MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Using Linked Volumes to Model Object
Collisions, Deformation, Cutting, Carving,
and Joining

Sarah F. Frisken-Gibson

TR2000-24 December 2000

Abstract

In Volume Graphics, objects are represented by arrays or clusters of sampled 3D data. A volu-
metric object representation is necessary in computer modeling whenever interior structure af-
fects an obje& behavior or appearance. However, existing volumetric representations are not
sufficient for modeling the behaviors expected in applications such as surgical simulation, where
interactions between both rigid and deformable objects and the cutting, tearing, and repairing
of soft tissues must be modeled in real time. 3D voxel arrays lack the sense of connectivity
needed for complex object deformation while finite element models and mass-spring systems
require substantially reduced geometric resolution for interactivity and they can not be easily cut
or carved interactively. This paper discusses a linked volume representation that enables physi
cally realistic modeling of object interactions such as: collision detection, collision response, 3D
object deformation, and interactive object modification by carving, cutting, tearing, and joining.
The paper presents a set of algorithms that allow interactive manipulation of linked volumes that
have more than an order of magnitude more elements and considerably more flexibility than ex-
isting methods. Implementation details, results from timing tests, and measurements of material
behavior are presented.

IEEE Trans. on Visualization and Compuer Graphics, Vol. 5, No. 4, 1999, pp. 333-348

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 2000
201 Broadway, Cambridge, Massachusetts 02139

MERL - A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Using Linked Volumes to Model
Object Collisions, Deformation,
Cutting, Carving, and Joining

Sarah F. Frisken-Gibson*

TR-2000-24 June 2000

Abstract

In Volume Graphics, objects are represented by arrays or clusters of sampled 3D
data. A volumetric object representation is necessary in computer modeling when-
ever interior structure affects an object’s behavior or appearance. However, existing
volumetric representations are not sufficient for modeling the behaviors expected in
applications such as surgical simulation, where interactions between both rigid and de-
formable objects and the cutting, tearing, and repairing of soft tissues must be modeled
in real time. 3D voxel arrays lack the sense of connectivity needed for complex object
deformation while finite element models and mass-spring systems require substantially
reduced geometric resolution for interactivity and they can not be easily cut or carved
interactively.

This paper discusses a linked volume representation that enables physically realistic
modeling of object interactions such as: collision detection, collision response, 3D ob-
ject deformation, and interactive object modification by carving, cutting, tearing, and
joining. The paper presents a set of algorithms that allow interactive manipulation of
linked volumes that have more than an order of magnitude more elements and con-
siderably more flexibility than existing methods. Implementation details, results from
timing tests, and measurements of material behavior are presented.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors
and individual contributions to the work; and all applicable portions of the copyright notice. Copying,
reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi
Electric Information Technology Center America. All rights reserved.

Copyright (© Mitsubishi Electric Information Technology Center America, 2000
201 Broadway, Cambridge, Massachusetts 02139

also published in IEEE Trans. Visualization and Computer Graphics, Vol. 5, No. 4, 1999, pp. 333-348

Publication History:—
1. First printing, TR-2000-24, June 2000

Using Linked Volumes to Model Object Collisions,

Deformation, Cutting, Carving, and Joining
Sarah F. Frisken Gibson

Abstract— In Volume Graphics, objects are represented
by arrays or clusters of sampled 3D data. A volumetric
object representation is necessary in computer modeling
whenever interior structure affects an object’s behavior or
appearance. However, existing volumetric representations
are not sufficient for modeling the behaviors expected in
applications such as surgical simulation, where interactions
between both rigid and deformable objects and the cutting,
tearing, and repairing of soft tissues must be modeled in real
time. 3D voxel arrays lack the sense of connectivity needed
for complex object deformation while finite element models
and mass-spring systems require substantially reduced geo-
metric resolution for interactivity and they can not be easily
cut or carved interactively.

This paper discusses a linked volume representation that
enables physically realistic modeling of object interactions
such as: collision detection, collision response, 3D object
deformation, and interactive object modification by carv-
ing, cutting, tearing, and joining. The paper presents a set
of algorithms that allow interactive manipulation of linked
volumes that have more than an order of magnitude more el-
ements and considerably more flexibility than existing meth-
ods. Implementation details, results from timing tests, and
measurements of material behavior are presented.

Keywords— volume graphics, volume modeling, physics-
based graphics.

I. INTRODUCTION

S computer graphics becomes more widespread and

computational power increases, applications such as
surgical simulation, computer animation and computer
aided design are demanding more and more realism. These
applications require physically realistic and/or physically
plausible modeling of the dynamics of multi-object colli-
sions, the deformation of complex objects, and the modifi-
cation of object topology from simulated cutting, sculpting,
and fracture. In addition to physical realism, many applica-
tions demand interactive feedback, requiring on-line object
modification and fast calculation of collision responses and
object deformation.

While there has been a substantial amount of work in-
vestigating physical interactions between rigid bodies that
are represented by object surfaces (e.g. [1], [2], [3]), sur-
face models are not well suited for modeling physics-based
object deformation or for modeling arbitrary cutting or
sculpting of objects. In fact, whenever the internal object
structure is important for the appearance or behavior of a
graphical object, a volumetric object representation is nec-
essary. There are three basic classes of volumetric object
representations that have been used in computer graphics.
These include: 3D sampled data, such as that acquired

Dr. Frisken Gibson can be contacted at MERL - A Mitsubishi
Electric Research Laboratory, 201 Broadway, Cambridge, MA, 02139.
E-mail: gibson@merl.com .

from tomographic imaging systems or computer simula-
tions; particle systems; and geometric meshes for modeling
deformable objects using mathematical techniques such as
finite element models (FEM) or mass-spring systems.

Each of these three volumetric representations has its
advantages and disadvantages but none is ideally suited
for the requirements laid out above. Sampled volumes are
generally of high resolution and can be generated from mea-
sured data. It is possible to sculpt sampled volumes [4], [5],
[6] , to detect collisions between sampled volumes [7], [8] ,
and to perform limited deformation by warping the volu-
metric grid [9] . However, sampled volumes lack a sense of
connectivity that is necessary for modeling complex tissue
deformation or the cutting of volumes into distinct pieces.
Particle systems have been used to model objects that are
highly deformable and to model separation and joining of
such objects [10] but because particle systems lack a rep-
resentation of internal structure, they are not suitable for
modeling most materials.

The geometric meshes used in FEM and mass-spring sys-
tems are most promising and there are many examples of
such systems that have been applied in computer graph-
ics (e.g. see [11]). In recent work on cloth modeling,
Baraff and Witkin introduced a system in which a 6000-
node cloth model can be deformed at rates of 2-3 seconds
per frame. While the results are impressive and the system
is reported to be much faster than competing approaches,
it is still too slow for interactive simulation. In surgical
simulation, Bro-Nielsen and Cotin et al. have achieved
interactive volume deformation of objects with up to sev-
eral thousand nodes by preprocessing the matrices govern-
ing simulation of object deformation [12], [13], [14], [15] .
However, because hours of pre-processing are required, ar-
bitrary cuts or other topology changes in the objects can
not be made interactively. A small number of papers have
discussed or addressed the need for being able to change
object topology during object cutting or tearing [16], [13],
[17] . Cotin et al use a system in which a relatively small
mass-tensor system with 280 vertices (1260 tetrahedra)is
embedded into a preprocessed FEM system with 1537 ver-
tices (7039 tetrahedra). The vertices in the mass-tensor
system can be interactively cut and carved [14] . While
this is an important practical solution for a problem where
the action of the surgeon is predictable, it does not solve
the problem for more general applications.

This paper presents a linked volume representation, in
which each element in a sampled volume is explicitly linked
to its 6 nearest neighbors. These links are stretched, con-
tracted and sheared during object deformation and deleted
or created when objects are cut or joined. In some sense,

this representation is a hybrid of sampled volumes and geo-
metric mesh representations. However, because of the way
interactions are modeled, the linked volume approach is
different from the approaches used in FEM or mass-spring
systems. In particular, the system is simply stored as a
high resolution array of elements, each containing some
knowledge of its material properties, its visual properties,
its dynamic state, and its links to neighboring elements. All
operations are performed locally on the volume elements:
if an element is removed, only the links of the 6 neighboring
elements need be updated; if a link is removed or added,
only two neighbors are affected; and object deformation
is not calculated by solving a large system of equations,
rather, deformations are propagated from one element to
the next via the links, just as a shock wave propagates from
one molecule to the next through real material.

This work is motivated by the fact that an interactive
system must trade off three things: 1) geometric complex-
ity; 2) the sophistication of the modeling algorithm; and
3) generality, or the ability to cope with on-line changes
in shape or topology. Existing approaches using FEM or
mass-spring systems have tended to use sophisticated mod-
eling algorithms and relatively low geometric complexity.
Interactivity is achieved by preprocessing and/or careful
structuring of the system’s mathematical representation,
resulting in low generality. A linked volume approach uses
models with high geometric complexity and generality and
achieves interactivity by using low-cost mathematical mod-
eling. This paper presents systems where objects with tens
and hundreds of thousands of elements can be interac-
tively deformed and cut or carved, resulting in an order
of magnitude more elements to be modeled interactively
with considerably more flexibility than existing FEM and
mass-spring systems.

