
���������
	��
��	���������	���� ��	!��� ��"
#%$�$�&(')*),+�+�+.- /1032�45- 687*/

9;:3<>=
?8@BADCFEHGIADJ
?8@BKF@�?3:3CF@MLNKFA.O(P
Q ?3?3:3=
P!:8R�AD?TSI:3CF@�OVUXWMY[Z\C
:8O]W.P^Y!W_=
:8R

GI@�`aP!bFY!@BcdAD=
=
:3CFe

f 7g034 � 6 � 7*2�/ih*6kjml � 7*nmhX4po;q^032�2�rts uv03w $�# � -mxmhX2�jyh*z{l
| 7*2�/ihXn;q^- f 7*}t&t&tw~l

�������X�*�*�y���X��f }tnt0 �X�*�*�

�a�^�3�3�y�t�X�
� 08�g$�}t2�0 /ihX&t&tw nt�1}mz�w nt�_$�2�w 4 w nt0�hX2�4 r1�m4 $�032�0�o
/1w & � /ihX&t&�0�o;othy$kh_wpz�08�a68w 03n%$�hXnmo
4 7g7*j�z�/M}m6k#
��08$�$�032i$�#mhXn�&�7*w n%$ � z�hX/1&t4 0�oI7*2i�tw 4 w nt0�hX2�4 r��m4 $�032�0�o�othy$kht- � #t0�z�0
&t2�7*&�032�$�w 0�z1#mh,�*0;/ih*o�0
w $
}t�twp�%}tw $�7*}mz3']$�2�w 4 w nt0�hX2��m4 $�032�w nt�_wpz�7X��032�0�oa7*n;hi�g� �X�M| w n%$�03nmo�7i�X�M�gwpo�037_�%hX/10 }tntw $�hXnmo
7*n;h
/M}t4 $�w /1w 4 4 w 7*n�o�7*4 4phX2 �t� ��� n��mntw $�0 � 0�hX4 w $�r*- � }�$v$�2�w 4 w nt0�hX2 �m4 $�032�w nt�;2�03&t2�0�z�03n%$kz�$�#t0i&t2�7X��0�6{$�w 7*n
7X �hv&tw ��034��m4 $�032! ~7g7X$�&t2�w n%$! ~2�7*/¡z�682�0303niz�&mh*680�w n%$�7v$�08�g$�}t2�0�z�&mh*680�h*z!h.z��%}mhX2�0*¢y+�#t03n1w ni2�0�hX4 w $�r
$�#t0a ~7g7X$�&t2�w n%$M/ih,r���0
4 7*nt��hXnmo�nmhX2�2�7y+.- � 7*nmz�0��%}t03n%$�4 r*¢]$�2�w 4 w nt0�hX2D�m4 $�032�w nt�£z�03�*032�034 r��t4 }t2kz
w /ihX�*0�z�7*nFz�}t2� ¤h*680�z�hXnt�*4 0�o
7*�t4 wp�%}t034 r
h,+�h,r1 ~2�7*/¥$�#t0.�gw 03+�032�-
� #twpz^&mhX&�032!o�0�z�682�w ��0�z]h nt03+�$�08�g$�}t2�0��m4 $�032�w nt��$�0�6k#tntwp�%}t0�63hX4 4 0�oMxt034 w nt0.¦§ ~7*2!xmh*z�$ � 4 4 w &�$�wp63hX4

� w nt0�zk¨{- � w j*0�7X$�#t032©2�0�6803n%$©#mhX2ko�+�hX2�0�hXntwpz�7X$�2�7*&twp6��m4 $�032�w nt�DhX4 �*7*2�w $�#t/iz3¢*xt034 w nt0�}mz�0�z©hXn1}tnmo�032 �
4 rgw nt�Mz�&mh*680 � w ng�yhX2�wphXn%$�¦~wpz�7X$�2�7*&twp6�¨^�m4 $�032�+�w $�#a/1w & � /ihX&t&�0�o
othy$kht¢%hXnmoaz�7M63hXni��0 �t}tw 4 $�7*ni$�7*&
7X �hXn�08��wpz�$�w nt�F$�2�w 4 w nt0�hX2v�m4 $�032�w nt�F03nt�*w nt0*- � 7F$�08�g$�}t2�0ah;&tw ��0345¢]w $D}mz�0�zv$�#twpzDz�&mh*680 � w ng�yhX2�wphXn%$
�m4 $�032.hy$Dz�03�*032khX4]&�7*w n%$kzvhX4 7*nt�Fh
4 w nt01w n�$�08�g$�}t2�01z�&mh*680*¢(hXnmo£687*/M�tw nt0�z�$�#t012�0�z�}t4 $kz3-Dª�w $�#�h
/17�o�0�z�$Dw nm682�0�h*z�0_w n�w /1&t4 03/103n%khy�w 7*n�687*/1&t4 08��w $�r�7y�*032v0�hX2�4 w 032 $�0�6k#tntwp�%}t0�z3¢]xt034 w nt0i/17*2�0ih*6 �
68}t2khy$�034 rF/ihy$k6k#t0�z�$�#t0io�0�z�w 2�0�o
&t2�7X��0�6{$�w 7*n�7X ©$�#t0_&tw ��034]�m4 $�032vw n�$�08�g$�}t2�01z�&mh*680*¢�2�0�z�}t4 $�w nt�
w n
w /ihX�*0�z�+�w $�#F ~03+�032 hX4 wph*z�w nt�ihX2�$�w ¤h*6{$kz3-�xt034 w nt0*« z��gwpz�}mhX4]�%}mhX4 w $�r;687*/1&mhX2�0�z�+�034 4�hX�%hXw nmz�$ � 4 4 w & �
$�wp63hX4tª£03w �*#%$�0�o 	 �*032khX�*0*¢y$�#t0���0�z�$�08�a68w 03n%$�z�7X §$�+�hX2�0�hXntwpz�7X$�2�7*&twp6�$�08�g$�}t2�0��m4 $�032�w nt�MhX4 �*7*2�w $�#t/
jgnt7y+�ni$�7iothy$�0*¢g�t}�$�xt034 w nt0v2�0��%}tw 2�0�z�/M}m6k#
4 0�z�z�z�08$�}t&F687*/1&t}�$khy$�w 7*n;hXnmoi ¤hX2� ~03+�032�68r�684 0�z� ~7*2
$�08��034X ~08$k6k#t0�z3-]x]w nmhX4 4 r*¢yz�w nm680©w $]}mz�0�z(z�$khXnmothX2kov/1w & � /ihX&mz3¢,xt034 w nt0�2�0��%}tw 2�0�z¬/1w ntw /ihX4*08�g$�03nmz�w 7*nmz
$�7iz�$khXnmothX2ko �*­ w n%$�032� ¤h*680�z�4 w j*0 � &�03n �v� -

