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Abstract
This discussion document records an email conversation in preparation for the Trieste
meeting.
BACKGROUND

The result that ‘belief propagation fixed-points are zero gradient points of the Bethe free energy’
(Yedidia, 2000; Yedidia et al., 2000c) is an interesting one, since the sum-product algorithm (or
belief propagation) has proved so useful for decoding sparse graph codes. The sort of interesting
ideas motivated by this idea include:

e One could make a modified algorithm that not only has the same fixed points but provably
descends the Bethe free energy (Welling and Teh, 2001; Yuille, 2001). (Sum-product does
not descend a Lyapunov function; it can show chaotic behaviour.)

e Yedidia et al. (2000c) suggest that one could derive generalized belief propagation algo-
rithms from better objective functions than the Bethe free energy.

But in this conversation, DJCM says “slow down, there’s a few basic points I don’t under-
stand”.

Here are my questions, and the replies from JSY, WTF and YW

1. Unrealisability. In the case of the pairwise Markov network, the Bethe free energy is a
function of the joint pseudo-distributions b;; and the marginal pseudo-distributions b;,

F({bij, bi}) = Y > bij(wi xj) [nbij (i, 25) — Ingpyj(wi, )]

1j Tirxj

- Z(Qi —1) Z bi(;) [Inb; () — Inp; ()], (1)

where ¢; is the number of neighbours of node 7. If the potentials psi are positive then this
function is well-defined for any positive setting of the pseudo-distributions {b}. The idea
is that when the pseudo-distributions {b} minimize the Bethe free energy, they will im-
plicitly define an approximating distribution close (in some sense) to the true distribution
P(z1,19,...,7N).



However, there is a difficulty with this last step, ‘implicitly define an approximating
distribution’: it is possible to set the pseudo-distributions {b} to values such that there
is no distribution that has those pseudo-distributions as its marginals.

Here is a simple example. Let x1,x9,x3 be binary variables. Let the marginal pseudo-
distributions be uniform: b;(z;) = (0.5,0.5); and let the joint pseudo-distributions be

04 01

biaE1,@2) = oy gy (2)
04 0.1

b23(l‘2,.’L‘3) = 0.1 04 (3)
0.1 04

biz(z1,23) = 04 0.1 (4)

We now prove that there can be no distribution {pooo, Poo1, Po10s Po11s P100s P101s P110,
pi11} that has these pseudo-distributions as its marginals. First, from the top right entry
in (2), po1o + po11 = 0.1, so pp1p < 0.1 and pg11 < 0.1. Similarly, from the lower left entry
in (2), p1oo < 0.1 and pig1 < 0.1.

Then from (3), poo1 < 0.1 and p1g9; < 0.1 (which we already knew); and pg19 < 0.1 (which
we already knew) and p119 < 0.1.

Finally from (4), pooo < 0.1 and p111 < 0.1.

Thus all the joint probabilities must be less than or equal to 0.1, and the total probability
(which should be one) must be less than or equal to 0.8. QED.

The fact that the arguments {b} of the Bethe free energy can correspond to an unrealisable
distribution seems a cause for concern. Can it be shown that, after minimization, the
pseudo-distributions will always in fact be realisable? If not, what are we to make of the
possibility that the optimum {b} is unrealisable? How does this question relate to the
sum-product algorithm?

[Another question one could ask is, if the pseudo-probabilities {b} are realisable, how
would Bethe have us define an approximate distribution that realises them? Would one,
for example, imagine selecting the maximum entropy distribution that matches {b}7]

JSY writes...

Yes, it is true that the b;, b;; are generally unrealizable unless the graph is a tree.
In fact, one can construct a network for which your example is the minimum of
the Bethe free energy. Take

O B ®
o= 1 0
o = 0] g
bi=t=ts = | ®)

in which case iterating belief propagation will give you that all the messages
are [1;1], and the one and two-node beliefs are the unrealizable ones that you



wrote down. That is also the minimum of the Bethe Free Energy. The exact
probabilities for this example are

pooo = 16/98
poor = 16/98
poo = 1/98

ponn = 16/98
poo = 16/98
plor = 1/98

piio = 16/98
pii1 = 16/98

so the exact two-node beliefs are

[ 32798 17/98 [ 32798 17/98
P12=1 17/98 32/98 P23 =1 17/98 32/98
[ 17/98 32/98
b1 = l 32/98 17/98 ] 9)

What can we say about that? Well, the Bethe Free Energy and the sum-product
algorithm are only approximations when your model is not a tree. They will
give incorrect answers, and the error will be particularly bad when you have
tight loops like this example. The error will be reduced by going to a better
approximation like a Kikuchi approximation or generalized belief propagation,
but in general, there still will be no guarantee that the answers you get will
correspond to a realizable probability distribution.

