PRECFALSE(ai, x) risk is critical if action

3



ai establishes a vulnerable condition. The critical risks can
also be easily computed in a single pass through the plan.

The following theorem states that critical risks guarantee
possible plan failure.

Theorem: If FINDRISKS(c, g, L) contains a critical risk,
then there exists someD′ such thatD ⊂ D′,D′ is consistent
with the LCW inL, and¬achieves(D′, s′, g, c).
Proof sketch: We briefly consider each type of risk. In each
case, we show there exists aD′ such that a vulnerable condi-
tion of the plan will not be established or will be clobbered,
which causes plan failure. An actionai with a critical PREC-
OPEN risk can fail because there exists anx (or ¬x) that is
a precondition ofai in D′ such thatx will be false after
ai−1 is executed. If a plan has a critical POSSCLOB(ai, x)
risk then it can fail ifD′ is identical toD except that action
ai has effectx, which will clobber a vulnerable condition. If
D′ = D, then a plan with a critical HYPOTHESIZEDEFFECT
or PRECFALSE action will fail.

3.2 Plan selection algorithm
We now present our solution to the plan selection problem.
Below we list a variety of policies for preferring one plan to
another. Each policy takes two candidate plans,c1 andc2,
and returns true ifc1 is preferred toc2. We userisks(c) as
a shorthand forFINDRISKS(c, g, L). We assume that a plan
that achieves its goal with the given action descriptions is
preferable to any plan that does not. Thus we assume that
either bothc1 andc2 achieve the goal givenD or neither do.

• RP∅(c1, c2) :: risks(c1) = ∅, andrisks(c2) contains a
critical risk.

• RP⊂(c1, c2) :: risks(c1) ⊂ risks(c2).

• RP<(c1, c2) :: the number of each type of risk in
risks(c1) is less than that the number of that type of risk
in risks(c2).

• RPw(c1, c2) :: weighted(c1) < weighted(c2) where
weighted(c) returns a real number by adding together the
number of each type of risk multiplied by a pre-defined
weight for that risk type.

Risks assessment can be incorporated with other meth-
ods for preferring plans. For example, most planners have
an implicit preference for selecting the shortest plan that
achieves the goal. These preference rules can either dom-
inate the pre-existing preference method or be used only to
break ties. LetTieBreak(RP, c1, c2) return true if either the
pre-existing preference method prefersc1 to c2 or it ranks
them equal andRP (c1, c2) is true.

TheTieBreak(RP∅, c1, c2) policy is the most conserva-
tive use of the techniques discussed in this paper. It only
uses our techniques in the case where two candidate plans
are considered equal (ignoring the incompleteness issues)
and one has no risks and the other has at least one critical
risk. We present it as an extreme case in which reason-
ing about incompleteness clearly (if infrequently) improves
plan selection. As shown above, if the action descriptions in
D are correct but incomplete then a plan with critical risks
might fail, while a plan without risks cannot fail. If there

is no other basis for preferring one plan to another, it seems
obviously beneficial to prefer the plan that cannot fail.

The other policies are more widely applicable but can pre-
fer a plan that happens to fail to one that happens to succeed
givenDtrue. This can happen withRP< andRPw if plan
c1 has fewer risks thanc2, but all risks inc1 happen to corre-
spond to real discrepancies betweenD andDtrue while all
the risks inc2 happen not to.

Somewhat surprisingly, however, even ifc1 has a subset
of the risks ofc2, it is possible thatc1 will fail and c2 will
succeed. One reason for this is that a POSSCLOB(ai, x) risk
can berealized, i.e.,ai does have effectx in Dtrue, but then
correctedby another action which has a¬x effect which is
also missing fromD. Further, it is possible that the risk will
be corrected inc2 but not inc1 if only c2 has the correcting
action. Ifc2 has some other risks which are not realized, then
it will succeed whilec1 fails, even thoughc1 has a subset of
c2’s risks.

While the policies other thanTieBreak(RP∅) can
choose the inferior plan in certain cases, they are likely to
improve plan selection, on average, under a reasonable set
of assumptions about the distribution of planning problems.
For example, for any given POSSCLOB risk, it seems much
more likely that it will be realized than that it will be both
realized and then corrected. If one plan has more POSS-
CLOB risks than another, then it is more likely to have a
realized but uncorrected risk than the other, and therefore is
more likely to fail.

4 Examples
We now describe three classes of planning problems for
which it is beneficial to reason about the incompleteness of
the action descriptions.