The exploration of these ideas have been limited in pre-
vious work for a number of reasons. First, linked volumes
require a large amount of memory, something that has only
recently become available on reasonably-priced computer
systems. Second, rendering deformed volumes is extremely
slow and has limited the usefulness of high resolution vol-
umes for interactive systems. We currently address this
problem by rendering only points or triangles on the surface
of the deformed volume. However, we expect that advances
in volume rendering hardware will enable fast rendering of
deforming volumes within the next few years [18] . Finally,
while much can be learned from other work in physics-
based graphics with respect to collision detection, dynamic
simulation and object deformation, most algorithms can-
not be directly applied to linked volumes because of the
large numbers of elements in volumetric objects. This pa-
per is intended to demonstrate the potential of the linked
volume approach and to provide several specific approaches
and algorithms to encourage further work in this area.

The paper is organized as follows. In section II, the
linked volume structure is described in detail along with
some variations for different applications. In section III a
method for detecting collisions between linked volumes is
presented along with timing tests and some discussion of

alternative methods. In addition, a method for calculating
impact forces is proposed. In section IV, a fast method for
deforming linked volumes is presented along with tests of
the material behavior when this algorithm is used. Limita-
tions and extensions of this approach are also discussed. In
section V, algorithms for object cutting, carving, and join-
ing are presented along with implementation details and
results. Finally, section VI summarizes contributions of
this paper and discusses future directions.

II. LINKED-VOLUME REPRESENTATION
A. Background

Kaufman, Cohen, and Yagel introduce the field of Vol-
ume Graphics in [19]. Volume Graphics deals with the
synthesis [20], modeling [5], manipulation [7], and render-
ing (e.g. [21]) of volumetric objects. Kaufman and his col-
laborators have shown that many of the visual effects pro-
duced by conventional graphics, including object shading,
anti-aliasing, inter-object reflectance, and radiosity calcu-
lations, can also be performed on volumetric objects [22],
[23], [5]- This paper focuses on object manipulation, in-
cluding object deformation and the modeling of interac-
tions between objects. Prior Volume Graphics work in
object manipulation includes haptic interaction with volu-
metric objects [6], [24], modeling collisions between objects
[7], [8], and modeling volumetric object deformation [25].
A linked volume representation was introduced in [26] in
reference to surgical simulation.

Because many different terms have been used to describe
the components of sampled volumes, the terms used in this
paper are defined briefly here and are illustrated in Fig.
1. Elements are points within the 3D volume. Element
values, such as image intensity, material density, or other
material properties, are assumed to be sampled at these
points'. In this paper, elements are assumed to lie on a
(possibly deformed) rectilinear grid. Cells are defined to
be the volume of space (cubes or polyhedra) between 8
neighboring elements. Links are the explicit connections
between neighboring elements and, in this paper, up to 6
links are assigned to each element. These are links to the
elements’ left, right, front, back, top and bottom neighbors.

=]

element “links

cell

Fig. 1.

Components of a sampled volume.

B. Linked Volumes

One of the goals of the linked volume approach is to
permit representation of complex geometry in the object

IThe values can be sampled from a filtered data volume, for exam-
ple measured samples often represent a value averaged over a finite
volume near the sample point.

model. The MRI cross-section in Fig. 2 illustrates the need
for geometric complexity. Tissues such as muscle or fat
contain a great deal of interior structure, much of it at the
resolution of the 3D data. Because this interior structure
affects both the local and the global behavior of these tis-
sues, it is important to have an object representation that
can incorporate this detail. Linked volumes are constructed
at the resolution of available measured or synthetic data by
adding explicit links between neighboring elements. When
starting from measured data that may contain several ob-
jects, the simplest approach, and the approach taken here,
is to store each linked object in a separate volume?

Fig. 2. This cross-section from a 3D Medical Resonance Image of the
human knee illustrates the amount of detail available for model-
ing tissues. Internal structure in the muscle or bone affects the
mechanical behavior of these tissues and should be incorporated
into models for physically realistic simulation.

There are many possible data structures that can be used
to represent linked volumes. Figs. 3 and 4 are two exam-
ples. When the element structure of Fig. 3 is used, the
object is stored in a 3D array of SimpleLinkedElements,
the element’s sampled value is an intensity (perhaps from
a measured image), and links are encoded into a single byte,
in which the lowest 6 bits indicate either the presence or
absence of a link to each of the element’s 6 neighbors. If a
neighbor is present, then it is accessed from the 3D object
array using constant index offsets. This structure allows
links to be formed and broken and can be used in applica-
tions that model cutting, carving, and fracturing but not
object deformation.

struct SimpleLinkedElementStruct {
unsigned char intensity;
unsigned char links;

} SimpleLinkedElement;

Fig. 3. Element structure for a simple lined volume that can be cut
and carved but not deformed.

The element structure of Fig. 4 does not require a 3D
array for storing the object. Instead, elements are stored

2Dependencies between objects, such as attachments of a muscle to
bone are represented as constraints in the modeling system.

in an arbitrary list and neighbors are accessed via point-
ers. This approach is preferred in some circumstances. For
example, because this linked list structure does not store
empty elements, it may use less memory than a sampled
3D array. A flexible object representation is also desir-
able in applications such as 3D drawing or painting, where
elements are randomly added to the object and the final
volume of the object is not known when the object memory
is allocated.

struct LinkedElementStruct {
unsigned char r, g, b, a;
unsigned char type;
float x, y, z;
struct LinkedElement *top, *bottom, *right,
*left, *front, *back;
} LinkedElement;

Fig. 4. Element structure that stores the element’s color and trans-
parency, the object type, the element position, and pointers to
linked neighbors.

Using the data structure of Fig. 4, cutting and carving
are accomplished by setting neighbor pointers to NULL.
Joining is performed by setting corresponding pointers of
the two elements being joined to point to each other. Defor-
mation or object translation is accomplished by changing
the (x,y,z) positions of elements in the object. The ele-
ment type is used to identify different objects in collision
detection and will be discussed in Section III. The r, g,
b, and a values illustrate the fact that properties such as
color and opacity or other material properties can be stored
for each element. The ability to store this information for
each element is one of the strengths of a volumetric ap-
proach because it allows for the representation of complex,
heterogeneous materials. However, there are trade-offs be-
tween complexity and object size. The data structure of
Fig. 4 contains more than 40 bytes per element and re-
quires a significant amount of memory for reasonably sized
objects.

III. CoLLIiSION DETECTION
A. Background

Detecting object collisions is a fundamental requirement
for a physics-based simulation. Efficient algorithms are
essential because in dynamic simulations, collision detec-
tion is generally performed more frequently than all other
operations. Much progress has been made towards fast
detection of collisions between complex polygonal models
(e.g. [3], [27]) and several researchers have developed meth-
ods for simulating the transfer of energy and momentum
between rigid polygonal models upon collision (e.g. [1],
[2]). However, because of the large number of elements in
volumetric objects, techniques developed for surface-based
graphics can not be directly applied.

There has been some work in collision detection using
a discrete space representation. A method using an occu-
pancy map, in which collisions can be simply and efficiently
detected for relatively large objects was presented in [7] and

is described in more detail in Section III-B. Related meth-
ods can be found in papers by Shinya and Fourge [28] and
Uchiki et al. [29]. In addition, He and Kaufman use an
octree based method for collision detection of volumetric
objects [8]; Greene [30] used a discrete representation of
occupied space for guiding the stochastic growth of graph-
ical plants; robotics researchers have used a discrete space
representation for obstacle avoidance in path planning (e.g.
[31]); and some researchers have investigated haptic render-
ing of volumetric objects with force-feedback [6], [24].

B. Occupancy Map Method

In its most basic form, the occupancy map method allo-
cates a 3D array of small cells representing the entire vol-
ume of virtual space used by the application. The size of
each occupancy map cell is similar to the spacing between
elements in the volume and each cell can contain a single
pointer to an object element. If no element occupies that
cell, then the pointer is the NULL pointer. As objects are
moved about the virtual space, object elements are mapped
into cells in the occupancy map. During the mapping, if
a target cell contains a pointer to a different object, then
a collision between the two objects is detected. Pointers
are stored in the occupancy map so that colliding elements
can be easily identified for calculating collision responses.
This algorithm is illustrated in 2D in Fig. 5. Pseudocode
for the occupancy map method is presented in Fig. 6.

—

==

Fig. 5. In the occupancy map method, all object elements are
mapped into a regular grid of cells that span the interaction space.
Collisions are detected in the dark grey cells where elements of
one object are mapped into cells that are already occupied by the
other object.

The occupancy map method can be used for both reg-
ularly spaced and irregularly spaced volumes as long as
the element spacing is comparable to the occupancy map
cell size. Fig. 7 shows three frames from an interactive
system in which a deformable object is indented in real-
time with a probing tool. The collision between the tool

SimpleElement object[X][Y][Z];
SimpleElement* occMap[W][H][D];

/* 1) check occupancy map cells */
for(all non-zero object elements) {
map new element position to occMap cell
if (cell occupied by another object) {
detect collision
reduce step size for backtracking
exit
}
}

/* 2) remove object from occupancy map */
for (all non-zero object elements) {
map old element position to occMap cell
if (occMap pointer is equal to element pointer)
set occMap cell to NULL pointer

}

/* 3) move object and update occupancy map*/
for (all non-zero object elements) {

set new element position

map new element position to occMap cell

set occMap cell to element pointer

}

Fig. 6. The occupancy map algorithm for detecting collisions between
moving volumetric objects.

and the deforming object is detected using the occupancy
map method. When large deformations are possible, (i.e.
when element spacing can change by more than a factor of
2), multi-scale occupancy maps or volume filling methods
could be used to build a more accurate occupancy map at
the cost of increased complexity and/or reduced speed in
collision detection.

