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Abstract

Combining general principles about collaboration
with a task model for a specific environment allows
an agent to adapt its utterences based upon the his-
tory of interactions with the user. However, devel-
oping models that can be used by a collaborative
agent is a significant engineering challenge. Learn-
ing techniques that infer an accurate model for a
given task from annotated examples can lessen this
burden considerably. However, there are is still a
noticeable disparity between an accurate model and
a model that results in dialogs that a human user is
comfortable with.

1 Background

In the Collagen (Rich et al., 2001) architecture, a
collaborative interface agent engages in dialogs with
a user so that, together, they can jointly achieve
tasks. Adaption in these dialogs arises from the
agent’s internal model of the conversation and activ-
ity thus far (the so-called dialogue context) which is
guided by a declarative model of knowledge about
tasks. Thus, dialog adaptation occurs as a byprod-
uct of a general theory of collaboration.

Collagen implements the SharedPlans theory of
collaborative discourse (Grosz and Sidner, 1990), in
which possible utterances of the agent are deter-
mined by a general-purpose algorithm for discourse
interpretation (Lochbaum, 1998). Because the agent
uses a declarative model of actions and tasks, this
approach gives rise to the notorious knowledge acqui-
sition bottleneck: developing an effective model is a
significant obstacle to applying general AT methods
to a domain. Our goal is to support a domain expert
in the construction of such models with machine
learning techniques.

This work presents techniques to automatically
acquire task models, i.e., declarative representations
of how to decompose and accomplish goals and sub-
goals. A distinguishing characteristic of our tech-
niques is that they focus on one of the most difficult
aspects of learning task models: deciding how to
divide tasks into subtasks, which involves choosing
the best abstractions for intermediate goals.

The choice of intermediate goals is especially
important for collaborative agents because the agent
must be able to discuss how to accomplish tasks in
a way that is intuitive to the user. Our approach to
acquiring task models is based on the conjecture that
it is more difficult for people to deal with abstrac-
tions in the task model than to generate and dis-
cuss examples of how to accomplish tasks. In other
words, we are designing a programming by demon-
stration (Cypher, 1994) system in which a domain
expert performs some task by executing primitive
actions and then reviews and annotates a log of their
actions.

A task model influences dialogs but does not con-
trol them. The model allows an agent and the user
to maintain shared beliefs about their efforts. Based
on these mutual beliefs and the agent’s level of ini-
tiative, the agent might make a variety of utterances.
Thus, dialogs automatically adapt to reflect the his-
tory of interactions between the human the user in
a collaboration. A limitation of a single unchanging
model is that it does not allow for on-line adapta-
tion: the same sequence of user actions in a future
collaboration will produce the same dialogs. An area
for future work is to allow for changing models over
time.

The next section of the paper will talk about how
task models are inferred from partially-annotated
examples of task-solving behavior. The different
types of partial annotations are described, and an
example that illustrates the type of inferences made
by the learning algorithm is presented. Empirical
results are included that quantify how the different
types of annotations influence the number of exam-
ples that need to be provided by the domain expert.

A discussion section of the paper describes how
the models that are learned by these techniques are
inadequate for a collaborative agent, despite the fact
that they provide accurate domain models. An obvi-
ous deficiency is that automatically generated names
for various pieces of the model will not be meaningful
to a human. A less obvious one is that some interme-
diate goals do not require parameters for correctness,
but the resulting conversations flow less naturally.



2 Learning Task Models

Before going on to describe the techniques that learn
task models, we will describe the models themselves.
Describing how these models can be used by a col-
laborative agent to generate utterances is beyond
the scope of this paper. The interested reader is
directed to Rich et al. (2001) for an overview; Lesh
et al. (1999) discusses the role of plan recognition
in extending the basic discourse interpretation algo-
rithm (Lochbaum, 1998); and Lesh et al. (2001)
discusses how possible actions and utterances are
selected from an agenda of possibilities, given the
current discourse state.

A task model is composed of actions and recipes.
Actions are either primitive actions, which can be
executed directly, or non-primitive actions (also
called “intermediate goals” or “abstract actions”),
which are achieved indirectly by achieving other
actions. Each action has a type; each action type
is associated with a set of parameters, but does not
have an explicit representation of causal knowledge
for its preconditions and effects.