®�¯y°p±�²�³¤´*µ3²�¶^°p±�·.±�¸8´%³�²�±k³�¶�µº¹
»%¼k½ ¾ ¿%¼�À]»gÁ3ÂºÃ�Ä(½ ½ ¾ Å*Ã�¾ Æ{Á3½�Çm¾ ¿%¼kÂ!ÈpÉ3Ê�Ë�¿%¾ ÂÌÉ3ÃÌÊ�É�Å%¾ Æ�Í�¼�ÎXÃ�Ï*Ê�¼�Ð1Á3Å%Å%¾ ¿%Ñ*Òm´g¸%ÓkÔ °p±Ì¯%³ÌÕ.°pÖ
×¬Ê�ÉyÆk¼k¼{Ø*¾ ¿%Ñ�Â�É3È]ÙXÚÌÛ�Û�Ü�Ë�×(ÝßÞ{à�à�à

ákâ�ã{ä�åyækç â�ã{ä�å,è�é5ê�ë]â�ã{ë5åXã{ëºæ�é5ì ã{í%î,ïMê�ð¤é5ê�ë5ívñ(ê�ð5ê�ækë5òºóvô�ækõXã{ëºæ�é5ã{ë¤ö
÷køvù ñ(ô

Simple and Table Feline: Fast Elliptical Lines
for Anisotropic Texture Mapping

Jo
ú

el Mcû Cormack*, Keith
ü

I. Farkas*, Ronald Perry†, and Norman P. Jouppi*

Abstract

Texture mapping using trilinearly filtered mip-mapped
data is efficient and looks much better than point-sampled
or bilinearly filtered data. These properties have made it
uý biquitous: trilinear filtering is offered on a $99 Nintendo
64 video game unit and on a multimillion dollar SGI In-
finiteRealit y. But trilinear filtering represents the projec-
tio
þ

n of a pixel filter footprint from screen space into texture
space as a square, when in reality the footprint may be long
and narrow. Consequently, trili near fil tering severely blurs
i
ÿ
mages on surfaces angled obliquely away from the viewer.

T
�

his paper describes a new texture filtering technique
called Feline (for Fast Ellip tical Lines). Like other recent
hardware anisotropic filtering algorithms, Feline uses an
undý erlying space-invariant (isotropic) filter with mip-
m� apped data, and so can be built on top of an existing
trilinear
þ

filtering engine. To texture a pixel, it uses this
space-invariant filter at several points along a line in tex-
tu
þ

re space, and combines the results. With a modest in-
crease in implementation complexity over earlier tech-
n� iques, Feline more accurately matches the desired
p� rojection of the pixel filter in texture space, resulting in
i
ÿ
mages with fewer aliasing artifacts. Feline’s visual quality

compares well against Elliptical Weighted Average, the
b

�
est efficient software anisotropic texture filtering algo-

rith� m known to date, but Feline requires much less setup
computation and far fewer cycles for texel fetches. Finall y,
since it uses standard mip-maps, Feline requires minimal
extensions to standard 3D interfaces like OpenGL.