Fig. 7. Three still images from an interactive system in which a
deformable 3D linked volume object is probed in real-time by a
user controlled tool. Collisions between the object and the tool
are detected using the occupancy map method and are used to
calculate the object deformation. This object has size 40x40x40
and the occupancy map has size 200x200x200. Deformation of the
sphere was performed using the algorithm presented in Section IV
and the object was rendered by drawing triangles on the surface
of the linked volume using OpenGL.

Potential self intersections can be detected in step 1) of
the pseudocode of Fig. 6 by noting when an occupancy
map cell is already occupied by an element from the same
object if step 2) is performed before step 1). However,
because adjacent object elements may map into the same
occupancy map cell (depending on the relative sizes of the
occupancy map grid and the element spacing), either the
occupancy map cell size must be restricted to be smaller
than the minimum distance between neighboring elements
or potential self intersections must be ignored when the

colliding elements are near neighbors.

C. Calculating Collision Response

Once a collision between graphical objects is detected,
the next step is to determine the response to the colli-
sion. There are a number of different responses that might
be modeled. For example, in a system where objects are
moved interactively but they do not have energy or momen-
tum, the desired effect is usually the prevention of object
interpenetration. In systems of rigid objects, collisions re-
sult in an exchange of energy and momentum according to
physical laws. In systems of non-rigid objects, collisions
result in energy exchange, energy dissipation, and energy
storage in the form of object deformations. Under some cir-
cumstances, graphical objects may be expected to break,
tear or fracture upon impact.

When the goal is to prevent object interpenetration, a
standard back-tracking algorithm is used to find the point
of collision. In back-tracking, objects are moved in rela-
tively large steps towards a desired position. Step sizes
are relatively large to ensure interactivity in the simula-
tion but small enough to prevent objects from appearing
to leap through each other. If object penetration is de-
tected for a proposed new object position, the object is not
moved to that position. Instead, the step size of the moving
object is reduced. If a penetration is detected using this
new step size, the step size is again reduced. Otherwise,
the step size is increased slightly and the new position is
investigated. This process is repeated until the maximum
allowable step towards the desired position is determined.
We have used this approach in several systems. Results
from a set of timing tests are reported in section IITE.

When the goal is to model physically realistic interac-
tions between objects, collision response must also be mod-
eled. Two basic methods are used in computer graphics for
calculating collision responses for rigid objects. These are
penalty-based methods (e.g. [32]), where restoring forces
are introduced to separate penetrating objects, and an-
alytic methods (e.g. [1], [2]), where contact forces are
determined analytically from constraints that prevent ob-
ject inter-penetration and guarantee physically realistic dy-
namics. While analytic methods are more accurate and
numerically stable than penalty-based methods, penalty
methods have the following advantages for volumetric ob-
jects. First, penalty-based methods have been successfully
applied to deformable object models while current ana-
lytic approaches are limited to rigid bodies 3. Second, a
tractable solution of an analytic method relies on a rel-
atively small number of contact points. In surface-based
graphics, contact points can be generalized to occur at
polygon vertices or edges [1], and hence the number of con-
tact points is relatively small for object models represented
by a reasonable number of surface polygons. In a volumet-
ric model of the same object, the number of contact points

30ne exception being the work of Baraff and Witkin [33] who used
analytic methods for simulating collisions between flexible bodies with
a limited deformation model.

could be several orders of magnitude larger, making ana-
lytic solutions less feasible in interactive simulations.

Penalty-based methods apply restoring forces to pen-
etrating vertices of the colliding objects. The restoring
forces act to separate the interpenetrating objects during
the dynamic simulation. The strength of the restoring force
is generally a function of the depth of penetration and the
object stiffness. A large stiffness puts a higher penalty on
object penetration, but also requires smaller integration
times for numerical stability.

A similar penalty-based approach can be used for volu-
metric objects. Penetrating volume elements are detected
using the occupancy map and individual restoring forces
on each element are summed. FEach restoring force vec-
tor is calculated as the product of the material stiffness
and the depth of penetration in the direction of the local
surface normal. In order to calculate depths of penetra-
tion and local surface normals efficiently and accurately,
we refer to work discussed in [34], which introduced the
use of a distance map for encoding surfaces into sampled
volumes for use in high quality shaded volume rendering.
Distance maps, which encode the distance to the closest
object surface into sampled volume elements, can also be
used by penalty methods to determine not only the depth
of each penetrating element but also the local surface nor-
mal. The pseudocode presented in Fig. 8 outlines this
approach. The calculated resultant forces and torques are
used in a dynamic simulation of the system.

object stlffness =k
set force, FF =0
set torque, T=0

for (all non-zero object elements) {
check occupancy map for collisions
if (collision) {
get object depth at collision point, depth
calculate depth gradlent at collision point, V(depth)
accumulate force, F = F + f=F + k * depth x V(depth)
accumulate torque, T=T+f=T+ f X T

}
}

Fig. 8. Calculating response forces for colliding volumetric objects.

D. Improving Collision Detection

A number of straight-forward improvements can enhance
the speed of the occupancy map method. First, since col-
lisions occur at object surfaces, it may only be necessary
to map surface elements or a shell of elements near the
surface into the occupancy map. This method is compared
with the basic occupancy map method in the following sec-
tion. Second, instead of maintaining a large occupancy
map to represent the entire virtual space, the occupancy
map method can be applied in smaller, temporary arrays
that span only the volumes of potential overlap between
objects in the system. These volumes of potential over-
lap can be determined quickly using boxes bounding the
volumetric objects and exploiting techniques developed in

surface-based graphics for fast collision detection between
bounding boxes. We have implemented a prototype system
to test this approach. Finally, hierarchical data structures
can be used to quickly determine which sub-volumes of
potentially colliding objects should be written into the oc-
cupancy map. He and Kaufman [8] used hierarchical data
representations without an occupancy map approach to de-
tect the overlap of volumetric objects. They found that an
octree-based representation of static, regularly spaced data
yields efficient collision detection for reasonably sized ob-
jects. However, such hierarchical methods that rely on sig-
nificant pre-processing have limitations in systems where
objects deform significantly or where elements can be in-
teractively created or destroyed.

E. FEzperimental Results

We have implemented the basic occupancy map methods
for volumetric collision detection in a number of 2D and 3D
systems ranging from computer-based jigsaw puzzles and
2D drawing tools to 3D object manipulation. These sys-
tems have been implemented in C on either SGI or HP plat-
forms. Most of the systems prevent object interpenetration
using back-tracking when object collisions are detected but
some preliminary studies using penalty-based methods to
calculate collision responses between rigid volumetric ob-
jects have been done.

A number of timing tests were made in order to demon-
strate the performance of the collision detection algorithm.
The tests involved two objects: a voxelized sphere with a
radius of 30 voxels located at the center of the interaction
space; and a voxelized cube, initially located at the side
of the interaction space. While simple geometric objects
were used in these tests, collisions between objects of com-
plex geometry would be detected at the same rates as these
simple shapes as long as the number of elements in the two
sets of objects were the same.

During the test, the voxelized cube was moved in steps
of size 5 voxels along a path through the center of the in-
teraction space. Two sets of experiments were performed.
In the first, the cube was permitted to penetrate the vox-
elized sphere and a collision was recorded at each step for
each pair of the overlapping elements. In the second ex-
periment, objects were prevented from penetrating each
other by combining collision detection with back-tracking.
Two sizes of cubes were used in the tests, a cube with di-
mensions 31x31x31 and a cube with dimensions 15x15x15.
The collision detection was performed for two versions of
the collision detection algorithm, the first mapping all of
the elements of the cube into the occupancy map and the
second mapping only surface elements into the occupancy
map.

The results from these tests are presented in Table 1.
Times are reported in milliseconds. The system was writ-
ten in C on an SGI Indigo2 without particular effort to
optimize code. The reported times are for all operations
in each step except rendering. Collision detection timing
depends on the degree of overlap between objects. Hence,
in the collision detection test, timing is reported for the

cube in free space and fully inside the sphere and, in the
system for preventing object interpenetration timing is re-
ported for the cube in free space, at initial contact with
the sphere, and when the cube is touching the sphere. In
addition, because back-tracking is applied as soon as a col-
lision is detected, and because the test system maps object
elements into the occupancy map in a fixed element order,
the position of the contacting element in the object volume
affects the timing. For this reason, in the object penetra-
tion tests, the cube is moved towards the sphere from 6
directions, from left to right, right to left, top to bottom,
etc. The times reported in Table 1 are the timing results
from left to right and the average times (in brackets) for
the 6 directions of motion.

These timing tests show that collisions between volumet-
ric objects can be detected at interactive rates for reason-
ably large objects using a simple collision detection algo-
rithm. When only object surfaces are mapped into the oc-
cupancy map, collisions between an object of size 61x61x61
and an object of size 31x31x31 were detected and prevented
at rates of approximately 40 Hz using unoptimized code.
The collision times increase approximately linearly with
the number of elements mapped into the occupancy map.
The use of data hierarchies, bounding boxes, and other
techniques developed for surface-based graphics will greatly
improve the speed of the collision detection.