2. Indicator functions. In sparse graph codes, many of the ‘potentials’ are zero/one-valued

functions, for example, a parity constraint among three variables z1, z2 and z, satisfying
z = x1 + r9 mod 2, is implemented by

Y(x1,29,2) =1+ 2+ x1 + 2 mod 2. (10)

Now if we start plugging functions like this one into the Bethe free energy, which takes
logarithms of potentials, we seem to be asking for trouble. Any term that multiplies
log 9 (x1,x2, z) must be exactly zero for all settings of z1, z9 and z such that ¢ (z1, z2, 2)
is zero, otherwise the result is going to be infinite.

Now, maybe the answer to this concern is ‘don’t worry, the pseudo-probabilities will
indeed set themselves such that there are no infinities’; I'd like to know if this is so. For
some variational free energy approaches (for example, (MacKay, 1995b; MacKay, 1995a))
this answer is not an option; the only way to handle indicator functions in the case of the
variational free energy is to introduce an annealing parameter 5 and make the potentials
[-dependent such that the indicator functions are obtained in the low-temperature limit
B — oo. If the Bethe free energy also requires such annealing parameters in order for it
to handle indicator functions, I would like to know; this would cast doubt on the general
assertion that sum-product and Bethe are equivalent, since we can use the sum-product
just fine without introducing annealing parameters.



JSY writes...
It is true that the Bethe free energy would be infinite if you had any terms
where b;j(z;,z;) > 0 when ;;(x;,z;) was exactly equal to zero. Fortunately,
the sum-product algorithm insures that this (b;; > 0 when it shouldn’t) never
happens. Since it is reasonable to take b;;(z;, z;)Iny;;(z;, ;) = 0 if both b and
1) are zero, you don’t have to worry about nasty infinities in the Bethe Free
energy, and don’t need to resort to annealing parameters. Another way to see
this is that

bij (%3, T5) = ij(2s, T5)ai (@) b (z5) (11)
where a; and b; are products of local evidences and messages coming into
the nodes 4 and j, and that equation guarantees that if 1;;(x;,z;) = 0, then
bij(.’IIz', :II]') =0.

3. How general is the pairwise Markov network? In section 2 of (Yedidia et al., 2000c),
the undirected pairwise Markov network is introduced and said to be ‘very general, as
essentially any graphical model can be converted into this form’.

P(.’L‘l,ivz,...,.’BN) = %H’(/)Z](.’L'Z,.’L'])H’(/)Z(.’E,) (12)

I am sceptical about this attitude. Is the pairwise Markov network really so general? In
sparse graph codes, every parity node induces a potential relating at least three variables
to each other — for example, if z = 1 + z9, then we have, as above,

Y(x1,29,2) =1+ 2+ x1 + 2 mod 2. (13)

Typically we have parity check nodes with ten or so bits = participating in a single
potential.

How would this conversion into pairwise Markov form work? I can see one way to do
it: with a collection of 2¥ additional binary variables, one for each setting of the k bits
participating in the parity check. But that is horrible! (Is this the conversion that YTW
had in mind?)

My feeling is that results that focus on the pairwise Markov network are too restricted.
After all, the sum-product algorithm on a graph built from parity check potentials is very
simple (Gallager, 1963; MacKay and Neal, 1996). I would find it helpful if the Bethe-
energy enthusiasts could describe a version of the Bethe-free energy for a simple parity
network like the one whose joint probability is defined by the potential (13). [No other
potentials are needed for this example.]

JSY writes...

My answer to your question here takes several forms.

First, I should say that I agree with you that it is not always necessarily best
to convert everything into a pairwise network. In (Yedidia et al., 2000b), you’ll
see an example where we apply generalized belief propagation to a small parity
check code. As we state in the draft, when we did this, we work directly
in terms of the model written with higher-order interaction terms. In other
words, we used tensorial -interaction terms like 9;;xim (%3, T, Tk, 1, Trm) Which
represented the 5 nodes z;, =;, Tx, T;, and z,, being involved in a parity check.
There is no restriction of the theory to pair-wise networks. In fact, I think that
it is an advantage of generalized belief propagation that it applies so naturally
to models with higher-order interactions.



But just to be clear: for the sum-product algorithm on any factor graph or
Pearl’s algorithm on any directed graph there is a Bethe-like free energy that
is being minimized. And an easy way to prove this is to convert these graphs
to an equivalent pair-wise graph and use our claim 1.

For the specific example of the parity check that you give in equation (13), one
can convert that into a pair-wise network as follows:

(a) Introduce a new node w that can be in 8 different states corresponding to
the possible states of z1, 22, and z. (We’ll call those 8 states 000, 001, 010,
011, 100, 101, 110, and 111).

(b) Set up the ¥y, Ywsz,, and 1y, such that they equal 1 if the state of w
matches the state of z, z1, or zs, respectively, and 0 if they don’t.

(c) Set the evidence term 1, = 1 for the states 000, 011, 101, and 110, and 0
for the other states (to insure that the parity check is obeyed).

