
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Learning Hierarchical Task Models by
Demonstration

Andrew Garland and Neal Lesh

TR2002-04 January 2002

Abstract

Acquiring a domain-specific ’task model’ is an essential and notoriously challenging aspect of
building knowledge-based systems. This paper presents machine learning techniques which are
built into an interface that eases this knowledge acquisition task. These techniques infer hierar-
chical models, including parameters for non-primitive actions, from partially-annotated demon-
strations. Such task models can be used for plan recognition, intelligent tutoring, and other
collaborative activities. Among the contributions of this work are a sound and complete learning
algorithm and empirical results that measure the utility of possible annotations.

submitted to AAAI ’02

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2002
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Submitted January 2002.



Learning Hierarchical Task Models By Demonstration

Andrew Garland and Neal Lesh
Mitsubishi Electric Research Laboratories

{garland,lesh}@merl.com

Abstract

Acquiring a domain-specifictask modelis an essential and
notoriously challenging aspect of building knowledge-based
systems. This paper presents machine learning techniques
which are built into an interface that eases this knowledge
acquisition task. These techniques infer hierarchical mod-
els, including parameters for non-primitive actions, from
partially-annotated demonstrations. Such task models can be
used for plan recognition, intelligent tutoring, and other col-
laborative activities. Among the contributions of this work
are a sound and complete learning algorithm and empirical
results that measure the utility of possible annotations.

1 Introduction
Much work in AI aims to produce general algorithms that
operate on declarative representations of domain-specific
knowledge. However, encoding this knowledge is notori-
ously difficult and slow, and is dubbed theknowledge acqui-
sition bottleneckto building knowledge-based systems. One
approach to ease knowledge acquisition is to learn domain
concepts from examples. In this work, we focus on the prob-
lem of acquiringtask models, which are declarative repre-
sentations of the actions that can be performed in a domain.

Past work on learning task models has investigated meth-
ods for learning from examples of sequences of actions exe-
cuted to achieve a goal (Bauer, 1998, 1999; Lau, Domin-
gos, & Weld, 2000), and learning from information about
the state of the world before and after actions are executed
(Wang, 1995; van Lent & Laird, 1999; Angros Jr., 2000;
Tecuci et al., 1999). In the latter approach, the learning
system is often allowed to experiment by executing actions
and observing their effects. Learned task models have been
shown useful for a variety of tasks including plan recog-
nition (Bauer, 1998, 1999), intelligent tutoring (Angros Jr.,
2000), and action selection (van Lent & Laird, 1999).

In this paper, we present and analyze techniques for infer-
ring a hierarchical task model from examples provided by a
domain expert. Each example is a demonstration of a goal-
directed action sequence that ispartially annotated. Our
techniques do not assume a demonstration contains state
information; thus they are useful even when experimenta-
tion or observation of the state is not feasible. Because we
learn hierarchical task models, one demonstration of a sub-
task applies to other tasks that include this subtask. The
expert can annotate a demonstration, for example, to indi-

cate that two actions can occur in either order. This work is
part of an ongoing project to develop user interface agents
(references omitted for review).

The primary contributions of this paper are:

• formalized notions of soundness and completeness for
learning task models from examples. No past work has
formalized desirable properties for task model learning.

• an implemented and provably sound and complete algo-
rithm for learning task models from examples.

• methods for inducing both parameters of non-primitive
actions and equality constraints between parameters,
which we will refer to collectively aspropagators.

• experiments in two domains that suggest an appropriate
division of labor between the human expert and the learn-
ing algorithm.

Inducing propagators is a significant contribution because
propagators are essential to develop an effective hierarchi-
cal task model, and are particularly difficult for people to
specify. Consider, for example, trying to learn a task model
that describes how to repair an automobile from repeated
demonstrations. In this case, the system must learn that the
engine removed from the car must be the same engine that
is returned to it. In contrast, a bolt that is unscrewed from
a place is not normally screwed back into that place later.
Past work on learning hierarchical task models (van Lent &
Laird, 1999; Tecuciet al., 1999) has not addressed learning
propagators.