IV. OBJECT DEFORMATION
A. Background

In many applications, realistic object modeling requires
the deformation of soft objects. Volumetric representations
have advantages over surface-based models for modeling
object deformation because they allow interior structure
to impact the physics of object interactions. However, be-
cause volumetric objects consist of a large number of ele-
ments, most object deformation techniques are computa-
tionally intensive. This is especially problematic in simu-
lations where interactivity is required.

The two most common techniques that have been used
for modeling the deformation of volumetric objects are
FEM and mass-spring systems. Mass-spring systems have
been used for facial animation (e.g. [35], [36], [37]), in surgi-
cal simulation (e.g. [38]) and to animate graphical objects
(e.g. [39], [40]), or cloth (e.g. [41], [42]). FEM is typically
used in off-line scientific computing such as the analysis of
mechanical structures. However, FEM has also been used
in graphical applications for fabric modeling (e.g. [43]), an-
imation (e.g. [44], [45]) and surgical simulation (e.g. [46],
[12], [15], [47]).

While mass-spring systems and FEM use volumetric ob-
ject representations and provide established mathemati-
cal techniques for modeling the physical behavior of solid
deformable objects, they are computationally demanding.
These techniques can be accelerated by a significant reduc-
tion in the number of elements in the system [46] and data
pre-processing. Bro-Nielsen [15] limits the FEM solution
to determine displacements only for surface elements and

TABLE 1
Timing for volumetric collision detection. Times, measured in milliseconds, are for moving or attempting to move the vozelized cube with

a step size of 5 vozels. The middle column shows times for detecting and recording all of the overlapping points (or overlapping surface

points) in the objects as the cube is passed through the center of a large vozelized sphere. The right column shows times for each attempted

step when the objects are prevented from penetrating each other.

object (# elements) detecting collision points preventing penetration
free space collision free space | impact (avg) | touching (avg)
Targe cube (29791) 134 156 133 153 (238) 3.8 (96.9)
small cube (3375) 13.7 15.5 13.8 143 (42.5) 0.32 (9.94)
large cube surface (5402) 19.7 23.7 19.6 24.7 (25.4) 8.85 (10.6)
small cube surface (1178) 3.76 4.42 3.79 411 (4.74) 0.32 (1.05)

assumes a small number of externally applied forces. Pent-
land and Williams [48] analyze a given object in a pre-
processing step to determine its modes of vibration and
calculate deformations as a superposition of these modes.
Bro-Nielsen and Cotin [49], [12] pre-calculate responses to
infinitesimal forces and deformations for each node in the
element and then approximate the global deformation as a
linear superposition of these pre-calculated responses.

As discussed above, these techniques for achieving inter-
activity in deformable object modeling trade off the ability
to model complex object geometry and the generality of
the system for increased speed. We propose an alternative
approach which uses a less accurate mathematical model
so that interactivity can be maintained with high geomet-
ric complexity and the ability to make arbitrary interactive
topological changes to the object. In the following sections,
one algorithm that uses this approach is discussed.

B. ChainMail and FElastic Relazation

Here we review a two-process method for modeling defor-
mation that was originally presented in [25] and provide the
results of timing tests and measurements of simulated ma-
terial behavior. The first process, ChainMail, provides an
initial estimate of the new shape that is based on geometric
constraints. It guarantees a plausible object shape in one
time step even for relatively large deformations, allowing
us to achieve interactivity for relatively large numbers of
volume elements. The second process relaxes the shape of
the approximate deformation over several time steps using
elastic relaxation. The behavior of the material is deter-
mined both by the geometric constraints and by parameters
in the elastic relaxation process.

Although inertia and damping are not explicitly modeled
in this method, modeled objects do exhibit these behaviors.
Inertial behavior occurs because the elements in the Chain-
Mail process do not move unless they violate constraints
between local neighbors and they move only minimum dis-
tances in order to satisfy the violated constraints. Damping
occurs because the iterative elastic relaxation process is a
closed negative feedback system in which element positions
are adjusted in small steps towards an optimal position.
When the step size is small, the system is more damped.
As the step size — the gain of the closed feedback system —
increases, the system becomes critically or under-damped.

B.1 ChainMail

ChainMail uses the linked data structure described in
Section II. Each element is linked to its 6 nearest neigh-
bors and disturbances are propagated through the system
via these links. During the simulation, if the displacement
of an element violates constraints on the links, then the af-
fected neighbors are moved to the closest position where
the link constraints are again satisfied. After each ele-
ment is moved, its links to unmoved neighbors are checked
and then corrected if necessary. The disturbance is fully
propagated through the volume in one time step, providing
a fast approximation of the deformed object shape which
satisfies geometric constraints on the link lengths. Chain-
Mail is particularly fast for homogeneous (though possibly
anisotropic) materials because each volume element need
only be considered at most once and is compared to at
most one neighbor.

Details of the ChainMail algorithm and proof of the
above property are presented in [25]. The basic method
is illustrated in Fig. 9, in which the algorithm is applied
to a low resolution 2D grid.

The two types of lists that are maintained in Chain-
Mail are shown in the tables on the right side of Fig. 9.
These are a list of moved elements and lists of candidates
for movement, classified according to whether the list ele-
ments are the right, left, top, or bottom neighbors of their
sponsoring element. In the diagram, black circles indicate
elements that have been moved and grey circles indicate
elements that are to be considered for movement. In 9a)
element 10 is moved from its equilibrium position. Element
10 is added to the moved list and its 4 neighbors are added
to their respective movement candidate lists. Next, each
candidate list is processed in order until it is empty. In
9b), the right candidate, 11, is moved to satisfy geometric
constraints with respect to its sponsoring element, 10, and
then its unmoved neighbors are added to the movement
candidate lists. In 9¢), the next right candidate is moved
and its unmoved neighbors are added to the movement can-
didate lists. This process is continued until all of the right
candidates are exhausted. If an element does not violate
constraints with respect to its sponsoring neighbor, it is not
moved, and its neighbors are not added to the movement
candidate lists. This assures that the disturbance is not
propagated farther than necessary and increases the speed

] i} (=] (]
‘ ¥]]
] [w] D"" l.'}“
" I.'
o
il 14 it in
[[
b)
b b b b
" i v M
2 o [= NETH |:I“
[] §
- L
ul:l L]
i1 [T is in
L @ 2
¢)
i 3 i i
G o0
L "] ¥
o ':}.!u ﬂ“
- L
i1 [*] s]
o L] [+]
d)

. L
v, | L [
||ﬂ |:} = |f|ﬁ
e)
i i 3 a
Q . & O
lI= -r. :|‘1 3
o
S T T
£)
Il:} -: .I Gj
. . E: .
.‘4 .d -Jl.-u
Ii JJ- |5- i
g)

Fig. 9. ChainMail propagated through a 2D object (see text).

moved candidates
R L | T | B
10 i1 | | | 14
moved candidates
R | L | T]| B
10 7 | 9 6 14
11 12 | | 7 | 15
moved candidates
R | L | T | B
10 17 | 9 6 14
11 12 7 15
12 8 16
moved candidates
R | L | T]| B
10 i1 | ¢ 6 14
11 12 7 15
12 8 16
9 5 13
moved candidates
R | L | T | B
10 i | ¢ [] 14
11,12 12 7, 8% | 15,16
9] 13
6,7,8 2,3
5 1
moved candidates
R | L | T | B
10 il | ¢ [14
11,12 12 7, 8% | 15,16
9] 13
6,7,8 2, #
5 1
2,3
moved candidates
R |L| T | B
10 7| 9 # 14
11,12 12 7.8 | 18, 1¢
9 B 13
6,7, 8 s
5 1
2,3
14, 15, 13

of the algorithm.

In 9d), the left list is processed; element 9 is added to
the moved list and its unmoved neighbors are added to the
movement candidate lists. In 9e) and 9f) the top list is
processed and in 9g) the bottom list is processed. Note
that elements 1, 4, and 16 are not moved.

Fig. 10 presents pseudocode for the 3D version of Chain-
Mail and Fig. 11 shows two still images from a system with
interactive deformation of 3D objects.

clear moved list and movement candidate lists
set list indices and counters to zero

move element and add to the moved list

add(top, bottom, left, right, front, back) neighbors of the moved
element to the (top, bottom, left, right, front, back)
movement candidate lists

for each element in the front list {
if (constraints against back neighbor) are violated {
move element and add to moved list
add(top, bottom, left, right, front) neighbors of the moved
element to the (top, bottom, left, right, front)
movement candidate lists
}
}
for each element in the back list
(same as front list but replace front with back)

for each element in the right list {
if (constraints against left neighbor) are violated {
move element and add to moved list
add(top, bottom, right) neighbors of the moved element
to the (top, bottom, right) movement candidate lists
}

for each element in the left list
(same as right list but replace right with left)

for each element in the top list {
if (constraints against bottom neighbor) are violated {
move element and add to moved list
add(top) neighbor of the moved element to the
(top) movement candidate lists

for each element in the top list
(same as top list but replace top with bottom)

Fig. 10. Pseudocode for the 3D ChainMail algorithm.

Fig. 11. Two still images from an interactive system in which an ob-
ject of size 30x30x30 is interactively manipulated and deformed.
The object is rendered by drawing surface points using OpenGL.

