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Abstract

Towards our goal of developing computer tutors that
can collaborate with students on tasks in simulated en-
vironments, we have built a series of four prototype
tutors. These tutors integrate two independent but
related strands of research: intelligent tutoring sys-
tems and task-oriented dialogue systems. While the
tutors share a core approach to teaching procedural
tasks, each was designed to explore a di�erent set of
issues. This paper outlines the issues that arise in task-
oriented tutorial dialogue and the ways they have been
addressed in these four tutors.

Introduction
Tomaster complex tasks, such as operating complicated
equipment, people need hands-on experience facing a
wide range of situations. They also need a mentor that
can demonstrate procedures, answer questions, mon-
itor their performance, and provide feedback. Since
it is often impractical to provide such training on real
equipment, we are exploring the use of simulation-based
training. Since mentors are often unavailable when stu-
dents need them, we are developing computer tutors
that can take their place. Thus, our research objective
is to develop computer tutors that can collaborate with
students on tasks in simulated environments.
Our work integrates two independent but related

strands of research: intelligent tutoring systems and
task-oriented dialogue systems. Research on intelligent
tutoring systems (Carbonell 1970; Sleeman & Brown
1982;Wenger 1987) focuses on computer tutors that can
adapt to individual students through the use of arti�-
cial intelligence. Such systems dynamically adapt their
teaching based on a representation of the target knowl-
edge the student is expected to learn and a representa-
tion of the student's presumed state of knowledge. Re-
search on task-oriented dialogue (Grosz [Deutsch] 1974;
Lochbaum 1998; Traum 1994), which has an equally
long history, focuses on computational models of hu-
man dialogue for collaborative tasks. While these two
research communities have focused on di�erent issues,
they are equally important to our goal of supporting
task-oriented, tutorial dialogue between students and
computer tutors.

Our research on this topic has resulted in a series of
computer tutors. While these tutors share a core ap-
proach to teaching procedural tasks, each was designed
to explore a di�erent set of issues. In this brief paper,
we review the similarities and di�erences among these
tutors and the issues they raise for task-oriented, tuto-
rial dialogues.

TOTS, STEVE, PAT, and PACO

Our work on this topic began when one of the au-
thors (Rickel) began studying the problem of intelli-
gent tutoring for procedural tasks. His work resulted
in the �rst domain-independent shell for constructing
such systems (Rickel 1987; 1988), called TOTS (Task-
Oriented Tutoring System). The shell included a rich
representation for procedural tasks, based on Sacer-
doti's procedural networks (Sacerdoti 1977), an overlay
representation of the student's knowledge (Goldstein
1977), and the ability to dynamically interleave teach-
ing and coached practice based on a student model.
Subsequent work by Rickel and Johnson (1999; 2000)

focused on a di�erent aspect of task-oriented, tuto-
rial dialogue: face-to-face interaction in a shared en-
vironment. This work resulted in STEVE (Soar Train-
ing Expert for Virtual Environments), a graphical hu-
man �gure that cohabits three-dimensional virtual en-
vironments with students to teach them physical tasks.
STEVE has many of the same pedagogical capabilities
as TOTS. However, because it has an animated body,
and cohabits the virtual world with students, it can pro-
vide additional types of assistance. For example, it can
demonstrate actions, use gaze and gestures to direct the
student's attention, and guide the student around the
virtual world (Johnson, Rickel, & Lester 2000).
Our third agent, PAT (Pedagogical Agent for Train-

ing), was developed by Ganeshan and Rickel to support
task-oriented, tutorial dialogues on the Web. PAT was
designed to combine the tutorial capabilities of TOTS,
the task reasoning capabilities of STEVE, and a more
complete model of task-oriented dialogue than either
of those prior systems. Like STEVE, PAT appears to
the student as an animated human �gure. However,
to simplify the interface for Web delivery, PAT is ani-
mated from two-dimensional bitmap images rather than



a full three-dimensional graphical model, and appears
in a separate window from the simulated environment.
Our fourth agent, PACO (Pedagogical Agent for

COLLAGEN), which is currently under development by
Ganeshan and Rickel, is an attempt to build a computer
tutor on top of COLLAGEN (Rich & Sidner 1998).
COLLAGEN is a separate piece of software developed
at the Mitsubishi Electric Research Laboratory as a
general model of task-oriented dialogue. While COL-
LAGEN does not embody any tutorial capabilities, it
provides a more general model of collaborative conver-
sation than our previous systems.
Each of these four tutors consists of a set of domain-

independent capabilities that utilize a declarative rep-
resentation of domain knowledge. To teach students
about the tasks in a new domain, someone must pro-
vide the appropriate domain knowledge. We assume
that this domain author will be someone with enough
domain knowledge to create a course for teaching oth-
ers. Importantly, we do not assume that this person
has any programming skills, so we have tried to ensure
that our tutors only rely on types of knowledge that a
domain author can provide.