Recipes are methods for decomposing non-
primitive actions into subgoals. There may be sev-
eral different recipes for achieving a single action.
Each recipe describes a set of steps that can be per-
formed to achieve a non-primitive action. A recipe
also contains constraints that impose temporal par-
tial orderings on its steps, as well as other logical
relations among their parameters. For the purposes
of this paper, however, we will consider only equal-
ity relationships. Equalities between a parameter of
a step and a parameter of the action being achieved
by the recipe are called bindings, but are other-
wise indistinguishable from constraints. All steps
are assumed to be required unless they are labelled
as optional.

nonprimitive act PreparePasta
parameter Pasta pasta

recipe PastaRecipe achieves PreparePasta

steps Boil boil

CookPasta cook

optional GetPasta get
bindings achieves.pasta = make.pasta
constraints get.item = cook.pasta

boil.liquid = cook.water
boil precedes make
get precedes make

primitive act GetPasta
parameter Item item

Figure 1: Collagen representations from a simple
cooking domain.

Figure 1 contains samples of these representations.
Keywords for the task model language are in bold.
Parameters and steps have a name as well as a type
in order to allow for unambiguous references in bind-
ings and constraints. A task model in the form of
Figure 1 is the desired output of learning; acting
from such a model will allow an agent to automati-
cally adapt its utterances to match the specific dia-
log context.

Annotation language Informally, the input to
the learning algorithm is a series of demonstrations;
each one shows one correct way to perform a task
and indicates that examples similar to that one are
also correct. More precisely, an annotated example e
is a five-tuple: (¢, S, optional, unordered, unequal):

é is the temporally ordered list of primitive actions
[p1,--.,pr] that constitute the unannotated
example demonstrated by the expert.

S is a segment; a segment is a pair (segmentType,
[$1,---,5n]). Each s;, called a segment ele-
ment or element for short, is either a primi-
tive action or is a segment. Grouping elements
together means that, as a unit, they logically
form one occurrence of an intermediate goal of
type segmentT ype.

optional is a partial mapping from segment ele-
ments to boolean values. If the mapping is
defined and is true, the expert is specifying
that removing that element from the example
would constitute another correct example from
the domain.

unordered is a partial mapping from pairs of ele-
ments in the same segment to boolean values.
If the mapping is defined and is true, the expert
is specifying that switching the order of appear-
ance of the pair of elements would constitute
another correct example from the domain.

unequal is a partial mapping from pairs of action
parameters to boolean values. If the mapping
is defined and is true, the expert is specifying
that another correct example with the same seg-
mentation exists wherein these two parameters
do not have the same value.

Figure 2 depicts the amount and type of informa-
tion that a domain user would have to add when
annotating a raw usage log. In this example, the
information is textual, but, in practice, a graphical
tool would likely be preferred. The italicized text
is the raw usage log: each primitive action is sub-
scripted so that different instances of the same act
type can be distinguished. The arguments of each
primitive action are specific domain items.

The non-italicized text in Figure 2 show the anno-
tations of the domain expert. In this figure, the
elements of a segment are identified visually by the



segment of type MakeMeal;
segment of type PreparePasta;
Boily (waterg)
GetPastas(linguiniy)
CookPastag(linguinis, watery)

segment of type PrepareSauce;
Boily(wateryg)

MakeSauces(bologneser)
ServeDinnerg(kitchens)

unordered PrepareSauce;, precedes ServeDinnerg
unordered GetPastay, precedes CookPastag
precedes CookPastagz, optional
Boil; .liquid = CookPastas.water,
GetPastay.item = CookPastag.pasta
precedes ServeDinnerg
precedes MakeSauces, optional,
Boil; diquid # Boilg.liquid

Figure 2: Annotated usage log. The raw usage data is in italics, all of the other text is annotations. Note
that this text-based annotation language reflects the underlying representation language (in Figure 1), but
is not identical. Annotations in the left half of the figure must be provided the domain expert; while those
on the right-hand side are not required by the learning techniques, they speed learning.

level of indentation. Also, the mappings described
above are presented in a less formal manner; instead
of defining unordered(a,b) = true, action a is anno-
tated with “unordered b”. If a is annotated with
“precedes b”, this means unordered(a,b) = false.

If one can assume that a domain expert will be
meticulous and always mark certain types of annota-
tions, default reasoning can lighten the expert’s load.
For example, in Figure 2, many steps are not marked
as optional. Although one might intuitively read this
to mean that the unmarked steps are required, it
might just be the case that the expert is not sure
if those steps are required or optional. While it
is tempting to rely on defaults, problems arise if
experts are imperfect annotators, so our learning
techniques are conservative and do not make infer-
ences from the absence of annotations.