B.2 Elastic Relaxation

ChainMail produces a deformed shape that satisfies geo-
metric constraints but does not necessarily have an optimal
energy configuration. Hence, an elastic relaxation process
is applied to locally adjust relative element positions and
reduce the system energy. The system energy depends on
the distances between object elements. If these distances
fall within an optimal range, the system energy is low.
When the distances are outside of this range, the system
energy is higher. During elastic relaxation, each element
position is adjusted sequentially to reduce the system en-
ergy in an iterative, closed feedback system. Pseudocode
for this process is presented in Fig. 12.

for (all non-zero object elements) {
determine lowest energy position for the element
relative to its (top, bottom, right, left, front,
and back) neighbors
move element towards that position by step size

}

Fig. 12. Pseudocode for elastic relaxation.

There are several ways to define an element’s optimal
position relative to its neighbors for the elastic relaxation
step. For example, the optimal position can be simply
defined to be the point midway between existing neighbors:

('Z'Jyaz)opt = (% Zm"’% Zyna% Zzn)a (1)

neighbors neighbors neighbors

where N is the number of existing neighbors for the ele-
ment.

However, this midpoint method causes the object’s sides
to shrink inwards. Hence, a better expression to calculate
the optimal element position is:

Z(zn —Az)s), (2)

neighbors

1
(xayvz)opt = (N Z(mn - A.’En)*,
neighbors
1
N Z (yn - Ayn)*a
neighbors
1
N

—Azx n =left
Az, =< +Ax : n=right
0 : all other neighbors
—Ay n = bottom
Ay, = +Ay : n=top
0 : all other neighbors
—Az n = back
Az, =< +Az n = front

0 : all other neighbors

where (). indicates “if the neighbor exists”, and Az, Ay,
and Az are optimal link lengths for left /right, top/bottom,
and back/front neighbor pairs. This method is the same as
the midpoint method of equation 1 for interior points but
prevents surfaces from shrinking excessively.

We have also implemented systems in which two neigh-
boring elements are at equilibrium with respect to each
other over a range of link lengths so that elements are only
influenced by neighbors if their relative displacement lies
outside of this range. Because the object can then reach
equilibrium over a range of shapes, these systems behave
plasticly.

The material response to deformations also depends on
how an element’s position is adjusted towards the optimal
position. Since the element is moved towards its optimal
position in an iterative, closed feedback system, the mate-
rial behavior is influenced both by the system gain, or the
step size towards the optimal position, and the time inter-
val between relaxations. The time constant and damping of
the simulated material response can be modified by adjust-
ing the magnitude of the step size in the iterative relaxation
and the time interval between relaxations. Experiments in
Section IV-C.2 indicate that when the step size is deter-
mined as a linear function of the displacement from the
optimal position, then the material exhibits a linear stress
vs. strain response. When the step size is a non-linear
function of displacement from the optimal position, then
the material behavior is non-linear. If the step size falls
to zero before the optimal position is reached, the material
acts as if there is a range of displacements where elements
are at equilibrium and the material exhibits plasticity.

C. Experimental Results

ChainMail and an elastic relaxation process have been
implemented in C in a number of 2D and 3D systems. In-
teractive deformation of objects with as many as 50x50x50,
or 125,000 elements, have been attained on an SGI Indy.
Experiments were performed to test the material behavior
of the 2-step process and to determine the speed of the al-
gorithm as a function of the number of elements. Results
of these experiments are presented here.

C.1 Timing Experiments

Fig. 13 shows the result of timing tests for ChainMail
applied to a 2D system where the number of elements,

the object deformability, and the amount of displacement
of the controlled element were varied. The test was ap-
plied to objects of the following dimensions: 10x10, 50x50,
100x100, 150x150, 200x200. These results show that the
time taken to deform an object will vary at worst linearly
with the number of elements in the system. This linearity
is achieved because all interactions are local and because
elements are moved at most once with each application of
both ChainMail and the elastic relaxation process.

In a second experiment, a rigid object, a moderately de-
formable object (medium), and a very deformable object
(loose) were modeled. The medium object allowed link
lengths to be compressed to 80% of the optimal length and
stretched by a factor of 1.2 from the optimal length. The
deformable object allowed link lengths to be compressed to
50% of the optimal length and stretched by a factor of 2.5.

In each experiment, an element located at the center
of the object was moved at a constant rate, 100 times
around a square path with dimensions: 10x10, 50x50,
and 100x100. The figure reports the results of movement
around the squares of dimensions 50x50 (small deforma-
tion), and 100x100 (large deformation). Rigid objects ex-
hibit the slowest response because all elements in the object
are considered and moved for each displacement?. How-
ever, even in this worst-case scenario, the time required
by the ChainMail algorithm increases only linearly with
the number of elements in the object. For deformable ob-
jects, the response time is better than linear because the
deformation often does not have to be propagated to all
of the object elements. In a very deformable object, small
deformations are propagated to a small number of local
neighbors and the deformation is very fast.

C.2 Material Properties

ChainMail and the elastic relaxation process were origi-
nally developed for simulating human tissue. Human tissue
has a number of complex behaviors that have been reported
in the biomechanics literature (e.g. see [50]). One of these
behaviors is that the stress in a system loaded at a constant
rate of deformation varies non-linearly with the amount of
deformation. A second behavior is hysteresis during load-
ing and unloading: the internal forces (or stress) of the
material increases at a different rate when a load is applied
than it decreases when the load is removed. A third behav-
ior, a process known as relaxation, is that when living tissue
is stretched at a constant deformation rate to a given length
and then held at that length, the internal stress decreases
asymptotically with time towards a lower stress level. In
order to test the material properties of the combination of
ChainMail and elastic relaxation, a 1D deformable system
was implemented. One end of the 1D chain was fixed and
the other end could be displaced at a constant rate along
the direction of the chain. As described below, the tests

4While it is important for a deformation algorithm to be well be-
haved for objects that lie in the continuum between rigid and de-
formable, in practice it is probably not advisable to use a deformable
modeling technique to manipulate rigid objects. However, these re-
sults for rigid objects can be used to compare this approach with
mass-spring methods which do not behave well for stiff objects.

10

Timing for 2D Deformation
25 T T T

loose, small deformation —— P
loose, large deformation —+--- e
medium, small deformation -=-
medium, large deformation
rigid, small deformation -2--
rigid, large deformation -* -

20

¥ box 0
\
.

10 |- s]

CPU cycles (millions)
\

0 5 10 15 20 25 30 35 40
Number of elements (thousands)

Fig. 13. Results of timing experiments for a 2D system. Objects with
100, 2500, 10000, 22500, and 40000 elements were deformed by
moving a control element at the center of the object at a constant
rate 100 times around a square of size 50x50 (small deformation)
and 100x100 (large deformation). The results for objects with
deformability set to rigid, moderately deformable (medium), and
very deformable (loose) are presented. The curves for both rigid
objects are superimposed. Tests were performed on an SGI Onyx
workstation with an R4400 180 MHz processor. On this system,
1 million CPU cycles correspond to approximately 5.6 ms exe-
cution time.

show that the combination of ChainMail and elastic relax-
ation is capable of modeling all three behaviors and hence
that it is a good candidate for modeling living tissues.

The combination of ChainMail and elastic relaxation is
very general. A variety of functions can be used by the
elastic relaxation to determine the internal system forces
and to calculate step sizes for local adjustments of element
positions. Fig. 14 shows the result of several tests on
the 1D chain described above. Two of the curves resulted
from applying linear functions in the elastic relaxation to
determine internal forces and step sizes and three curves
resulted from applying quadratic functions. In practice, a
wide variety of analytic and measured behaviors could be
attained by using lookup tables to determine forces and
step sizes for given link lengths.

The inequality constraints used in the ChainMail algo-
rithm cause objects to behave differently during loading
and unloading, resulting in a behavior similar to living tis-
sue. In order to test this hypothesis, ChainMail and a
quadratic elastic relaxation function were applied to the
1D chain. The chain was stretched at a constant rate to a
given length and then compressed at the same rate while
recording the total internal force, measured as a function
of link length. As illustrated in Fig. 15, the resultant
behavior showed hysteresis in the stress vs. deformation
curves that is similar to hysteresis that has been measured
in human and animal tissue [50].

The damping that occurs with small step sizes in the
elastic relaxation process causes a behavior similar to tis-
sue relaxation as shown in the results in Fig. 16. A 1D
chain modeled with ChainMail and elastic relaxation with
a quadratic function for calculating internal forces and step
sizes was stretched to half of its maximum length and then
its endpoints were fixed. The internal forces are plotted as

Stress vs. End Point Displacement
50 T T T T T

45 linear 1 ——
linear 2 -+

quadratic 1 -=--

quadratic 2 -

quadratic 3 -&--

40

35

30

25

20

Stress (internal force)

15

10

End Point Displacement

Fig. 14. Measured internal force as a function of deformation for
loading at a constant rate. The two linear curves resulted from
using a linear function to calculate internal forces and to adjust
element positions during elastic relaxation. The three non-linear
curves resulted from using a quadratic function to calculate stress
and adjust element positions.

Loading-Unloading Hysteresis

increasing load -+ Ed
decreasing load -+ §

Stress
o

pess

o o T s

Deformation

Fig. 15. Stress vs. constant loading and unloading in a 1D chain.
The object length is stretched to given point at a constant rate
of deformation and then reduced at the same length. As in living
tissues, the loading and unloading curves exhibit hysteresis.

a function of time and are shown to decrease asymptoti-
cally towards a lower stress level as would be expected in
living tissue.