The first class of problems concerns the order of actions
in a plan. Figure2 shows a simple example designed to
illustrate how our risk analysis can prefer one ordering of
plan actions over another. In this figure, actions are drawn
as links, from the action’s preconditions on the left to the
action’s effects on the right.

Figure2 shows a goal that can be achieved by executing
two actions,a1 anda2, in either order. If the action model is
complete then both plans will achieve their goal.

Either plan can fail, however, if the model is incomplete.
Candidate planC1 = [a1, a2] could fail if a2 has an effect
¬r which clobbersa1’s effect. Similarly, planC2 = [a2, a1]
could fail if a1 clobbersa2’s effect. However,C2 could also

{p} {r,q}a2
qa1

rp

Risks
PRECOPEN(a1)
PRECOPEN(a2)
POSSCLOB(a2, r)

a2
q a1

rp{p} {r,q}

Risks
PRECOPEN(a1)
PRECOPEN(a2)
POSSCLOB(a1, q)
POSSCLOB(a2, p)

Figure 2:Action order. These two plans differ only in the
order of the actions, but they have different numbers of risks.

4



a2
rqa1

q a4
ts,pa3

r s{p}

Risks
PRECOPEN(a1)
PRECOPEN(a2)
PRECOPEN(a3)
PRECOPEN(a4)

POSSCLOB(a1, p)
POSSCLOB(a2, p)
POSSCLOB(a3, p)

a2
rqa1

q a3
r s a4

ts,pa5
p{p}

Risks

PRECOPEN(a1)
PRECOPEN(a2)
PRECOPEN(a3)
PRECOPEN(a4)
PRECOPEN(a5)

POSSCLOB(a5, s)

Figure 3: Additional steps. The extra stepa5 in planC2

reduces the number of possible clobberings of actiona4.

fail if a2 has effect¬p which would clobbera1’s known
precondition. Thus,C2 has more POSSCLOB risks thanC1

and both theRP< andRPw policies would preferC1 toC2.
The preference forC1 overC2 is justified by imagining

what we could add toD in order to create aDtrue in which
the plans would fail. For any combination of additional con-
ditions and effects that would causeC2 to fail, there is a cor-
responding modification that would causeC1 to fail. How-
ever, in order to “match” the risk introduced by adding¬p as
an effect ofC2, we have to add both a precondition and an
effect toC1. Thus, in the absence of any LCW information,
C1 seems the safer choice. On the other hand, if the given
LCW eliminates the risks of planC2, then it becomes the
better plan to execute.

The second class of problems we consider are ones in
which our plan selection policies will sometimes prefer
plans with what seem like extra steps, i.e., steps that are not
required to make the plan execute successfully givenD. Fig-
ure3 shows a simple example of how this could happen. If
a preconditionx of an actionai is established by the initial
state or by an early action then it has many chances to be
clobbered. By adding in a “cleanup” step just beforeai to
reestablishx, these potential clobberings risks are removed.
However, the added step may also introduce risks, such as
the PRECOPEN risk in Figure3. If POSSCLOB risks are

a1
r,q a2

w,q s{w} {r,s}

Risks
PRECOPEN(a1)
PRECOPEN(a2)
POSSCLOB(a1, w)
POSSCLOB(a2, r)

{w} {r,s}a4
r,spa3

pw

Risks
PRECOPEN(a3)
PRECOPEN(a4)

Figure 4: Operator choice. The second plan is preferred
because there are possible clobberings in the first.

weighted more than half the weight of PRECOPEN risks,
then theRPw will prefer planC2 in this example. Addition-
ally, C2 can be preferred toC1 by any of the other selection
policies if LCW excludes enough risks inC2.

The third and final class of problems arises when there are
alternative actions with similar effects. The issues that arise
in the ordering of actions and in adding additional steps also
come up in the choice of actions to achieve the same goal or
subgoal of a plan. The most obvious role of our techniques
would be to prefer to use operators that are completely mod-
eled over ones that are not. Additionally, Figure4 shows
two plans that look equally correct if the prospect of miss-
ing effects and preconditions is ignored, but one plan has
more risks than the other.

5 Experiments
We conducted two experiment to measure how useful risk
assessment is for plan selection. First, we implemented a
modified version of the Fast Forward (FF) planning system
(Hoffmann & Nebel, 2001) that exploits augmented domain
descriptions to find the risks in each generated plan. The
domain descriptions allow some preconditions and effects
to be marked as “hidden”, i.e. knowledge that is inDtrue

but not inD. Thus, our version of FF can generate plans
usingD, and then evaluate them usingDtrue.