Learning Environment
All of our tutors are designed for simulation-based
training. That is, students learn tasks by performing
them in a simulation of the real work environment. Of
course, if the target work environment is actually a soft-
ware application, that application can serve as the sim-
ulator. Our tutors make few assumptions about the
nature of the simulated environment and the student's
interface to it. Each of the tutors has an API through
which it receives messages from the simulator describ-
ing state changes and student actions and sends mes-
sages to take action itself. STEVE is unique among
our agents in actually appearing in the simulated envi-
ronment with the student; the other tutors appear in
separate windows. (Although COLLAGEN does allow
a pointing hand to move over the simulator window to
point at objects.)
All of our tutors' instruction and assistance is situ-

ated in the performance of domain tasks in the simu-
lated environment. That is, the tutor chooses a sce-
nario (task to perform starting from a particular sim-
ulation state), works through it with the student, and
then repeats until all scenarios have been covered. Our
goal is to support the apprenticeship model of learning
(Collins, Brown, & Newman 1989). This requires two
capabilities. First, the tutor must be able to perform
and explain the task, in order to teach the student how
to do it. Second, it must be able to monitor the student
as she performs the task, providing assistance when it
is needed. As the student gains pro�ciency, the assis-
tance provided by the tutor should decrease. Ideally,
students should learn to apply well-de�ned procedures
to a variety of situations.
Our tutors support both actions and utterances by

students. All four tutors allow the student to perform

actions in the simulated environment. They di�er in
the range of utterances they allow. None of our tutors
support natural language understanding; the student
uses a GUI to construct utterances. (STEVE supports
speech recognition, but the student is still limited to a
relatively small range of allowable utterances.) TOTS
only allowed the student to ask what should be done
next. STEVE and PAT additionally allow the student
to ask \Why?" following most suggestions or expla-
nations, and STEVE allows the student to ask for a
demonstration, interrupt a demonstration and ask for
the task initiative, and use domain-speci�c utterances.
PACO uses the dialogue interface provided by COLLA-
GEN, which allows the user to construct a rich set of
utterances appropriate for task-oriented collaboration.
The set of utterances is based on Sidner's (1994) ar-
ti�cial discourse language. Students can, for example,
propose a goal or action, ask or propose who should per-
form a goal or action, ask about or propose the value
of a parameter (input) to a goal or action, and ask or
propose how a given goal should be achieved.
Our work focuses on mixed-initiative dialogue with

the student, where either the tutor or student can act
or speak at any time. Our early work on TOTS fol-
lowed the more typical approach in intelligent tutor-
ing systems in which the tutor is in complete control.
To maintain control, all student actions were passed
through TOTS before being sent to the simulator; if an
action was incorrect, the student received feedback from
TOTS but the action was never sent to the simulator.
While this approach is simple to implement, it prevents
students from seeing the consequences of mistakes and
learning to recover from them. For this reason, STEVE,
PAT and PACO share equal control with the student.
This requires an additional ability to recover from stu-
dent errors and other unexpected events, as discussed
shortly.

Agent Architecture

There are four key modules in our tutors. The expert
module embodies the knowledge and capabilities that
should be taught to the student; it knows how to solve
the problems being given to her. The dialogue man-
ager maintains the state of the tutorial dialogue. Plan
recognition uses the output of the expert module and di-
alogue manager to interpret the student's actions and
utterances; it decides what the student is trying to do.
Finally, the pedagogical executive uses the output of the
other three modules to decide what to say or do next.
Below, we discuss these four modules and the issues
they raise for task-oriented tutorial dialogue.