The experiments that have been presented here were de-
signed to test tissue behaviors, rather than to validate the
approach for specific materials. For this reason, parameters
were not chosen to correspond to the mechanical proper-
ties of specific materials or tissues and the measured in-
ternal forces are based on heuristic functions (i.e. linear
and quadratic curves) rather than known or measured re-
lationships. In general, there are 3 ways to choose material
parameters for specific tissues: 1) choose parameters to
match the output of this system to predictions of a more
rigorous mathematical model such as non-linear, large de-
formation FEM; 2) choose parameters to match measured
tissue responses; and 3) allow surgeons or other specialists
to interactively tune the parameters until they are satisfied
with the tissue behavior. When the tissue parameters are
set with one method, a second method could be used to

11

Relaxation Under Constant Stretch

Stress

Time

Fig. 16. The result of an experiment in which a 1D chain was
stretched to half its maximum length, the length was fixed, and
the stress was measured as a function of time. Like living tissue,
the material exhibits relaxation: the stress decreases asmyptoti-
cally with time towards a lower value.

validate the tissue model as long as the parameter setting
technique and the validation technique were independent.

D. Limitations and Extensions to ChainMail

While the algorithm presented in Fig. 10 only handles
convex objects, the extension for non-convex objects is rel-
atively simple. As each candidate list is processed, neigh-
bors (other than the sponsoring neighbor) that are not nor-
mally added to movement candidate lists are checked to see
whether their expected sponsoring element is absent. If so,
the neighbor is added to its respective movement candidate
list. This is illustrated for an element of the right candidate
list in the pseudocode of Fig. 17.

for each element in the right list {
if (constraints against left neighbor) are violated {
move element
add element to moved list
add(top, bottom, right) neighbors
of the moved element to the
(top, bottom, right) movement candidate lists

if (front neighbor exists and front-left neighbor does not exist)
add front neighbor to front movement candidate list

if (back neighbor exists and back-left neighbor does not exist)
add back neighbor to back movement candidate list
}

}

Fig. 17. Pseudocode for a right candidate in an extention of the 3D
ChainMail algorithm that models non-convex objects.

The deformation approach presented here has a num-
ber of limitations. For example, it does not model volume
preservation, a property of many materials and most living
tissue. We are investigating a number of ways to add vol-
ume preservation, including adding diagonal links between
elements, dynamically adjusting ChainMail limits on ver-
tical link lengths based on the stretch of horizontal lengths
(or vice-a-versa), and modeling volume preservation in the
elastic relaxation step.

A second limitation of the algorithm presented here is
that it only models homogeneous materials and a single
control point. Both of these issues have been addressed
by Schill and Gibson in [51] by ordering lists of movement
candidates at each step in the ChainMail algorithm so that
the elements with the largest violations on their link lengths
are considered first. However, while this approach results
in consistent material behavior for heterogeneous materi-
als and for multiple contact or control points, the need
to maintain an ordered list of movement candidates makes
this extended ChainMail approach significantly slower than
the original algorithm. We are continuing to explore these
issues.

V. MODIFYING OBJECT ToPOLOGY: CUTTING,
TEARING, CARVING, AND JOINING VOLUMES

A. Background

Modeling the cutting or tearing of objects with complex
structure is a challenging problem for surface-based ob-
ject models, since object cutting requires the generation of
new object surfaces along the cutting path. The problem
of clipping a surface-based or geometric object model by
an arbitrary 2D plane has been addressed in constructive
solid geometry (CSG) (e.g. [52]) and polygon rendering.
However, cutting along an arbitrary curved path remains a
challenge for surface-based objects. Both determining the
intersection of the cutting path with the object and con-
structing the new cut surface are difficult problems [53].
Related work in CSG provides mathematical techniques for
building new surfaces of intersecting solids [54], [565]. How-
ever, these methods require the construction of a surface or
solid representing the knife path which limits interactivity.
In addition, when the cut is made through a surface-based
object model that does not contain information about in-
terior structure, then colors, texture, and other features of
the cut surface must be fabricated in order to make the
cut look realistic ®. In contrast to the complexity of cut-
ting through surface-based representations, it is relatively
straight forward to cut through a linked volumetric object.
In addition, interior elements in the volumetric object can
be used both to influence the cut path (for example by pro-
viding variable resistance to cutting) and to determine the
appearance of the new cut surface.

A number of researchers have investigated the sculpting
of volumetric objects. Galyean and Hughes [4] represent
object material as a 3D array of discrete element values
between zero and one, where 1 represents the presence of
solid material, 0 represents the absence of material, and
values between 0 and 1 represent either partial volume ef-
fects or reduced material density. Additive sculpting tools
increase element values up to a value of 1 and subtractive
tools reduce element values. Element values of the object
and tools are filtered with a low-pass filter to reduce alias-

50ne way to texture the new surface, when the model is based on
3D image data, is to map the volumetric data onto the cut surface,
although this can be costly when the cut path is not planar. Note
that this method actually uses a hybrid object model consisting of
both the surface model and the volumetric image data.

12

ing at edges and surfaces. The marching cubes algorithm
[56] is used to generate a polygonal surface model for ob-
ject manipulation and visualization. Wang and Kaufman
[5] use a similar sculpting technique but use Volume Ren-
dering for visualization. Avila and Sobierajski [6] added a
haptic input device to provide force feedback during sculpt-
ing and allow tools to modify 3 different values for each
element: material color, density, and an index for material
classification. Simulations of NC milling have used similar
techniques to model the removal of material by a milling
machine (e.g. see [57], [58]).

While these volumetric sculpting techniques have poten-
tial applications in volume editing and geometric design,
the resultant array of intensity values lack the connectiv-
ity required to model the separation of an object into dis-
tinct pieces. Pieces cut away from the rest of the volume
can not be manipulated as individual objects. In addition,
these approaches are not easily extended for sculpting de-
formable materials.

Bro-Nielsen and Cotin advocate the use of FEM models
because in theory they could be used to simulate physically
realistic cutting and tearing behavior [49]. Terzopoulos and
Fleischer use an FEM object representation to model frac-
turing or tearing in an off-line simulation of a relatively
small 2D deformable mesh in [16]. When stresses at a
given node exceed some limit, they zero material prop-
erty weighting functions at the mesh node to produce a
discontinuity that results in fracture behavior. However,
accurate modeling of arbitrary cutting through an FEM
model would require reworking the equations governing the
system, repeating pre-processing steps, and remeshing the
model with each intervention in order to provide a higher
resolution mesh at high stress points (such as at the knife

tip).
B. Carving, Cutting and Tearing

Linked volumes are well suited to interactive modifica-
tion of object topology. They can be cut, carved and
torn by removing elements or by breaking the links be-
tween elements. Because linked volumes can have more
elements than FEM or mass-spring models, these topolog-
ical changes can be made at higher resolutions.

During carving, a tool is moved through the occupancy
map so that elements encountered by the carving tool can
be detected. The encountered elements are then removed
and links to the removed elements are deleted from re-
maining neighbors. In cutting, the tool can remove links
as well as elements that are encountered along the path of
the tool as it passes through the object, as shown in Fig.
18. Intersections between the knife path and element links
are detected by moving the knife volume through the oc-
cupancy map and checking for collisions. The occupancy
map must be modified slightly so that cells can contain el-
ement pointers for cells occupied by an element and pairs
of element pointers for cells between linked elements that
do not fall into adjacent occupancy map cells. We have
used a Bresenham-based line drawing algorithm in a 2D
cutting system to determine which occupancy map cells

should be filled with pointers to two elements. If the knife
path encounters a cell occupied by an element, the element
is removed and appropriate neighbor connections are re-
moved. If the knife passes through a cell indicating a link
between two elements, the connection between those two
elements is removed in both elements. This algorithm is
illustrated in Fig. 19.

st ki

- L 3 - & - - L] .
L - L]
L] L ™ L -
E ™ L]
L - - L1 |
L
» e
L]
Fig. 18. When cutting volumetric objects, links between elements

that lie along the cutting path are removed.

ol e

FIFWrEd paad

& gkt Lok

PR P

Fig. 19. To model tissue cutting, both object elements and the
links between elements are mapped into the occupancy map.
When the cut path intersects a cell containing an element, the
element and its links to neighbors are removed. When the cut
path intersects a link between two elements, then the connection
between the two elements is removed. In practice, only links
between elements on the object surface need to be mapped into
the occupancy map as shown here.

Tearing occurs when the distance between two elements
is stretched beyond an allowable limit, for example, when
two parts of an object are pulled in opposite directions.
When a limit violation between two elements cannot be
resolved by moving neighboring elements, the connection
between the elements is broken.

C. Joining Object Volumes

For joining objects together, occupancy map cells in the
vicinity of the joining tool are searched for object elements
that have missing neighbor connections. When such an el-
ement is encountered, the occupancy map is searched in
a local neighborhood for an element that is missing the
complementary neighbor. For example, if a element with
a missing right neighbor is encountered in the joining tool
path, a region around the element is searched for an ele-

13

ment with a missing left neighbor. When complementary
neighbors are found, they are then joined by creating the
appropriate link. By spiraling outwards from the first ele-
ment and chosing the first appropriate neighbor, the closest
neighbor is selected for joining. The region that is searched
for a complementary neighbor is limited by the geometric
constraints of ChainMail. This process is illustrated in Fig.
20.