2 Task Model Learning
Informally, a task model learning algorithm must convert a
series of demonstrations into a task model that accepts the
set of action sequences that are consistent with the demon-
strations. Each demonstration shows one acceptable way to
perform a task and uses annotations to indicate additional
related acceptable sequences. For example, if the sequence
[a, b, c] is demonstrated andb is annotated as optional, then
[a, c] is also an acceptable way to perform the task. Our
techniques leverage both restrictive and preference biases in
order to infer models with desirable properties.

2.1 Task model and annotation languages
We learn hierarchical task models composed of actions and
recipes. Actions are either primitive actions, which can



nonprimitive act PreparePasta
parameter typePastanamepasta

recipePastaRecipeachievesPreparePasta
steps typeBoilWaternameboil

type MakePastanamemake,
optional type GetItemnameget

constraints achieves.pasta= make.pasta
get.item= make.pasta, boil.liquid= make.water
boil precedesmake, getprecedesmake

primitive act GetItem
parameter type Itemname item

Figure 1: Sample textual representation of a portion of a task
model for a simple cooking domain. Keywords are in bold
(achievesrefers to the non-primitive action that is the pur-
pose of a recipe). Parameters and steps have a name as well
as a type to allow for unambiguous references in constraints.

be executed directly, or non-primitive actions, which are
achieved indirectly by achieving other actions. Each action
has a type; each action type is associated with a set of param-
eters, but we do not assume that any causal information, i.e.
preconditions and effects, will be provided.

Recipes are methods for decomposing non-primitive
actions into subgoals. There may be several different recipes
for achieving a single action. Each recipe defines a set of
steps that can be performed to achieve a non-primitive action
and constraints that impose temporal partial orderings on its
steps, as well as other logical relations among their param-
eters. In this paper, the only type of logical relation consid-
ered is equality. All steps are assumed to be required unless
they are labelled as optional.

Annotations allow a domain expert to indicate that exam-
ples similar to the one being annotated are also accept-
able. For the class of hierarchical models we are learn-
ing, an annotated examplee is a five-tuple:〈ê, S, optional,
unordered, unequal〉:

ê is the sequence of primitive actions[p1, . . . , pk] that con-
stitute the unannotated example.

S is a segment; a segment is a pair〈segmentType,
[s1, . . . , sn]〉. Eachsi, called asegment element, is either
a primitive action or a segment. Segment annotations
group together the actions that constitute an occurrence
of a non-primitive act of typesegmentType.

optional is a partial boolean function on segment elements.
Whenoptional(si) is true, the example derived frome by
removingsi is also acceptable.

unordered is a partial boolean function on pairs of ele-
ments in the same segment. Whenunordered(si, sj) is
true, the example derived frome by switching the order
of appearance ofsi andsj is also acceptable.

unequal is a partial boolean function on pairs of action
parameters. Whenunequal(p1, p2) is true, there exists
another acceptable example, identical toe except for
parameter values, wherep1 6= p2.

For the algorithms in this paper, the segments must be
provided by the domain expert. The other annotations are
not required, but will speed learning.

2.2 Soundness and completeness

We now describe the properties of soundness and complete-
ness for a task model learning algorithm. Roughly speaking,
a sound and complete task model is the “intersection” of the
set of task models that are consistent with the input exam-
ples. A task model learning algorithm is sound and complete
if it always produces a sound and complete model.

A sound and complete task model can be described more
clearly, though still informally, in terms of the set of action
sequences that a model willaccept(or, equivalently, pro-
duce). Asoundtask model accepts only, but perhaps not all,
examples that are accepted by every task model that is con-
sistent with the input. Acompletetask model accepts all,
and perhaps additional, examples that are accepted by every
task model that is consistent with the input.