It should be clear from even this simple example
that fully annotating examples could be quite bur-
densome.

2.1 Learning algorithm

Figure 3 contains pseudo code for our task model
learning algorithm, which requires polynomial time.
In this figure, £ refers to the set of annotated exam-
ples from which a model is being derived and m;
represents a task model.

A fundamental search problem, which we refer to
as alignment, faced by any task learning algorithm
is to determine which primitive actions, possibly in

LEARNMODEL () =
mo < ALIGNMENT(E)
my1 < INDUCEOPTIONAL(mo, £)
M2 < INDUCEORDERING (m1, £)

return INDUCEPROPAGATORS(mz2, &)

Figure 3: Pseudo code to learn a task model

different examples, correspond to the same recipe
step. Additionally, an algorithm for learning hier-
archical task models must also match segments to
recipes. This is a fundamental problem because a
learning algorithm needs to identify segments with
recipes and segment elements with recipe steps in
order to update the model.

Suppose, for example, that a human expert indi-
cates that [a,b,c] and [c, b, a] both achieve goal Z.
The alignment question, here, is whether to learn
one or two recipes for Z. Without an assumption
or heuristic, there is no justification to learn only
one recipe. But if we never combine multiple exam-
ples into one recipe, we can not perform any useful
generalization.

Alignment is intractable in the absence of assump-
tions about the domains being studied (i.e., restrict-
ing the class of models being learned). However, we
render the alignment problem tractable by making
the following fairly benign assumptions that restrict
the class of task models our algorithm will learn:
Disjoint steps assumption: for any two recipes
that achieve an action of the same type, the sets
of the types of their required steps will not be in a
subset / superset relation.

Step type assumption: if any recipe contains mul-
tiple steps of the same type, they will be totally
ordered and only the last might be optional.

If alignment is correct, the learning algorithm will
be able to make logically correct inferences from the
annotated examples. For example, if the sequence
[a,b,c] is correct and b is annotated as optional,
then we know [a, | is also a correct example. We
can also generalize from the annotated examples
based on assumptions about the target model to be
learned. For example, if the learner is told [a, b, (]
and [¢,b,a] are both correct and the target model



[a(1), b(2), <(3), d(3,2)]

Annotated example 1

X Y(6,7) Z(¢, ¢)
P S T~
Y(o, B) >d(B,@) a(-) —Z(d,7) ble)>c(()

Task model after example 1

X (6)
N TN
Y(a) d(,e)  a(:)>e(:) >2(d)  b(e)

1
[d(4,5), a(6), €(8), ¢(7), b(5)]

Annotated example 2

z z
[£(9), 9(6), h(6)]

Annotated example 3

X Y(4) Z(e)
Y(a) d(-,a) a()>e(:) >Z(0) ble) ()

Task model after examples 1 and 2

Z(e) zZ(-) W
T~

P
c()  8(0) —h(9)

P
() —2()

Task model after examples 1, 2, and 3

Figure 4: Graphical representations for annotated examples and learned task models for an abstract domain.
The unannotated examples are sequences of instances of primitive actions, shown in lower-case italic letters,
such as [a(1),b(2),¢(3),d(4)]. The action a(2) represents an action of type a with parameter 2. The only
annotations in these examples are segmentations that cluster actions into groups that achieve a single non-
primitive action, depicted by upper-case letters, such as X, Y, Z. The recipes contain both primitive and
non-primitive action types, shown by lower and upper case letters, respectively. Dotted lines indicate optional
steps. Arrows indicate ordering constraints. A Greek letter represents two or more parameters of actions
that are bound to be equal by a recipe. A “-” indicates that an action has a parameter that is not bound to

any other parameter in that recipe.

represents partial ordering constraints on pairs of
actions, all orderings of a, b, and ¢ must be correct.
Figure 4 shows an example of task model learning.
The model learned after all three examples are pro-
cessed accepts many action sequences that have not
been seen, such as [a(1),e(2), g(3), h(3),d(1,2)].
The ALIGNMENT function constructs a model m
with non-primitive actions without parameters and
recipes with only required steps. It also constructs
an alignment from the annotated examples £ to m
that consists of a pair of mappings (o, ¢) where ¢
maps from each segment in each e € £ to a recipe in
m, and ¢ maps from each element in each segment
in each e € £ to a step in a recipe in m. These
mappings are used by the induction algorithms.