Our first attempt to evaluate our plan-selection framework
was to slightly modify the domain descriptions for the plan-
ning domains that FF comes with. However, because the
planning domains were highly crafted, we found that even
small differences betweenD andDtrue often meant that
almost none of the plans generated usingD would be suc-
cessful inDtrue. This did not seem to represent a realistic
situation in which a domain model would be incomplete and
yet still usable.

Each of our two experiments are based on a suite of
pseudo-randomly generated triples<g,D,Dtrue>, where
g is a planning goal that can be solved inD but the solution
may not achieveg when executed inDtrue. There are pre-
condition / effect dependencies in bothD andDtrue that
reduce the number of plans produced by FF. Some addi-
tional dependencies are added toDtrue but not toD so that
between 65% and 85% of the solutions inD will achieve
their goal inDtrue. For these experiments, add effects in
Dtrue were never hidden inD because if a hidden add-effect
is needed to achieve goalg , then FF will not generate any
successful plans when givenD. Preconditions and delete
effects were hidden at random. Also, each action was given,
on average, the same number of preconditions to avoid intro-
ducing a bias.

In the first experiment, we measured the impact of
risk assessment in action ordering decisions. The triples
<g,D,Dtrue> were generated such thatD (and Dtrue)
contained exactly seven actions, all of which had to be exe-
cuted exactly once to achieveg. Our risk-assessment tech-
niques were used to select which ordering of these seven
actions should be executed.

In the second experiment, we measured the impact of
risk assessment in operator selection decisions. The triples
<g,D,Dtrue> were generated so thatg is always achieved

5



Percentiles of the number of risks distribution Avg # Dev. Min # Max # Number
Run t10 t20 t30 t40 t50 t60 t70 t80 t90 t100 of risks of risks of risks of risks of plans
AO 87.6 86.2 84.7 84.0 83.1 82.3 81.4 80.3 78.9 76.7 49.4 4.3 42.0 74.0 195254
OC 85.4 83.0 81.4 80.9 79.8 79.0 77.9 77.1 76.3 74.7 72.0 7.8 55.0 115.0 341469

Table 1: Impact of risk assessment on likelihood of successfully executing plans.

by a sequence of length 10. For each positioni in the plan,
there are two possible choicesai,0 and ai,1. These two
actions share a common effect and a common precondition
(which is the common effect of botha(i−1),0 anda(i−1),1).
Our risk-assessment techniques were used to decide which
combination of operators should be executed.

Table1gives statistics showing how risks and success per-
centages are related for the two experiments. The first row
presents results for the action ordering (abbreviated “AO”)
and the second presents results for operator choice (“OC”).
Within each row, there are 10 columns that show the likeli-
hood of successfully executing a plan drawn at random from
different subsets of the set of generated plans. The final
five columns show general statistics about the distribution
of risks in the set of generated plans.

Within each row, the success percentages in the columns
labelledt10, . . . , t100 are derived from different subsets of
the set of generated plans. Fortk, the subset contains all
plans whose number of risks are in the lowestkth per-
centile of distribution. For example,t50 includes all plans
with fewer risks than the median number of risks, andt100

includes all plans.
The results show what a significant impact risk assess-

ment can have. For both runs, generating two plans and pre-
ferring the one with fewer risks will, on average, increase
the chance of success for roughly 75% to 80%. Generating
more candidates continues to provide benefits, as selecting a
plan fromt10 increase the likelihood of success to over 85%.

6 Related Work
Much previous work has addressed the problem of planning
with incomplete state information and non-deterministic
or conditional effects (e.g,Kushmerick, Hanks, & Weld
(1995); Smith & Weld (1998)). This is similar to the prob-
lem of planning with incomplete action models in the sense
that both problems are concerned with uncertainty about the
effects of actions. One important difference, however, is
that non-deterministic planning systems demand even more
elaborate action descriptions than traditional planners. For
example, the action descriptions are required to describe all
the different possible sets of effects that an action might
have. In contrast, our techniques can improve planning even
without any additional information, and we provide a frame-
work in which any additional effort to produce LCW state-
ments can be factored into the planning process. Further, our
techniques are designed to exploit various types of informa-
tion, even statements about which fluents an action doesnot
effect.

Additionally, the objective of work on non-deterministic
planning is usually to generate plans that are guaranteed to

succeed, or are guaranteed to succeed with some probability.
As a result, even assessing a probabilistic or conditional plan
to determine if it will succeed requires exponential compu-
tation win the length of the plan. In contrast, our methods
simply prefer to execute plans with fewer risks. Further, our
techniques are linear in the length of the plan and the size
of the state, though we do require the planner to generate
multiple plans to choose from.