Making these ideas precise requires some notation:P is
the set of primitive actions,E is the set of possible anno-
tated examples, andM is the set of possible task models.
M may be partially ordered to reflect a preference order on
its models. LetP∗ be the set of all finite sequences of the
primitives inP. For any annotated examplee, let ê ∈ P∗ be
the unannotated action sequence.

For any combination of task model and annotation lan-
guages, we assume there exists a functionaccept(m, p∗) that
returns true if and only ifp∗ is an action sequence thatm
could produce. Similarly,accept(m, e) returns true if and
only if annotated examplee could be produced bym.

A task model learning algorithmA takes a set of anno-
tated examples̄E ⊂ E and returns a modelm ∈ M. A is
sound and complete if, for all̄E , the modelm = A(Ē) is
sound and complete, as defined below:

• m is consistentwith Ē iff ∀e ∈ Ē , accept(m, e).
• m is apreferred consistent modelfor Ē if m is consistent

with Ē and∀m′ ∈M that are consistent with̄E ,m′ is not
ordered beforem. Let PCM(Ē) be the set of all preferred
consistent models for̄E .
• m is soundon Ē iff for all p∗ ∈ P∗, accept(m, p∗) ⇒

(∀m′ ∈ PCM(Ē),accept(m′, p∗)).
• m is completeon Ē iff for all p∗ ∈ P∗, accept(m, p∗) ⇐

(∀m′ ∈ PCM(Ē),accept(m′, p∗)).

Figure2 shows an example of task model learning. The
learned model learned shows a key benefit of hierarchical
models: it accepts many action sequences that have not been
seen, such as[a(1), e(2), g(3), h(3), d(1, 2)]. This model is
complete; it is sound when models are ordered using the
preference bias introduced in the next section.

3 Learning algorithm
This section details our algorithm for learning hierarchical
task models from demonstrations. The focus is on inferring
parameters of non-primitive actions and equality constraints
between parameters, referred to collectively aspropagators.
We present pseudo-code for the method that induces propa-
gators, and show that it is sound and complete. Other impor-
tant parts of the learning algorithm will be described, but
space limitations prevent including code or proofs pertain-
ing to them.



[a(1), b(2), c(3), d(3, 2)]

Z

Y

X

Annotated example 1

[d(4, 5), a(6), e(8), c(7), b(5)]

Z

Y

X

Annotated example 2

[f(9), g(6), h(6)]

Z

W

Annotated example 3

X
��HH

Y(α, β) d(β, α)-

Y(δ, γ)
��HH

a(·) Z(δ, γ)-

Z(ε, ζ)
��HH

b(ε) c(ζ)-

Task model after example 1

X
��HH

Y(α) d(·, α)

Y(δ)
�� HH

a(·)- e(·) Z(δ)-

Z(ε)
��HH

b(ε) c(·)
Task model after examples 1 and 2

X
��HH

Y(α) d(·, α)

Y(δ)
�� HH

a(·)- e(·) Z(δ)-

Z(ε)
��HH

b(ε) c(·)

Z(·)
�H

g(θ) h(θ)-

W
�H

f (·) Z(·)-

Task model after examples 1, 2, and 3

Figure 2: Example of task model learning. The unannotated examples are sequences of primitive actions, shown in lower-case
italics, such as[a(1), b(2), c(3), d(4)]. The actiona(2) represents an action of typea with parameter 2. The only annotations in
these examples are segmentations which cluster actions into groups that achieve a single non-primitive action, shown in upper-
case letters, such as X, Y, Z. The recipes contain both primitive and non-primitive action types, shown by lower and upper case
letters, respectively. Dotted lines indicate optional steps. Arrows indicate ordering constraints. A Greek letter represents two
or more parameters of actions that are bound to be equal by a recipe. A “·” indicates that an action has a parameter that is not
bound to any other parameter in that recipe.