Expert Module

The expert module of an intelligent tutoring system
provides a model of the skills that the student is ex-
pected to acquire. Since our tutors teach procedural
tasks, they require an expert module that can perform
such tasks. That is, they must be able to decide, based
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on the state of the simulator, what the next appropriate
actions are and why. Since our objective is to design
a domain-independent tutor that can be applied to a
wide variety of domains, our expert module must pro-
vide two things: a representation language for domain
task knowledge, and algorithms that can use knowledge
expressed in that language to perform domain tasks.
Intelligent tutoring systems typically represent pro-

cedural knowledge in one of two ways. Some, notably
those of Anderson and his colleagues (Anderson et al.
1995), use detailed cognitive models built from produc-
tion rules. Such systems perform domain tasks by di-
rectly executing the rules. Other systems use a declar-
ative representation of the knowledge, usually some
variant of a procedural network representation (Sacer-
doti 1977) specifying the steps in the procedure and
their ordering. Such systems perform tasks by using a
domain-independent interpreter to \execute" the pro-
cedural network (i.e., walk through the steps). To sim-
plify authoring, all of our tutors use a declarative rep-
resentation.
All four tutors use the same basic representation,

drawn from research on planning within arti�cial intel-
ligence, although they di�er in some details. First, each
task consists of a set of steps, each of which is either
a primitive action (e.g., press a button) or a composite
action (i.e., itself a task). Composite actions give tasks
a hierarchical structure. Second, there may be ordering
constraints among the steps; these constraints de�ne a
partial order over the steps. In addition to steps and
ordering constraints, STEVE and PAT represent the ra-
tionale for steps in the task as a set of causal links; each
causal link speci�es that one step in the task achieves
a goal that is a precondition for another step (or for
termination of the task). For example, pulling out a
dipstick achieves the goal of exposing the level indica-
tor, which is a precondition for checking the oil level.
In addition to steps, ordering constraints, and causal
links, each of the tutors supports other constructs that
are useful for representing task knowledge, but these
three form the core of the representation.
Whether demonstrating a task for a student or mon-

itoring the student as she performs the task, the tu-
tors use their task knowledge to decide what must be
done next. TOTS assumes that steps must be done in
the order speci�ed by the task knowledge, although it
does allow conditional links in the task knowledge so
that the exact execution sequence can depend on pa-
rameters of the problem given to the student. PACO
relies on COLLAGEN's representation and use of task
knowledge; COLLAGEN has some abilities to use the
state of the simulation to recognize when a step can
be skipped or must be redone. PAT and STEVE both
incorporate a partial-order planning algorithm (Weld
1994) that uses the causal links to construct a plan
for completing the task based on the simulator state
(Rickel & Johnson 1999). This gives them the most
complete ability to recover from errors by the student
and other unexpected events created by the simulator

(e.g., a simulated equipment failure). The causal links
also allow PAT and STEVE to automatically generate
explanations for how the steps they suggest to the stu-
dent contribute to completing the task (Rickel & John-
son 1999).

Dialogue Manager

Perhaps no other module of our tutors has evolved as
much as the dialogue manager. TOTS had almost no
representation for the state of the dialogue. It only kept
track of the focus node (i.e., the step in the task that
is the current topic of discussion). To a large extent,
this simple representation was su�cient because TOTS
retained full control over the ow of the dialogue, which
followed a relatively �xed pattern.
The more dynamic nature of STEVE's interactions

with students required a more explicit representation
of the dialogue state (Rickel & Johnson 2000). Because
utterances take time (synthesized speech for STEVE's
voice, speech recognition for the student), STEVE must
keep track of whether it and/or the student is speak-
ing, and avoid overlaps. It must keep a record of who
has the task initiative (i.e., responsibility for deciding
which task steps to do next), because either STEVE
or the student can have it and the task initiative can
change during the course of a scenario. STEVE keeps
a record of which steps have been performed already;
this allows it to acknowledge when a step must be re-
done, rather than implying that the second performance
of the step is normal. When STEVE answers a stu-
dent question (\What next?" or \Why?"), it records
its answer in case the student asks a follow-up ques-
tion (\Why?"). For the task step currently in focus,
STEVE records the status of the collaboration with the
student (e.g., whether it proposed the step, whether it
explained it, whether it or the student performed it,
and whether they discussed the result); among other
things, this helps STEVE decide what to say if collabo-
ration on the step must be aborted (e.g., if a change in
the simulated world makes it irrelevant or inapplicable).
Finally, since errors by the student or unexpected sim-
ulator events (e.g., a high-priority alarm) can interrupt
a subtask on which STEVE and the student are work-
ing, STEVE maintains a focus stack (Grosz & Sidner
1986); this allows STEVE to return to the interrupted
task after handling the interruption (Rickel & Johnson
1999).
These dialogue management issues that arose in