We describe this procedure in general for graphical model representations of
parity check codes in section 2.2 of (Yedidia et al., 2000a), and give the Bethe
free energy for such models there.

4. Undirectedness. [This is not a fundamental question.] It bothers me that the Bethe/pairwise-
Markov formulation uses an undirected graph, and consequently all the messages passed
in the resulting algorithms are of one type only, whereas many expositions of the sum-
product algorithm distinguish between two types of message — probabilities and likelihoods
is one terminology for them. I've forgotten what I learned about the junction tree algo-
rithm; maybe the junction tree algorithm has messages of one type only? So maybe the
correspondence is especially direct between Bethe and JT?

JSY writes...

First of all, I realize you are not talking about directed graphs per se, but you
will find in section 2.3 of (Yedidia et al., 2000a) an explanation of how to convert
a directed graph into an undirected pairwise graph.!

What you are talking about, as I understand it, is that in most expositions
of Gallager decoding, one has two kinds of messages: those from a check to a
variable node about “what state you should be in”, and those from a variable
node to a check about “what state I am in”. Both kinds of messages are binary
if the variable nodes are binary. The messages in our papers, on the other hand,
are always about “what state you should be in”, and if they are from a variable
to a check, they range over the 2* states of our check nodes.

These two formulations are mathematically equivalent. The conventional Gal-
lager decoding amounts to defining messages which are

HMnode;—check, (i) = atpi(i) H Mcheck,—»node; (i) (14)
b
These “p” messages will just have as many states as the node ¢ does (they will
be binary).
For the sake of consistency with other kinds of models, we generally prefer to
talk about messages

Mpode;—check, (Za) = @ Z Yia (@i, wa)“nodei—mhecka (i) (15)

Zi

!This material was also in the paper by Freeman and Weiss, to appear in IEEE Transactions on Information
Theory, available at: http://www.cs.berkeley.edu/~yweiss/maxprodieee2.pdf



and our messages from nodes to checks range over 2* states. But these methods
are equivalent — it’s just a question of when you do the needed multiplication
over ;, and sum over x;.

5. The flipped-sign entropy terms. Regular free energies and variational free energies
contain negative entropy contributions (e.g., F = E —T'S), so that large-entropy proba-
bility distributions are favoured, all other things being equal. The Bethe free energy has
positive entropies in it [the terms in (g; — 1)]. Should I be worried about the possibility
that these flipped-sign entropy terms might sometimes end up dominating things, giving
silly answers in which the probability distribution has very low entropy?

JSY writes...

I do not think there is anything to worry about. The entropy terms with a
flipped sign all involve single-node beliefs. If a single-node belief for a partic-
ular node has a concentrated probability distribution, the double-node beliefs
involving that node must also have one by the marginalization constraints, and
the entropy terms for those double-node beliefs will fight against the concen-
trated distribution because they still have the ordinary sign. It might look a
little strange at first, but the Bethe entropy is actually the exact form on a tree,
which might make you feel more comfortable about it.

ACKNOWLEDGEMENTS
David MacKay thanks Max Welling, Radford Neal, and Yee Whye Teh for helpful discussions.

References

Gallager, R. G. (1963) Low Density Parity Check Codes. Number 21 in Research monograph series.
Cambridge, Mass.: MIT Press.

MacKay, D. J. C. (1995a) Free energy minimization algorithm for decoding and cryptanalysis. Electronics
Letters 31 (6): 446-447.

MacKay, D. J. C. (1995b) A free energy minimization framework for inference problems in modulo 2
arithmetic. In Fast Software Encryption (Proceedings of 199 K.U. Leuven Workshop on Cryptographic
Algorithms), ed. by B. Preneel, number 1008 in Lecture Notes in Computer Science, pp. 179-195.
Springer-Verlag.

MacKay, D. J. C., and Neal, R. M. (1996) Near Shannon limit performance of low density parity check
codes. Electronics Letters 32 (18): 1645-1646. Reprinted Flectronics Letters, 33(6):457-458, March
1997.

Welling, M., and Teh, Y. W. (2001) Belief optimization for binary networks: A stable alternative to
loopy belief propagation. Technical report, Gatsby Computational Neuroscience Unit. Check with
Max for correct bibtex.

Yedidia, J. S. (2000) An idiosyncratic journey beyond mean field theory. Technical report, Mitsubishi.
MERL TR-2000-27.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2000a) Bethe free energy, kikuchi approximations and
belief propagation algorithms. Technical report, Mitsubishi. MERL TR-2001-16.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2000b) Characterization of belief propagation and its
generalizations. Technical report, Mitsubishi. MERL TR-2001-15.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2000c) Generalized belief propagation. Technical report,
Mitsubishi. MERL TR-2000-26.

Yuille, A. L., (2001) A double-loop algorithm to minimize the Bethe and Kikuchi free energies. Unpub-
lished.



	Title Page
	Title Page
	page 2


	A conversation about the Bethe free energy and sum-product (discussion document)
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