Figure3 contains pseudo-code for our task model learn-
ing algorithm (calledLEARNMODEL), which requires poly-
nomial time. The first function called byLEARNMODEL,
ALIGN , efficiently solves a key search problem by lever-
aging two restrictive biases. The problem is to determine
which segments, possibly in different examples, correspond
to the same recipe, and which segment elements correspond
to the same recipe step. Solving this problem is essential in
order to perform useful generalization.ALIGN is efficient
because of the following assumptions that restrict the class
of task models our algorithm will learn:

Disjoint steps assumption:for any two recipes that achieve
an action of the same type, the sets of the types of their
required steps will be disjoint.

Step type assumption:if any recipe contains multiple steps
of the same type, they will be totally ordered and only the
last might be optional.

These assumptions hold in the domains we have exam-
ined; in other domains, other biases or heuristics may be
needed to alleviate the search problem faced byALIGN . For
example, if one assumes that a domain expert always pro-
vides recipe or step names when there is ambiguity, these
assumptions are not needed. The other pieces of our learn-
ing algorithm do not depend on these assumptions.

ALIGN constructs a modelm that contains non-primitive
actions without parameters and recipes without constraints
or optional steps. Given our restrictive assumptions, only

LEARNMODEL (Ē) ≡
m0 ← ALIGN(Ē)
m1 ← INDUCEOPTIONAL(m0, Ē)
m2 ← INDUCEORDERING(m1, Ē)
return INDUCEPROPAGATORS(m2, Ē)

Figure 3: Pseudo-code to learn a task model

one such task model exists for any set of annotated exam-
ples, and it is easily computed. During this construction
process,ALIGN creates two maps, one from segments to
model recipes and one from segment elements to recipe
steps, which are used by the remaining functions called by
LEARNMODEL.

Next, our algorithm determines step optionality and
ordering constraints between steps. TheINDUCEOPTIONAL
function marks steps in reciper as optional if any segment
element that is mapped tos is marked optional or if any seg-
ment that is mapped tor contains no element that is mapped
to s. TheINDUCEORDERING function adds a constraint that
orders stepsi before stepsj unless there is a segment that
contains elementsei andej such thatei is mapped tosi and
ej is mapped tosj and eitherej occurs beforeei or the anno-
tations indicate that this ordering was possible.

3.1 Inducing propagators

We are interested in learning hierarchical task models
because they allow learned concepts to be combined in novel
ways. For example, any example that demonstrates a way to
remove an engine from a car also implicitly shows an addi-
tional way to accomplish other tasks that necessitate remov-
ing a car engine.

On the other hand, a challenge of learning hierarchical
task models is that they must enforce equality relationships
that cross the boundaries of many actions and recipes, i.e.
that are not local to any particular recipe. For example, a task
model to describe changing flat tires must ensure that the car
is always the same, but different tires will be used. Propa-
gators, i.e., parameters of non-primitive actions and equal-
ity constraints (in recipes) between parameters, collectively
enforce such non-local equalities.

A problem arises when learning sound task models that
include propagators, however. Consider the decision of
whether to add a constraint between the parameters of two



[d(1), e(2)] [f(3), g(4)]

A

B C

A

B C

two annotated examples

A
��HH

B(α, β) C(β, α)-

B(δ, ·)

d(δ)

B(·, γ)

f (γ)

C(ζ, ·)

e(ζ)

C(·, θ)

g(θ)

Most specific consistent task model

A

A�
B C-

B

d(·)

B

f (·)

C

e(·)

C

g(·)
Preferred task model

Figure 4: Motivation for propagators with support preference bias: the task models differ in that only the first contains prop-
agators that forced andg’s parameters ande andf ’s parameters to be equal. Both models are consistent because they each
accept both examples. Without the preference bias, however, only the more elaborate model is sound because the simpler model
accepts examples (e.g.,[d(1), g(2)]) which are not accepted by all consistent models. With the bias, the simpler model is sound
because it is preferred to the elaborate model.

recipe steps in the task model. For any set of annotated
examples, there are three situations to consider:

1. negative evidencefor the constraint exists, i.e., there is an
example showing the parameters are unequal. In Figure4,
example[d(1), e(2)] provides negative evidence between
the parameters of stepd (in the first recipe to accomplish
B) and stepe (in the first recipe to accomplishC).