ALIGNMENT first partitions the segments in £ into
sets of segments that must, under our assumptions,
be mapped to the same recipe. In particular, it
groups the segments such that any two segments, s;
and s;, are grouped together if they have the same
segmentType and the set of the types of the ele-
ments in s; that are not marked optional are a sub-
set of the set of the types of the elements in s; that
are not marked optional. For any set of annotated
examples, there is only one possible such grouping,
which can be easily computed.

Next, for each group of segments, ALIGNMENT
creates a recipe with n; steps of each action type
t, where n; is the largest number of elements of type
t that occur in any segment in the group. It maps
each segment in the group to this recipe, and maps
the segment’s elements, in order of occurrence, to

steps of the same type in the recipe.

After alignment, our algorithm determines the
optionality of, and ordering constraints between,
steps. The INDUCEOPTIONAL function marks step
s in recipe r as optional if any segment element that
is marked optional is mapped to s or if some seg-
ment is mapped to r but contains no element that is
mapped to s. The INDUCEORDERING function adds
a constraint that orders step s; before step s; unless
there is a segment that contains elements e; and e;
such that e; is mapped to s; and e; is mapped to
s; and either e; occurs before e; or the annotations
indicate that this ordering was possible.

No pseudo-code is given for ALIGNMENT,
INDUCEOPTIONAL, or INDUCEORDERING since they
are not the focus of this paper.

Inducing propagators We now present methods
for inferring bindings, constraints, and parameters
of non-primitive actions, which we will refer to col-
lectively as propagators.

The role of propagators is to enforce equality rela-
tionships among the parameter values of primitive
actions. For example, in a task model for cook-
ing spaghetti marinara, the cooked pasta must be
the same pasta to which sauce is later added. In
contrast, different knives can be used to cut, say,
the tomatoes and the mushrooms. These equality
relations cross the boundaries of many actions and
recipes, i.e. they are not local to any particular
recipe.

The first step of learning propagators is to decide
which parameters values should be forced to be
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Figure 5: Motivation for suggested model bias. Both models can explain both examples. The task models
differ in that only the first contains propagators that can force d and g’s parameters and e and f’s parameters
to be equal. Without the suggested bias, the more elaborate model is preferred because the simpler model
accepts examples (e.g., [d(1), g(2)]) which might not be valid examples from the domain.

equal. For example, if the same knife is used to
cut vegetables in all examples, then we can con-
clude that the same knife must be used. If we then
saw an example in which different knives were used,
we would retract this constraint. Alternatively, the
annotations can indicate that different knives could
have been used.

A problem arises due to pairs of steps that never
occur in the same example. As shown in Fig-
ure 5, there exist such task models that constrain the
parameters of these steps to be equal. Such models
are counter-intuitive because they postulate elabo-
rate constraints that are not positively suggested by
any example. Further, to remove all unnecessary
constraints, the learning algorithm must see exam-
ples that contain all pairs of steps that are unrelated
to each other.

To address this problem, we propose a bias against
models with unsuggested propagators. Intuitively,
an unsuggested propagator can be removed from a
model and the model will still explain all seen exam-
ples. For example, in Figure 5, none of the propaga-
tors are suggested because no parameter values are
equal in the two examples being modeled. However,
in Figure 4, all of the propagators are suggested. We
propose the following bias:

Suggested parameter preference bias: A model
my; is preferred to model m; given annotated exam-
ples & iff all of m;’s propagators are suggested by an
example in £ and m; has propagators that are not
suggested by any example in £.

Model learning thus benefits from Occam’s Razor:
the simplest model that explains the data should be
preferred. For propagators, we claim the simplest
model contains only what is needed to explain the
equalities evident in the examples.

Note that an unpreferred model may become pre-
ferred as more examples are seen. In Figure 5, if
we saw [d(1),g(1)] and [f(1),e(1)] then all the prop-
agators in the more elaborate task model would be
suggested and so it would be preferred.

Figure 6 shows pseudo code for an algorithm for
learning propagators with two modes, one that is
sound with no preference bias and one that is sound
under the suggested parameter bias. The algorithm
takes as input the annotated examples and a task

model that lacks some or all of these elements, and
produces a more complete task model.