. -—l—?
_.I-'.--"- l # .-'.f‘-r-". L] : #
f‘h e® * N f e : Fo%et ® o & [J
' a ® @ . & I " L .__I
L] = & @ [L] a o A
P P AR L
) [] .J -‘ i F (-] L -
j_ar—a—a | . S
¥ o ¥ | s s
—_—
el 0
Y fa A L ed "o :
— II'-._ ‘:‘ s a® "oe
| | '“r--_ P o a I
e L] s 5" ’.4 'I".-J"
— 4 -.I_ : a = .‘J I'.\ !
- & *
i = el
Fig. 20. To join two elements together, occupancy map cells in an

area or volume surrounding the joining instrument are searched
for elements with missing neighbors. Those elements that have
corresponding missing elements are paired. For example, an ele-
ment missing a right neighbor is paired with an element missing
a left element. Finally, paired elements are joined by setting the
appropriate neighbor links.

D. Systems for Modifying Object Topology

We have implemented two prototype systems to test the
modification of object topology using linked volumes. In
the first system, shown in Fig. 21, 2D linked objects can
be moved (resulting in object translation), cut, grasped
and moved (resulting in object deformation), tacked into
place, glued together, and erased interactively using the
computer mouse. Pointing and clicking on buttons from
a palette switches between these modes. The system was
implemented in C, Tcl/Tk, and OpenGL and runs on an
SGI platform.

In the second system, we have implemented an interac-
tive 3D system which incorporates the collision detection,
deformation, and carving algorithms described in this pa-
per. Because fast volume rendering of deformed volumes
is not yet attainable, the system uses OpenGL to render
object surface points or polygons that are generated on the
fly from the linked volume. Fig. 22 shows several frames
from this system.

VI. DiscussSiION AND FUTURE WORK

Volumetric methods provide a powerful tool for mod-
eling, visualizing, and interacting with graphical objects.
In fact, when internal object structure is important for the
appearance or behavior of a graphical object, a volume rep-
resentation is necessary. This paper has presented a linked
volume structure and algorithms for modeling interactions
between objects such as: collision detection, object defor-

Edit

|o% MERL File

Fig. 21. A 2D system where objects consist of an array of linked
elements. By selecting a tool from a palette and manipulating
the tool with the computer mouse, objects can be interactively
moved, cut arbitrarily, deformed, tacked into place, glued to-
gether, and erased.

Fig. 22. Three still images from an interactive prototype system
which models 3D object collisions, deformation, and carving.
This object has size 20x20x20 and was rendered by drawing tri-
angles on the surface of the linked volume using OpenGL. New
triangles are generated interactively during object carving using
the link structure.

mation, and the arbitrary carving, cutting and joining of
objects, many of which are particularly difficult to model
with surface-based graphics. These algorithms have been
implemented in C and have been shown to be effective and
interactive for reasonably sized volumetric objects.

The results of a number of experiments for testing timing
and the material properties resulting from these algorithms
have been presented. For example, it has been shown
that the ChainMail and elastic relaxation algorithms result
in deformation where: the system dynamics exhibit iner-
tial and damping behavior; tissue characteristics can range
from rigid to deformable, and elastic to plastic; tissues with
non linear stress-deformation curves can be modeled; and,
similar to living tissues, materials can exhibit relaxation
and hysteresis between loading and unloading.

Although the work that has been presented in this pa-
per has demonstrated the potential and the feasibility of
linked volumes, there are many areas that require further
investigation. Some examples of these areas are listed here.
First, as discussed above, extensions and improvements can

14

be made to the collision detection algorithm and the defor-
mation approach. In addition, better data structures and
memory access will improve the efficiency of these meth-
ods in modeling, visualization, and haptics. Second, col-
lision response and the modeling of multiple interactions
between deformable objects has yet to be carefully investi-
gated. Third, an important step for practical applications
will be the experimental verification of simulated material
properties by comparing predicted results to experimental
data and the output of a rigorous mathematical computa-
tion as discussed in IV-D. Finally, hybrid graphics systems
that combine both surface-based and volumetric models in
rendering and physical modeling are needed so that objects
can be represented in an optimal format.

ACKNOWLEDGMENTS

Thanks are extended to E. Gibson, H. Lauer, B. Mir-
tich, R. Perry and several anonymous reviewers for helpful
discussions and editorial comments.

REFERENCES

[1] D. Baraff, “Analytical methods for dynamic simulation of non-
penetrating rigid bodies,” in Computer Graphics Proceedings,
Annual Conference Series. ACM SIGGRAPH, 1989, Proceed-
ings of SIGGRAPH’89, pp. 19-28.

[2] B. Mirtich and J. Canny, “Impulse-based simulation of rigid
bodies,” in Symposium on Interactive 3D Graphics. ACM Sig-
graph, 1995, pp. 181-188.

[3] M. Lin, Efficient collision detection for animation and robotics,
Ph.D. thesis, Dept. Electrical Engineering and Computer Sci-
ence, U. California, Berkeley, 1993.

[4] T. Galyean and J. Hughes, “Sculpting: an interactive volumetric
modeling technique,” in Computer Graphics Proceedings, An-
nual Conference Series. ACM SIGGRAPH, 1991, Proceedings
of SIGGRAPH'91, pp. 267-274.

[5] S. Wang and A. Kaufman, “Volume sculpting,” in Symposium
on Interactive 3D Graphics. ACM Siggraph, 1995, pp. 151-156.

[6] R. Avila and L. Sobierajski, “A haptic interaction method for
volume visualization,” in IEEE Visualization’96, R. Yagel and
G. Nielson, Eds., 1996, pp. 197-204.

[7] S. Gibson, “Beyond volume rendering: visualization, haptic ex-
ploration, and physical modeling of element-based objects,” in
Visualization in Scientific Computing, R. Scateni, J. van Wijk,
and P. Zanarini, Eds., pp. 10-24. Springer-Verlag, 1995.

[8] T.He and A. Kaufman, “Collision detection for volumetric mod-
els,” in IEEE Visualization’97, 1997, pp. 27-34.

[9] Y. Kurzion and R. Yagel, “Space deformation using ray de-

flectors,” in 6th Eurographics Workshop on Rendering, Dublin,

Ireland, 1995, pp. 21-32.

M. Desbrun and M-P Gascuel, “Animating soft substances with

implicit surfaces,” in Computer Graphics Proceedings, Annual

Conference Series. ACM SIGGRAPH, 1995, Proceedings of SIG-

GRAPH’95, pp. 287- 290.

S. Gibson and B. Mirtich, “A survey of deformable modeling in

computer graphics,” Tech. Rep. TR97-19, MERL - A Mitsubishi

Electric Research Lab, 1997.

S. Cotin, H. Delingette, N. Ayache, J.M. Clement, V. Tassetti,

and J. Marescaux, “Geometrical and physical representations

for a simulator of hepatic surgery,” in Medicine Meets Virtual

Reality IV, 1996.

S. Cotin, Modeles anatomiques deformables en temps-reel,

Ph.D. thesis, INRIA Sophia Antipolis / University de Nice, 1997.

S. Cotin, H. Delingette, and N. Ayache, “Real-time elastic defor-

mations of soft tissues for surgery simulation,” IEEE Transac-

tions on Visualization and Computer Graphics, 1999, in press.

M. Bro-Nielsen, “Fast finite elements for surgery simulation,”

in Medicine Meets Virtual Reality V, 1997.

D. Terzopoulos and K. Fleischer, “Modeling inelastic deforma-

tion: viscoelasticity, plasticity, fracture,” Computer Graphics,

vol. 22, no. 4, pp. 269-278, 1988.

13]

[14]

(15]

(16]

(17]

(18]

(21]

(22]

(23]

(24]

27]

28]

(29]

(30]

(31]

(32]

(34]

(35]

(36]

M. Bro-Nielsen, “Modelling elasticity in solids using active cubes
- application to simulated operations,” in Computer Vision,
Virtual Reality in Medicine, 1995, pp. 535-541.

R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibson,
W. Hiatt, and T. Ohkami, “Em-cube: an architecture for low-
cost real-time volume rendering,” in SIGGRAPH /Eurographics
Workshop on Graphics and Hardware, 1997, pp. 131-138.

A. Kaufman, D. Cohen, and R. Yagel, “Volume graphics,” IEEE
Computer, vol. 23, no. 7, pp. 51-64, 1993.

A. Kaufman, “Efficient algorithms for 3d scan-conversion of
parametric curves, surfaces, and volumes,” in Computer Graph-
ics Proceedings, Annual Conference Series. ACM SIGGRAPH,
1987, Proceedings of SIGGRAPH’87, pp. 171-179.

A. Kaufman, Volume Visualization, IEEE Computer Society
Press, Los Alamitos CA, 1991.

L. Sobierajski and A. Kaufman, “Volumetric ray tracing,” in
Volume Visualization Symposium, Washington, DC, 1994, pp.
11-18.

L. Sobierajski and A. Kaufman, “Volumetric radiosity,” Tech.
Rep. Technical Report 94.01.05, Dept. Computer Science, SUNY
Stony Brook, 1994.

A. Mor, S. Gibson, and J. Samosky, “Interacting with 3-
dimensional medical data: haptic feedback for surgical simu-
lation,” in Phantom Usergroup Workshop, 1996.

S. Gibson, “3d chainmail: a fast algorithm for deforming vol-
umetric objects,” in Symposium on Interactive 3D Graphics.
ACM Siggraph, 1997, pp. 149-154.