2. only positive evidenceexists for the constraint, i.e. there
are some examples where the steps’ parameters are equal,
and no negative evidence. This case holds for stepsg and
h in the example[g(6), h(6)] that achievedZ in Figure2.

3. no relevant evidenceexists, i.e., there is no example that
contains both steps. In Figure4, stepsd andg fall into
this category since the examples imply that doingd and
theng will achieveA, but no example contains both steps.

In the first case, clearly the task model should not enforce
an equality between the parameters. In the second case, it
is possible that all the positive evidence has been coinciden-
tal, but until negative evidence is seen, a sound model must
only accept examples in which the two steps’ parameters are
equal.

The third case, however, is interesting. A sound and com-
plete learning algorithm must treat theno relevant evidence
case the same as theonly positive evidencecase. Recall that
in order to be sound, an algorithm must produce a model
that only accepts action sequences that are accepted by all
consistent models. So, if any model is consistent with the
input examples and has an equality constraint between two
parameters, the learning algorithm must produce a model
that enforces that constraint. As shown in Figure4, there
exist consistent task models that constrain the parameters of
steps to be equal if there has been no evidence given about
their relationship.

The problem is that such models are counter-intuitive,
because they postulate elaborate constraints that are not sug-
gested by any example. Further, to remove each unnecessary
constraint, the learning algorithm must see an example that
contains a pair of steps that areunrelatedto each other.

To address this problem, we propose a bias against mod-
els with propagators that are not supported by positive evi-
dence. In this approach, we assume a constraint between
parameters does not exist until there is evidence that it does,
and retract a constraint given evidence that it does not exist.
This bias can be stated as the following:
Propagators with support preference bias:A modelmi

is preferred to modelmj given annotated examples̄E iff all
of mi’s propagators are supported by only positive evidence

in Ē andmj has propagators that are not supported by any
example inĒ .

The effect of the bias is shown in Figure4. In this figure,
no propagators are supported by positive evidence because
no parameter values are equal in the two demonstrations.
Note that an non-preferred model may become preferred as
more examples are seen. In Figure4, if we saw[d(1), g(1)]
and[f(1), e(1)] then all the propagators in the more elabo-
rate task model would be supported and so it would be pre-
ferred.

3.2 Propagator induction algorithm
Figure5 shows pseudo-code for an algorithm for learning
propagators. A data structure that facilitates the computation
of propagators is apath. A path “starts” at a parameter of
a primitive action and “follows” a possibly empty sequence
of recipe steps.1 Given a pathp, PARAMETER(p) returns the
parameter at the start of the path; also, ifp has a non-empty
sequence of steps,STEP(p) returns the last recipe step and
RECIPE(p) returns the recipe that containsSTEP(p).

The algorithm works by considering all pairs of paths that
end at the same recipeR. If the parameters at the start of
these paths should always be constrained to be equal (the
criteria for this depends on the preference bias), then a set
of propagators are added to the task model to make sure
this will be the case. The propagators are added in a top
down fashion, first with a constraint onR, and then recur-
sively adding parameters to non-primitives and constraints
to recipes that achieve them.