A data structure that is used to facilitate the com-
putation of propagators is a path. A path starts at a
parameter of a primitive action and “follows” a pos-
sibly empty sequence of recipe steps. Given a path
p that has a non-empty sequence of steps, STEP(p)
returns the last recipe step in the sequence, TAIL(p)
returns a path identical to p except that STEP(p) is
absent, and RECIPE(p) returns the recipe that con-
tains STEP(p).

INDUCEPROPAGATORS (m,f) =
forall R in ALLRECIPES(m)
ADDCONSTRAINTS(R,E)

ADDCONSTRAINTS (R,€) =
L0
P < NONRECURSIVEPATHSTORECIPE(R)
forall p in P
L < £ UPATHPAIRINGS(p, P,&)
forall L in £
forall pairs p,p’ in L
name < PROPAGATENAME(p,null)
name’ < PROPAGATENAME(p' ,null)
add a constraint between parameter name of STEP(p)
and parameter name’ of STEP(p')

PROPAGATENAME (p,inName) =
tail <TAIL(p)
if tail has no steps
then pName < NAME(START(p))
else
pName < GENSYM()
PROPAGATENAME(tail,pN ame)
if inName # null
R < RECIPE(p)
add a parameter named inName of type TYPE(START(p))
to PURPOSE(R)
add a binding between parameter inName of PURPOSE(R)
and parameter pName of STEP(p) to R
return pName

PATHPAIRINGS (p,P,£) =
L0
forall p’ in P
if PARAMETER(p) and PARAMETER(p’) have
never been negatively related in £
and either p and p’ have been positively related in £
or the Suggested Parameter Bias is not in effect
then £ «+ LU {{p,p'}}

return £

Figure 6: Pseudo code to infer propagators




The algorithm works by considering all pairs of
paths that end at the same recipe R. If the param-
eters at the start of these paths should always be
constrained to be equal (the criteria for this depends
on the preference bias), then a set of propagators
are added to the task model to make sure this will
be the case. The propagators are added in a top
down fashion, first with a constraint on R, and then
recursively adding parameters to non-primitives and
bindings to recipes that achieve them.

2.2 Empirical Results

Some experiments were run to better understand the
tradeoff between how much information the expert
provides in each example and how many examples
must be provided. We have built an oracle to sim-
ulate a human expert that provides varying types
of annotations. This approach focuses the results
on this tradeoff rather than the best way to elicit
annotations from the expert. At present, we do not
presume that there is a data base of unannotated
examples that either the expert or the learner can
access — examples are generated by the expert as
needed.

For our experiments, we start with a target task
model and use it to simulate the activities of the
domain expert, both in generating a sequence of
primitive actions and in annotating them. After
each example, we determine if the algorithm has
produced a task model equivalent to the target task
model given the examples it has seen. Additionally,
we determine if each example was useful, i.e. if it
contained any new information that was not implied
the previous example, by seeing if the algorithm’s
internal data structures were altered.

We ran our experiments on two target task mod-
els. The first model represents part of a sophis-
ticated tool for building graphical user interfaces,
called Symbol Editor. The model was constructed
in the process of developing a collaborative agent to
assist novice users. The model contains 29 recipes,
67 recipe steps, 36 primitive acts, and 29 non-
primitive acts. A typical example contains over 100
primitive actions. The second test model was an
artificial cooking world model designed specifically
to test the learning algorithm. The model contains
8 recipes, 19 recipe steps, 13 primitive acts, and 4
non-primitive acts. An example typically contains
about 10 primitive actions. Both models have recur-
sive recipes.

Segmentations and non-primitive action names
are always provided by the oracle, but we varied
whether the other annotations were provided. We
ran all variations of possible combinations of anno-
tation types, and report a subset in Table 1. In
this table, the average and minimum are determined
from the examples that produced a change to the

Anno- Cooking Symbol Editor

tation | Avg. | Min. | Useless | Avg. | Min. | Useless
All 5.3 3 9.9 1.9 1 0.1
EOP 6.5 3 11.1 2.4 1 0.4
EP 7.2 4 14.1 3.0 2 0.5
EO 7.2 3 104 | 14.2 3| 47.0
E 8.1 4 13.1 144 3 46.9
O 38.3 15 | 404.3 | 53.0 37 | 118.7
None 38.3 15 | 404.2 | 53.1 37 | 118.6

Table 1: The kind of annotations provided influences
the number of examples needed to learn task models.

underlying model; other examples are labelled “use-
less.”