S. Gibson, C.Fyock, E. Grimson, T. Kanade, R. Kikinis,
H. Lauer, N. McKenzie, A. Mor, S. Nakajima, T. Ohkami, R. Os-
borne, J. Samosky, and A. Sawada, “Volumetric object modeling
for surgical simulation,” Medical Image Analysis, vol. 2, no. 2,
1998.

J. Cohen, M. Lin, D. Manocha, and K. Ponamgi, “Automatic
motion synthesis for 3d mass-spring models,” in Symposium on
Interactive 3D Graphics. ACM Siggraph, 1995, pp. 189-196.
Shinya and Forgue, “Interference detection through rasteriza-
tion,” J. Visualization and Computer Animation, vol. 4, no. 2,
pp. 132-134, 1991.

T. Uchiki, T. Ohashi, and M. Tokoro, “Collision detection in
motion simulation,” Computers and Graphics, vol. 7, pp. 285—
293, 1983.

N. Greene, “Voxel space automata: modeling with stochastic
growth processes in voxel space,” in Computer Graphics Pro-
ceedings, Annual Conference Series. ACM SIGGRAPH, 1989,
Proceedings of SIGGRAPH’89, pp. 175-184.

J. Lengyel, M. Reichert, B. Donald, and D. Greenberg, “Real-
time robot motion planning using rasterization computer graph-
ics hardware,” in Computer Graphics Proceedings, Annual Con-
ference Series. ACM SIGGRAPH, 1990, Proceedings of SIG-
GRAPH’90, pp. 327-335.

D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically
deformable models,” in Computer Graphics Proceedings, An-
nual Conference Series. ACM SIGGRAPH, 1987, Proceedings
of SIGGRAPH’87, pp. 205-214.

D. Baraff and A. Witkin, “Dynamic simulation of non-
penetrating flexible bodies,” in Computer Graphics Proceedings,
Annual Conference Series. ACM SIGGRAPH, 1992, Proceed-
ings of SIGGRAPH’92, pp. 303-308.

S. Gibson, “Using distance maps for accurate surface represen-
tation in sampled volumes,” in IEEE Visualization’98, 1998.
D. Terzopoulos and K. Waters, “Physically-based facial model-
ing, analysis, and animation,” J. Visualization and Computer
Animation, vol. 1, pp. 73-80, 1990.

K. Waters, “A muscle model for animating three-dimensional
facial expression,” in Computer Graphics Proceedings, Annual
Conference Series. ACM SIGGRAPH, 1987, Proceedings of SIG-
GRAPH’87, pp. 17-24.

Y. Lee, D. Terzopoulos, , and K. Waters, “Realistic modeling
for facial animation,” in Computer Graphics Proceedings, An-
nual Conference Series. ACM SIGGRAPH, 1995, Proceedings
of SIGGRAPH’95, pp. 55-62.

R. Koch, M. Gross, F. Carls, D. von Buren, G. Fankhauser, and
Y. Parish, “Simulating facial surgery using finite element mod-
els,” in Computer Graphics Proceedings, Annual Conference
Series. ACM SIGGRAPH, 1996, Proceedings of SIGGRAPH’96,
pp. 421-428.

X. Tu and D. Terzopoulos, “Artificial fishes: physics, locomo-
tion, perception, behavior,” in Computer Graphics Proceedings,

42]

(43]

[44]

45]

[46]

[47]

(48]

[49]

[50]

[51]

[57]
[58]
[59]
[60]
[61]

(62]

(63]

15

Annual Conference Series. ACM SIGGRAPH, 1994, Proceed-
ings of SIGGRAPH’94, pp. 43-50.

J. Christensen, J. Marks, and T. Ngo, “Automatic motion syn-
thesis for 3d mass-spring models,” The Visual Computer, vol.
13, pp- 20-28, 1987.

M. Carignan, Y. Yang, N. Magnenat Thalmann, and D. Thal-
mann, “Dressing animated synthetic actors with complex de-
formable clothes,” in Computer Graphics Proceedings, Annual
Conference Series. ACM SIGGRAPH, 1992, Proceedings of SIG-
GRAPH'92, pp. 99-104.

D. Baraff and A. Witkin, “Large steps in cloth animation,”
in Computer Graphics Proceedings, Annual Conference Series.
ACM SIGGRAPH, 1998, Proceedings of SIGGRAPH’92, pp. 43—
54.

J. Collier, B. Collier, G. O’Toole, and S. Sargand, “Drape pre-
diction by means of finite element analysis,” J. of the Teztile
Institute, vol. 82, pp. 96-107, 1991.

D. Chen, Pump it up: computer animation of a biomechanically
based model of muscle using the finite element method, Ph.D.
thesis, Media Arts and Sciences, MIT, 1991.

1. Essa, S. Scarloff, , and A. Pentland, “A unified approach for
physical and geometric modeling for graphics and animation,”
in FEurographics’92, 1992, vol. 11, pp. 129-138.

I. Hunter, T. Doukoglou, S. Lafontaine, , and P. Charette, “A
teleoperated microsurgical robot and associated virtual environ-
ment for eye surgery,” Presence, vol. 2, pp. 265-280, 1993.

E. Keeve, S. Girod, P. Pfeifle, and B. Girod, “Anatomy-based
facial tissue modeling using the finite element method,” in IEEE
Visualization’96, 1996, pp. 21-28.

A. Pentland and J. Williams, “Good vibrations: modal dynam-
ics for graphics and animation,” Computer Graphics, vol. 23,
no. 3, pp. 215-222, 1989.

M. Bro-Nielsen and S. Cotin, “Real-time volumetric deformable
models for surgery simulation using finite elements and conden-
sation,” in Furographics’96, 1996, vol. 15, pp. 57—66.

Y. Fung, Biomechanics: mechanical properties of living tissues,
Springer-Verlag, New York, 1993.

M. Schill and S. Gibson, “Biomechanical simulation of the vit-
reous humor in the eye using an enhanced chainmail algorithm,”
in Proc. Medical Image Computation and Computer Integrated
Surgery (MICAI’98). October 1998, Springer.

P-G. Maillot, “Three-dimensional homogeneous clipping of tri-
angle strips,” in Graphics Gems, J. Arvo, Ed. AP Professional,
New York, 1991.

M. Bro-Nielsen, D. Helfrick, B. Glass, X. Zeng, and H. Con-
nacher, “Vr simulation of abdominal trauma surgery,” in
Medicine Meets Virtual Reality VI, 1998.

G. Kriezis, N. Patrikalakis, and F. Wolter, “Topological and dif-
ferential equation methods for surface intersections,” Computer-
Aided Design, vol. 24, pp. 41-55, 1990.

S. Krishnan and D. Manocha, “An efficient surface intersection
algorithm based on the lower dimensional formulation,” ACM
Transactions on Computer Graphics, vol. 16, no. 1, pp. 74-106,
1997.

W. Lorensen and H. Cline, “Marching cubes: a high resolution
3d surface construction algorithm,” in Computer Graphics Pro-
ceedings, Annual Conference Series. ACM SIGGRAPH, 1989,
Proceedings of SIGGRAPH’89, pp. 163-169.

T. van Hook, “Real-time shaded milling display,” in Com-
puter Graphics Proceedings, Annual Conference Series. ACM
SIGGRAPH, 1986, Proceedings of SIGGRAPH’86, pp. 15-20.
Y. Huang and J. Oliver, “Nc milling error assessment and tool
path correction,” in Computer Graphics Proceedings, Annual
Conference Series. ACM SIGGRAPH, 1994, Proceedings of SIG-
GRAPH94, pp. 287-294.

B. Naylor, “Sculpt: an interactive solid modeling tool,” in
Graphics Interface’90, 1990, pp. 138-148.

D. Terzopoulos, J. Platt, and K. Fleischer, “Heating and melt-
ing deformable models (from goop to glop),” in Graphics Inter-
face’89, 1989, pp. 219-226.

S. Wang and A. Kaufman, “Volume sampled elementization of
geometric primitives,” in Visualization’93, 1993, pp. 78-84.

P. Lacroute and M. Levoy, “Fast volume rendering using a
shear-warp factorization of the viewing transform,” in Com-
puter Graphics Proceedings, Annual Conference Series. ACM
SIGGRAPH, 1994, Proceedings of SIGGRAPH’94, pp. 451-457.
S. Cotin, H. Delingette, and N. Ayache, “Efficient linear elas-

tic models of soft tissues for surgery simulation,” Tech. Rep.,
INRIA, 1998, 3510.

Sarah Gibson received a B.Eng. in Math-
ematics and Engineering at Queen’s Univer-
sity, Canada, in 1985, an M.Sc. in Electri-
cal and Computer Engineering at the Univer-
sity of Wisconsin, Madison, in 1986, and a
Ph.D. in Electrical and Computer Engineering
at Carnegie Mellon University in 1990. She was
a postdoctoral fellow at the Neuman Biome-
chanics Lab at MIT from 1991-1992, a member
of the research faculty at the Robotics Institute
at Carnegie Mellon University from 1992-1993,
and is currently a Senior Research Scientist at MERL- A Mitsubishi
Electric Research Laboratory. Dr. Gibson’s interests lie in volume
graphics and medical applications, in the areas of volume visualiza-
tion, physics-based modeling, surgical simulation, and image segmen-
tation.

16

	Title Page
	Title Page
	page 2

	Using Linked Volumes to Model Object Collisions, Deformation, Cutting, Carving, and Joining
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