The following theorem states that our algorithm will pro-
duce a sound and complete model by adding propagators to
its input model.
Theorem: Given a set̄E , and a task modelm without any
propagators such that there exists a modelm′ that is sound
and complete on̄E , and thatm andm′ differ only in their
propagators, thenINDUCEPROPAGATORS(m, Ē) will return
a sound and complete model.
Proof sketch:The role of propagators is to enforce equal-
ity among the parameters of primitive actions that must be
equal, based on the annotated examples. Since equality is a
binary, transitive relationship, it suffices to consider param-
eters on a pair-wise basis. If any parameters have been
unequal in any of the annotated examples, then our algo-
rithm will not make them equal. This is appropriate since

1Think of an annotated example as a tree, with the top-level
segment as the root, segment elements as the interior nodes, and
parameters of primitive actions as the leaves. A path starts at a leaf
and goes up all or part of the tree.



INDUCEPROPAGATORS(m,Ē) ≡
forall R in ALL RECIPES(m)

ADDCONSTRAINTS(R,Ē)

ADDCONSTRAINTS(R,Ē) ≡
P ← PATHSTORECIPE(R, Ē)
forall sets{p, p′} in PATHPAIRINGS(P,Ē)
name← PROPAGATENAME(p,null)
name′ ← PROPAGATENAME(p′,null)
add a constraint between parametername of STEP(p)

and parametername′ of STEP(p′)

PROPAGATENAME (p, purposeSlot) ≡
tail←TAIL (p)
if tail has no steps

then slotName← NAME(PARAMETER(p))
else
slotName← GENSYM()
PROPAGATENAME(tail, slotName)

if purposeSlot 6= null
R← RECIPE(p)
add a parameter namedpurposeSlot of type

TYPE(PARAMETER(p)) to PURPOSE(R)
add a constraint betweenpurposeSlot of PURPOSE(R)

and parameterslotName of STEP(p) toR
return slotName

PATHPAIRINGS (P,Ē) ≡
L ← ∅
forall p, p′ in P such thatp 6= p′

if PARAMETER(p) andPARAMETER(p′) have
never been negatively related in̄E
and eitherp andp′ have been positively related in̄E

or the preference bias is not in effect
thenL ← L ∪ {{p, p′}}

return L

Figure 5: Pseudo-code to infer propagators

this example implies that a consistent model should not force
them to be equal. Otherwise, without a preference bias,
our algorithm will force the parameters to be equal which is
appropriate since there exists a preferred, consistent model
which forces the parameters to be equal. If we use the prop-
agators with support preference bias, then our algorithm will
not force the pair of parameters to be equal which is appro-
priate since any model that does enforces equality will con-
tain unsupported propagators.

It follows that if the alignment and other induction com-
ponents of our algorithm are correct, thenLEARNMODEL is
sound and complete.

4 Implementation and empirical results
The goal of our experiments is to better understand the trade-
off between how many annotations the expert provides in
each example and how many examples must be provided.
In order to do so, we simulate a human expert that pro-
vides varying types of annotations. This approach focuses
the results on this tradeoff rather than the best way to elicit
annotations from the expert.

The algorithm described in the previous section is a sim-
plified version of the one we have implemented. Our imple-
mentation is incremental and accepts a wider class of anno-
tations, including explicitly providing non-primitive param-
eters, recipe names or step names. Also, while theINDU-

CEPROPAGATORalgorithm we presented produces an inor-
dinate number of propagators, our implementation re-uses
propagators when possible. Our system allows task models
to be edited in order to give semantically meaningful names
to recipes and steps.

We based our experiments on two manually created task
models. The first models part of a sophisticated tool for
building graphical user interfaces, called Symbol Editor.
The model was constructed in the process of developing a
collaborative agent to assist novice users. The model con-
tains 29 recipes, 67 recipe steps, 36 primitive acts, and 29
non-primitive acts. A typical example contains over 100
primitive actions. The second test model was a cooking
world model designed specifically to develop and test the
techniques presented in this paper. The model contains
8 recipes, 19 recipe steps, 13 primitive acts, and 4 non-
primitive acts. An example typically contains about 10 prim-
itive actions. Both models have recursive recipes.