In Table 1, O indicates that all ordering annota-
tions are given, E indicates that all equality annota-
tions are given, and P indicates that all propagators
are given. Annotating optional steps did not signifi-
cantly impact the results except when all other anno-
tations were given (indicated by ’All’ in the table).
The reason for this is that optionality is the easiest
aspect to learn because it does not involve relation-
ships between steps. Note that annotating equali-
ties does not add any information when propagators
are given. The data are the results of randomized
sequences of examples — 100 trials for the cooking
domain and 20 trials for the Symbol Editor.

The main surprise is that providing equality anno-
tations dramatically reduces the number of required
examples. This is interesting because it seems likely
that it will be much less onerous for a human expert
to indicate when apparent equalities in the example
are coincidental, than to construct all the propaga-
tor information directly.

Another interesting result in Table 1 is that learn-
ing is strongly influenced by the order in which
examples are processed. This is reflected both by
the minimum number of required examples for any
trial and the average number of useless examples
per trial. One could imagine that a human expert
would provide examples closer to the minimum than
to the average and would not present as many use-
less examples.

3 Discussion

This section talks about the differences between the
model produced by the learning techniques (that
accurately reflects the domain) and a model that
results in dialogs that a human user is comfortable
with. At this stage of development, the impact of
these differences can only be described anecdotally;
a more rigorous evaluation would require human user
studies.

The models that our techniques induce do not
have semantically meaningful names for recipes or




steps of recipes; it is an open problem to determine
how to describe higher level actions, such as, for
example, making a meal, from a series of lower level
actions, such as cooking pasta and making sauce.
We expect that a person will have to edit these
learned models to give them names that describe
activities in the domain for the user-agent collab-
oration. These names are then used by Collagen
to allow the agent to participate in dialogues and
collaborations with a user. However, even having
meaningful names for actions is not sufficient to pro-
ducing natural utterances on the part of an agent
using the induced recipes. Language generation has
long explored this matter, and Collagen uses a sim-
ple but effective set of generation mechanisms for
changing recipe names and recipe steps into more
natural text. As a result, a recipe name such as
“Achieve MakeMeal” becomes “let’s make a meal”
when the agent proposes undertaking such an activ-
ity in a conversation with a user.

A similar problem arises for the names of param-
eters of non-primitive actions that are induced by
the learning algorithms.! Qur algorithm can make a
reasonable guess for parameter names by using the
type of the variable, such as assigning “kitchen” to
the name of a parameter of type kitchen. However,
there still might be several variables of the same type
for a non-primitive action and automatically gener-
ated names like “kitchenl”, “kitchen2”, etc. will not
be very meaningful.

A related issue are what can be called “semantic”
variables. A semantic variable is a variable that is
not needed in order to make the model accurate, but
would improve the quality of the dialogs when an
agent is acting from the model. For example, in our
sample domain, the PreparePasta action does not
need a parameter to indicate which pasta is being
prepared. However, it is useful for PreparePasta to
contain such a parameter so that the agent can refer
to the pasta to be prepared, e.g., “Let’s prepare that
pasta on the counter”.

Figure 7 shows a sample history when the agent
is acting from an unedited learned task model. The
model allows the agent to be an active participant
only if the user is savvy enough to be able to inter-
pret the agent’s utterances. All of the deficiencies
outlined above are present somewhere in Figure 7.

An area of future work is to apply the learn-
ing techniques to support the “online” refinement
of task models during dialogue. For example, sup-
pose the agent says “Let’s make the sauce” and the
user responds by taking out a can of clams. If the
agent does not have a recipe for making clam sauce,
it might say “Are you making sauce?”. If the user

I'While the learning algorithm presented produces an inor-
dinate number of propagators, the actual implementation re-
uses propagators when possible.