Prior work has addressed the complementary problem of
improving action models between planning episodes. One
approach has been to develop knowledge acquisition sys-
tems that help domain experts convey their knowledge to
a computer. For example, Tecuciet. al. (Tecuci et al.,
1999) present techniques for producing hierarchical if-then
task reduction rules by demonstration and discussion from a
human expert. A second approach is to develop techniques
for improving action descriptions based on the observed
results of executing actions (Gil, 1994; Wang, 1995; Oates
& Cohen, 1996). Our techniques are complementary since
our methods are designed to improve planning when there
are incomplete action descriptions. One possible synergy
between these two lines of research would be to develop
techniques for automatically learning LCW or helping to
elicit it from the domain experts.

7 Conclusions and Future Work
This work is motivated by our belief that the primary obsta-
cle to the practical application of planning technology is the
difficulty of obtaining task models. This problem should be
addressed both by developing better techniques for eliciting
models, and by adapting planning algorithms to use models
that are less difficult to elicit. In this paper, we pursue the
latter approach.

Our future work includes incorporating other types of
knowledge about how to do things into a planning process
that reasons about incomplete action models. As mentioned
above, if an important effect or precondition is missing from
the action descriptions given to a planner, it can have lit-
tle chance of achieving its goal. Indeed, once we forgo
the completeness assumption, the set of valid plans can
no longer be deduced from the action descriptions. Thus,
it becomes especially useful for human experts to provide
additional information about how to accomplish goals and
subgoals by, for example, providing a library of pre-defined
goal-decomposition rules (also called recipes and hierar-
chical task networks). We are particularly interested in
using LCW information to allow more flexible use of goal-
decomposition knowledge.

Another line of future research is to integrate the
techniques presented here into a system that integrates
(re)planning and execution. The planning system will keep
track of what actions it has executed and what state infor-

6



mation it has sensed at different time points. Our techniques
for assessing risks can be applied to the execution history
in order to determine which fluents it should most rely on.
If the preconditions of an executed action had many risks
associated with it, then the planner should be wary of using
that action’s presumed effects to support the preconditions
of future actions.

Acknowledgements
We gratefully thank Charles Rich, Candace Sidner, and the
anonymous reviewers for their insightful comments.

References
Babaian, T., and Schmolze, J. G. 2000. PSIPlan: Open

World Planning withψ-forms. InProc. 5th Int. Conf. on
AI Planning Systems, 292–307.

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with
incomplete information. InProc. 3rd Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning, 115–
125.

Gil, Y. 1994. Learning by Experimentation: Incremental
Refinement of Incomplete Planning Domains. InEleventh
Intl Conf on Machine Learning, 87–95.

Golden, K. 1998. Leap before you Look: Information Gath-
ering in thePUCCINI planner. InProc. 4th Int. Conf. on
AI Planning Systems, 70–77.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search.Journal of
Artificial Intelligence Research14:253–302.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An Algo-
rithm for Probabilistic Planning.Artificial Intelligence
76:239–286.

Levesque, H. J. 1996. What is planning in the presence of
sensing. InProc. 13th Nat. Conf. AI, 1139–1146.

McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of Artificial Intelligence. In
Meltzer, B., and Michie, D., eds.,Machine Intelligence 4.
Edinburgh University Press. 463–502.

Oates, T., and Cohen, P. 1996. Searching for planning oper-
ators with context-dependent and probabilistic effects. In
Proc. 13th Nat. Conf. AI, 863–868.

Reiter, R. 1991. The Frame Problem in the Situation Cal-
culus: A Simple Solution (Sometimes) and a Complete-
ness Result for Goal Regression. In Lifschitz, V., ed.,
Artificial Intelligence and Mathematical Theory of Com-
putation: Papers in Honor of John McCarthy. Academic
Press. 359–380.

Smith, D., and Weld, D. 1998. Conformant Graphplan. In
Proc. 15th Nat. Conf. AI, 889–896.

Tecuci, G.; Boicu, M.; Wright, K.; Lee, S.; Marcu, D.; and
Bowman, M. 1999. An integrated shell and methodol-
ogy for rapid development of knowledge-based agents. In
Proc. 16th Nat. Conf. AI, 250–257.

Wang, X. 1995. Learning by observation and practice: an
incremental approach for planning operator acquisition.
In Proc. 12th Int. Conf. on Machine Learning, 549–557.

7


	Title Page
	Title Page
	page 2


	Plan Evaluation with Incomplete Action Descriptions
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