Segmentations and non-primitive action names (i.e., seg-
ment types) are always provided by the simulated expert,
but we varied whether the other annotations were provided.
For each combination of annotations, we use the known task
models to generate a corpus of annotated examples (500 for
the symbol editor and 1000 for cooking). Then we ran the
learning algorithm on all examples and hand-verified that
the produced task model (called the target task model below)
was semantically equivalent to the original task model.

For each learning trial, input examples were drawn at ran-
dom (without replacement) from the corpus. After each
example, we determine if the algorithm has produced a task
model that accepts the same sequences as the target task
model.2 Additionally, we determine if each example was
useful, i.e. if it contained any new information that was
not implied by the previous example, by seeing if the algo-
rithm’s internal data structures were altered.

We ran all possible combinations of annotation types, and
report a subset in Table1. In the table, O indicates that all
ordering annotations are given, I indicates that all inequality
annotations are given, and P indicates that all non-primitive
parameters are given. Unlike other runs, the annotations for
“All” include recipe and step names. The reported values are
averaged over randomized sequences of examples — 100
trials for each domain.

One conclusion to be drawn from Table1 is that non-
primitive parameters are the single-most useful kind of
annotation that can be provided. This is unsurprising since it
frees the algorithm from trying to learn the most complicated
relationships in the data. The main surprise is that providing
inequality annotations significantly reduces the number of
required examples, whether or not non-primitive parameters
are provided (compare rows “I” and “None” as well as rows
“PI” and “P”). This is interesting because it seems likely that
a human expert can easily indicate when apparent equalities
in the example are coincidental.

Table1 also shows that learning is strongly influenced by
the order in which examples are processed. This is reflected
both by the minimum number of required examples for any

2Since both models are produced by the same algorithm, it
is sufficient to see if a one-to-one mapping between actions and
recipes in the two models exists.



Additional Cooking Symbol Editor
Annotations Avg. Dev. Min. Max. Useless Error (5) Avg. Dev. Min. Max. Useless Error (1)
All 5.27 1.43 3 10 8.02 2.9% 1.71 0.57 1 3 0.05 1.9%
PIO 6.56 1.43 3 10 10.67 4.7% 1.71 0.57 1 3 0.05 1.9%
PI 7.33 1.56 4 11 16.46 5.2% 2.90 0.64 2 4 0.75 2.2%
PO 10.99 2.02 5 15 16.51 11.6% 2.94 0.63 2 5 0.28 3.2%
P 11.31 2.10 5 16 19.04 11.6% 3.55 0.76 2 6 0.60 3.4%
IO 14.64 3.38 6 22 54.43 6.3% 3.84 1.11 2 7 0.18 2.1%
I 15.04 3.39 6 22 54.08 6.6% 4.38 1.22 2 7 0.22 2.3%
O 27.96 5.40 15 46 183.00 13.2% 8.77 1.90 5 15 1.97 4.6%
None 28.09 5.46 15 46 182.87 13.4% 8.84 1.84 5 15 1.91 4.8%

Table 1: The kind of annotations provided influences the number of examples needed to learn task models.

trial (the “min” column) and the average number of useless
examples per trial (the “useless” column). We suspect that a
human expert would present examples with high utility.

The column labelled “Error (n)” in Table 1 shows the
error rate aftern useful examples have been seen. The error
rate is measured as the fraction of the total information that
remains to be learned, i.e. how much the internal represen-
tations of the current task model and the target model differ.
The table shows that even when it takes many examples to
learn the correct model, e.g., when no extra annotations are
given, the techniques quickly learn a model which is close
to the correct model.

5 Related research and Conclusion
Bauer (1998; 1999) presents techniques for acquiring non-
hierarchical task models from unannotated examples for the
purpose of plan recognition. Since the task model is used
primarily for recognition, Bauer’s algorithm learns only the
required steps to accomplish each top-level goal. Bauer
introduces heuristics for solving what we refer to as the
alignment problem. (In contrast, we side-step the problem
by restricting the task model language.) Since our task mod-
els are intended to support collaboration and discussion of
tasks, we found it important to extend Bauer’s work to han-
dle hierarchical task models and optional steps. Addition-
ally, we introduce the notions of soundness and complete-
ness for task model learning and show our algorithm has
these properties.