=l E3

gs History

User says "What next?"
Done achieving Jakeldeal on My Kitchen by
? WakelfeaiRecipeVia_PreparePasta_FrepareSauce ServeDinner.
Agent says "Let's achieve MakeMeal."
User says "Ok."
Done user saying "The kitchen2 is My Kitchen."
Agent says "What is the kitchen2?"
User says "The kitchen2 is My Kitchen.”
@ Done user successfully performing GoToKitchen on My Kitchen.
Agent says "Please perferm GoToKitchen en My Kitchen."
User performs GeTeKitchen en My Kitchen,
@ Done achieving PreparePasta by PreparePastaRecipeVia_Boil_MakePasta.
Aglent says "Let's achieve PreparePasta."
User says "Ok."
§ Done user successfuliy performing GetPasta on Linguini.
Agent says "Please perform GetPasta."
User perferms GetPasta on Linguini.
§ Done achieving Boil on Water 1 by BoiiRecipeVia_IncreaseTemperature.
Agent says "Let's achieve Beil."
User perferms IncreaseTemperature on Water 1.
Agient perferms MakePasta en Linguini and Water 1.
@ Done achieving PrepareSauce by PrepareSauceRecipeVia_ifakeSauce.
Aglent says "Let's achieve PrepareSauce."
User says "Ok."
© Stopped achieving Boil.
Agent says "Let's achieve Beil."
User says "Neo."
Agent says "Ok, your turn."
User performs MakeSauce on Bolognese.
Agent performs ServeDinner en My Kitchen.
@ Achieving Makelfeal,

-2

Figure 7: Sample history from learned model.

says that she is, then the agent can observe the user’s
actions until the user moves onto the next subtask,
at which point the agent can invoke the learning
techniques described above to produce a new recipe.
The agent might also ask a few questions to get
more information about which steps were optional
or what are the ordering constraints among steps.
The same approach could be used to generalize an
existing recipe: if the user does something unex-
pected after, say, the third step of a known recipe,
the agent can ask if the user’s action was part of
achieving the current goal or not, and update the
task model accordingly. The resulting model might
contain a recipe with a new step or with fewer con-
straints. Finally, the task model can be improved if
the user were to make statements such as “we didn’t
need to do that” or “we didn’t have to use the same
pan as we did before”.

4 Related research

Much on the recent work on learning and adap-
tation in dialogue has focused on learning tech-
niques for modeling aspects of dialogue and dis-
course. Walker (2000) and Litman et al. (2000)
used reinforcement learning to optimize the dialogue
strategy for conversational initiative on the part
of a spoken language system while Chu-Carroll et
al. (1997) used Dempster-Shafter Theory to pre-
dict initiative in dialogue. DiEugenio et al. (1997)
used C4.5 learning to predict cue usage. Like our
work, all of these efforts involve off line explo-
ration of discourse behavior to train a language
system to produce certain behaviors; however, our



work is focused on the tasks that underlie discourse
rather discourse-specific phenomena. The only on-
line effort we are aware of is Goker and Thompson’s
(Goker and Thompson, 2000) adaptive agent, which
proposes to use learning to develop a user model to
track a user’s preferences and thereby in real-time
to avoid asking for information incompatible with
those preferences.

Bauer (1998, 1999) presents techniques for acquir-
ing non-hierarchical task models from unannotated
examples for the purpose of plan recognition (i.e.,
inferring a person’s intentions from her actions).
Since the task model is used primarily for recog-
nition, Bauer’s algorithm learns only the required
steps to accomplish each top-level goal. Bauer intro-
duces heuristics for solving what we refer to as the
alignment problem. (In contrast, we side-step the
problem by restricting the task model language).
Since our task models are intended to support collab-
oration and discussion of tasks, we found it impor-
tant to extend Bauer’s work to handle hierarchical
task models and optional steps.

Tecuci et. al. (1999) present techniques for pro-
ducing hierarchical if-then task reduction rules by
demonstration and discussion from a human expert.
The rules are intended to be used by a knowledge-
based agent that assists people in generating plans.
In their system, the expert provides a problem-
solving episode from which the system infers an
initial task reduction rule, which is then refined
through an iterative process in which the human
expert critiques attempts by the system to solve
problems using this rule. Tecuci et. al. have
not specifically addressed the problem of inferring
parameters and bindings for intermediate goals.

Other research efforts have addressed aspects of
the task model learning problem not addressed in
this paper. Angros Jr. (2000) presents techniques
that learn recipes that contain causal links, to be
used for the intelligent tutoring systems, through
both demonstration and automated experimentation
in a simulated environment. Masui and Nakayama
(1994) investigates learning macros from observation
of or interaction with a computer user in order to
assist the user with tasks that occur frequently or
are inherently repetitive. Lau et. al. (2000), in
one of the few formal approaches to learning macros,
uses a version space algebra to learn repetitive tasks
in a text-editing domain. Gil and Melz (1996) and
Kim and Gil (2000) have focused on developing tools
and scripts to assist people in editing and elaborat-
ing task models, including techniques for detecting
redundancies and inconsistencies in the knowledge
base, and making suggestions to users about what
knowledge to add next.
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