STEVE convinced us of the importance of represent-
ing the state of the dialogue. Beginning with our work
on PAT, we sought a more principled representation.
PAT's dialogue manager is based largely on the ideas
of Grosz and Sidner (1986). However, rather than dis-
cuss PAT's dialogue manager, we turn instead to our
work on PACO. PACO's dialogue manager is COLLA-
GEN, which employs a similar but more general ap-
proach than PAT.
In COLLAGEN, the attentional component of the

dialogue state, i.e., what are we talking about and/or
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working on now, is represented by a hierarchy of dia-
logue segments and a dialogue segment (focus) stack.
A dialogue segment is a contiguous sequence of actions
and utterances that contribute to some purpose. The
intentional component of the dialogue state, i.e., the
status of goals, is represented by plan trees which are
a partial implementation of SharedPlans (Grosz & Sid-
ner 1990; Grosz & Kraus 1996). The heart of COL-
LAGEN's dialogue management is the discourse inter-
pretation algorithm, based on (Lochbaum 1998), which
speci�es how to update the dialogue state given a new
action or utterance by either the student or tutor. This
algorithm links the goals and plans of collaboration to
the dialogue state via the actions and utterances.

Plan Recognition

When a student takes an action or says something, the
tutor must decide what the student is trying to do. This
allows the tutor to update a model of the student's
knowledge as well as provide appropriate feedback in
the case of errors. When the tutor is maintaining a
representation of the dialogue state, it also allows ap-
propriate updates to that state. Recognizing someone's
intentions from their actions and utterances is typically
called plan recognition, an area with a long research
history. In intelligent tutoring, this area is often called
student diagnosis (Wenger 1987), since research on tu-
toring systems focuses on diagnosing why a student per-
formed an erroneous action in order to give appropriate
feedback.
Plan recognition, especially for intelligent tutoring,

can exploit two types of knowledge. The �rst is the
correct knowledge of the tasks, as embodied in the ex-
pert module. The second is buggy knowledge (Burton
1982) representing common errors in the domain. The
addition of buggy knowledge increases the burden on
the domain author, who must encode the knowledge,
and increases the search space for the plan recognition
module, but it can result in more appropriate feedback
to the student. For generality, all our tutors focus on
the use of the correct knowledge rather than requiring
any buggy knowledge.
Since TOTS did not allow student utterances except

\What next?", it focused on interpreting the student's
domain actions. It did so by searching for a step in the
task knowledge that matches the student's action and
provides the most likely interpretation. It recognized
and responded to �ve general cases. (1) The student's
action was correct if it matched one of the actions that
the expert module thought could be done next. (2)
The student's action was invalid if it didn't match any
action in the domain knowledge. (3) The student's ac-
tion may be appropriate for the given goal except that
the problem given to the student precluded the action;
for example, she may be proceeding as for a two-barrel
carburetor when the problem stated that the car has
a four-barrel carburetor. TOTS recognized this case
by asking the expert module to relax all problem con-
straints and search again for all valid next actions; if

the student's action was found, TOTS could identify
which problem constraints it violated and give appro-
priate feedback. (4) The student may have taken the
wrong action for the right goal; for example, she may
have violated an ordering constraint by omitting a nec-
essary action. (5) The student's action may be valid
only for an irrelevant goal; for example, she may be
changing the tire to �x a carburetor problem. Cases
3-5 above are examples of what is often called \near
miss" plan recognition.
PAT also has a set of cases it can distinguish by

searching through the task knowledge for an interpre-
tation of the student's action. (1) Like TOTS, it classi-
�es a student's action as correct if it matches one of the
actions that the expert module thinks should be done
next. (2) An action is irrelevant if it does not appear
anywhere in the expert module's plan for completing
the task (i.e., it does not contribute to any remaining
goals of the task). (3) If an action is relevant (i.e., in
the tutor's plan), it is classi�ed as inapplicable if its pre-
conditions are not all satis�ed. (4) Finally, if an action
is relevant and applicable, it is classi�ed as precluded if
an ordering constraint requires another relevant, appli-
cable step to be done �rst. If a student's action matches
multiple steps in the task knowledge, PAT uses the cur-
rent dialogue focus to disambiguate when possible; that
is, it prefers an interpretation of the student's action
that is a continuation of the current subtask over other
interpretations that would represent a focus shift (Grosz
& Sidner 1986).
COLLAGEN's plan recognition is more general than