Tecuciet al.(1999) present techniques for producing hier-
archical if-then task reduction rules by demonstration and
discussion from a human expert. The rules are intended to
be used by knowledge-based agents that assist people in gen-
erating plans. In their system, the expert provides a problem-
solving episode from which the system infers an initial task
reduction rule, which is then refined through an iterative pro-
cess in which the human expert critiques attempts by the sys-
tem to solve problems using this rule. Tecuciet al. have not
presented formal analysis of their algorithms, specifically
addressed the problem of inferring parameters for learned
actions, or conducted experimental exploration of the divi-
sion of responsibility between the user and learning algo-
rithms.

Other research efforts have addressed aspects of the task
model learning problem not addressed in this paper.Angros
Jr. (2000) presents techniques that learn recipes that con-
tain causal links, to be used for intelligent tutoring sys-
tems, through both demonstration and automated experi-

mentation in a simulated environment.Lau, Domingos, &
Weld(2000), in one of the few formal approaches to learning
macros, use a version space algebra to learn repetitive tasks
in a text-editing domain. Gilet al. (Gil & Melz , 1996; Kim
& Gil , 2000) have focused on developing tools and scripts to
assist people in editing and elaborating task models, includ-
ing techniques for detecting redundancies and inconsisten-
cies in the knowledge base, and making suggestions to users
about what knowledge to add next.

In conclusion, this paper presented the first formal defini-
tions of soundness and completeness of task model learning,
and a sound and complete algorithm for learning task mod-
els from partially-annotated examples. An important and
novel aspect of our algorithm is that it learns hierarchical
task models, including propagators. Finally, we conducted
an empirical study that suggested human experts can sig-
nificantly speed learning simply by noting when apparent
equalities are coincidental.

References
Angros Jr., R. 2000.Learning What to Instruct: Acquiring Knowl-

edge from Demonstrations and and Focussed Experimentation.
Ph.D. Dissertation, University of Southern California.

Bauer, M. 1998. Acquisition of Abstract Plan Descriptions for Plan
Recognition. InProc. 15th Nat. Conf. AI, 936–941.

Bauer, M. 1999. From Interaction Data to Plan Libraries: A Clus-
tering Approach. InProc. 16th Int. Joint Conf. on AI, 962–967.

Gil, Y., and Melz, E. 1996. Explicit representations of problem-
solving strategies to support knowledge acquisition. InProc.
13th Nat. Conf. AI, 469–476.

Kim, J., and Gil, Y. 2000. Aquiring problem-solving knowledge
from end users: Putting interdependency models to the test. In
Proc. 17th Nat. Conf. AI, 223–229.

Lau, T.; Domingos, P.; and Weld, D. 2000. Version space algebra
and its application to programming by demonstration. InProc.
17th Int. Conf. on Machine Learning, 527–534.

Tecuci, G.; Boicu, M.; Wright, K.; Lee, S.; Marcu, D.; and Bow-
man, M. 1999. An integrated shell and methodology for rapid
development of knowledge-based agents. InProc. 16th Nat.
Conf. AI, 250–257.

van Lent, M., and Laird, J. 1999. Learning hierarchical perfor-
mance knowledge by observation. InProc. 16th Int. Conf. on
Machine Learning, 229–238. Morgan Kaufmann, San Fran-
cisco, CA.

Wang, X. 1995. Learning by observation and practice: an incre-
mental approach for planning operator acquisition. InProc. 12th
Int. Conf. on Machine Learning, 549–557.


	Title Page
	Title Page
	page 2


	Learning Hierarchical Task Models by Demonstration
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