what is used in our earlier tutors because COLLAGEN
must interpret a variety of student utterances in addi-
tion to student actions. However, since plan recogni-
tion is well known to be intractable in the general case
(Kautz 1990), COLLAGEN exploits properties of the
collaborative setting in order to make plan recognition
practical (Lesh, Rich, & Sidner 1999). Speci�cally, it
exploits the following properties: the focus of attention
(as described above for PAT), the use of partially elab-
orated hierarchical plans (which indicate the dialogue
acts that would contribute to progress on the task),
and the possibility of asking for clari�cation. COLLA-
GEN's plan recognizer also provides very general and
extensible facilities for near-miss plan recognition.

Pedagogical Executive

The previous three modules { the expert module, dia-
logue manager, and plan recognition { serve mainly to
guide the pedagogical executive. The pedagogical exec-
utive is the module that decides what the tutor should
say or do next. The other three modules simply provide
the information it needs to make such decisions.
In teaching students how to perform tasks, our goal

is to have our tutors support an apprenticeship model
of instruction (Collins, Brown, & Newman 1989), �rst
showing the student how to perform the task, then pro-
viding assistance as the student practices the task, and
gradually providing less assistance as the student ap-
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proaches mastery. If there were no overlap among tasks
and scenarios, this approach could be implemented in
the obvious way: the tutor would �rst demonstrate the
entire task, then repeatedly let the student practice
the task, providing assistance where necessary. How-
ever, di�erent tasks often share common subtasks or
actions, and di�erent scenarios often require variants of
the same task. Therefore, at any moment, a student's
level of mastery may di�er across the di�erent parts
of a task. For example, a new scenario may require
branches of a task that the student has not yet seen
while also requiring steps and subtasks that have been
mastered already. Thus, our tutors must use a student
model to adapt their instruction accordingly. Except
for STEVE, which does not use a student model, all
our tutors use an overlay model (Goldstein 1977) that
records, for each element of domain knowledge, whether
the student has been exposed to it and her current de-
gree of mastery.
TOTS, PAT, and PACO use the student model to dy-

namically interleave demonstration and coached prac-
tice. As the student and the tutor progress through
a task, the expert module will repeatedly identify the
next possible steps that could be done. The tutor will
consult the student model to see whether the student
has su�cient knowledge to choose the next step. If so,
the tutor will expect the student to take the next step,
and will provide assistance only if the student requests
it or makes a mistake. If not, the tutor will intervene
and teach the student what to do next. Thus, as the
tutor and the student work through tasks, task initia-
tive will pass back and forth between them based on
the student's prior experience. Whenever the tutor de-
cides that the task initiative should shift, it will let the
student know through verbal comments (e.g., \Let me
show you what to do next" or \You take it from here").
Our research has focused more on deciding what the

tutor should say next than on how it should say it. All of
our tutors use relatively simple text templates for natu-
ral language generation. The domain author associates
elements of domain knowledge with text fragments that
the tutor dynamically plugs into the text templates.
One issue we have addressed is the use of cue phrases.
Because STEVE and PAT include planners that can
dynamically decide how steps should be ordered in the
face of unexpected events, text fragments cannot as-
sume the order in which steps will be done. Therefore,
both those tutors dynamically insert cue phrases (e.g.,
\First," \Next," \Now we can", \As I told you before")
into their utterances to help show the relationship of
new utterances to old ones (Rickel & Johnson 1999).
The use of cue phrases has been identi�ed as an impor-
tant element of human tutorial dialogues (Moore 1996).

Conclusions
Through our four tutors, we have explored the issues
that arise in task-oriented, tutorial dialogues. Despite
their many similarities, our work on each tutor focused
on di�erent issues. Together, they have helped us un-

derstand the required interplay between an expert mod-
ule, a dialogue manager, plan recognition, and a peda-
gogical executive.
Our current work is progressing in two directions.

First, through new funding provided by the Army Re-
search O�ce (via the USC Institute for Creative Tech-
nologies), we are continuing our research on STEVE.
The project focuses on face-to-face tutorial interaction
in a shared environment, especially the interplay be-
tween verbal and nonverbal communication. Second,
we are continuing work on PACO. Because COLLA-
GEN o�ers a general, modular model of task-oriented
dialogue, it provides an opportunity to integrate the in-
dependent but related strands of research on intelligent
tutoring and task-oriented dialogue in a more complete
and principled way than was previously possible.
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