1. Introduction

Ideally, computing a textured value for a pixel in-
volves perspective projecting a filter from screen space
(indexed by x� and y� coordinates) into texture space (in-
dexed by u and v coordinates) to obtain a warped prefilter.
Since the texture data are discrete samples, we also require
a reconstruction filter to interpolate between texel samples.
For m

�
athematically tractable warped and reconstruction

filters, we can combine the two to create a unified filter in
tex
þ

ture space. Each texel inside the unified filter’s foot-
prin� t is weighted according to the unified filter’s corre-
sponding value in screen space, the weighted samples are
accumulated, and the sum is divided by the filter’s volume
in
ÿ

 texture space.
Fig

�
ure 1, inspired by Lansdale [8], gives an intuiti ve

view of this process. A pixel filter is a “window” onto a
portion� of the texture map; the window’s opacity at each
p� oint corresponds to the filter’s weight. The grid repre-
sents a texture map; the shaded rectangle the screen. We
view an elliptical portion of the texture map through a
ro� und pixel filter. (In degenerate cases, a circle projects to
an arbitrary conic section, but for our purposes an ellipse
suffices.) Since the pixel “window” can display a single
bl

�
ob of color, the fundamental problem of texture mapping

is to co
ÿ

mpute a representative color at each pixel.
 Figure 2 shows a typical pixel filter in screen space—

a Gaussian with weighting e–α	 (x
 2 + y2)
�
, truncated to zero be-

y� ond a radius of one pixel, and with an α of 2. Tick marks
on the x� and y� axes are at one pixel intervals; the x� -y� grid is
at 1/

10 pixel intervals. Figure 3 shows an exemplary per-

spective projection of this filter into texture space, where
the tic
þ

k marks on the u and v axes are spaced at one texel
interva
ÿ

ls, and the grid is at ½ texel intervals. Note the dis-
to
þ

rted filter profile: each contour line is an ellipse, but the

* Compaq Computer Corporation, Western Research Labo-
ratory, 250 University Avenue, Palo Alto, CA 94301.
[Joel.McCormack, Keith.Farkas, Norm.Jouppi]
@compaq.com.

† Formerly of Digital Equipment Corporation (acquired by
Compaq), now at Mitsubishi Electric Research Laborato-
ries, Inc., Cambridge Research Center, 201 Broadway,
Cambridge, MA 02139. perry@merl.com.

This report is a superset of Feline: Fast Elliptical Lines for
Anisotropic Texture Mapping, published in Proceedings of
SIGGRAPH 99.

© 1999 Association for Computing Machinery.
© 1999 Compaq Computer Corporation Figure 1: Viewing an elliptical texture

area through a circular pixel window.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

4

ellipses representing lower sample weights are increasingly
offset from the filter center.

(In this and all other graphs of texture space filters, we
normalize the filter volume to one, and highly exaggerate
th
þ

e vertical axis by a constant scale factor. This allows

direct comparisons between graphs.)
Mapping the texel positions in Figure 3 back into pixel

p� ositions in Figure 2 (let alone creating a unified filter), so
that relati
þ

ve weights can then be applied to the texel values,
i
ÿ
s a gruesome affair. Rather than using a perspective pro-
j

�
ection, Heckbert and Greene [4][6] suggest using a locally

p� arallel (affine) projection, as shown in Figure 4. This
drastically simpli fies computing the footprint and weights
of the projected filter. This simplification is visually insig-
n� ificant. The modest weight differences between Figure 3
and Figure 4 would be extremely hard to detect in any im-
age. Further, to get the slight distortion shown in Figure 3
requ� ires a nearly edge-on view of the surface being texture
m� apped, in which all detail is lost anyway.

Our algorithm approximates the elliptical filter shown
in Fi
ÿ

gure 4 by performing several isotropic (e.g. trilinear or
m� ip-mapped Gaussian) filtering operations, called pr� obes,
along the major axis of the ellipse. In comparison to other
hard

�
ware anisotropic filtering methods, Feline better ap-

p� roximates the elliptical filter by more accurately deter-
m� ining the length of the line along which probes should be
placed, � spacing probes at better intervals, widening probes
undý er certain conditions, and Gaussian weighting the probe
r� esults.

“Simple Feline” uses approximations for the ellipse’s
m� ajor and minor axes that, under ordinary perspective dis-
t
þ
ortions, yield visual results that are as good as using the
exact values. More extreme perspectives may occur when
environment mapping or otherwise projecting images onto
surfaces in a 3D scene (e.g. rendering light from a stained
glass windows on a floor). Under such conditions, Simple
Feline

�
’s approximations of the ellipse may deviate sub-

stantially from the true values, and result in noticeable blur-
rin� g. We thus also describe a more sophisticated algorithm,
“Table Feline,” which better approximates the ellipse’s
m� ajor and minor axes. Both versions of Feline require just
a few additional computations over previous algorithms.

In
�

 this paper, we first discuss previous work, including
t
þ
he best efficient software technique, and shortcomings of
recen� t hardware anisotropic filt ering techniques. We next
describe the desired computations for using several probes
along a line, show how to make these computations ame-
n� able to hardware, and discuss techniques to reduce the
n� umber of probes per pixel. Finally, we present several
p� ictures comparing the various methods of filtering.

2. Previous Work

W
�

e first describe Elliptical Weighted Average (EWA),
t
þ
he most efficient direct convolution method known for
computing a textured pixel. This provides a qualit y
ben

�
chmark against which to compare other techniques.

(We do not describe other software efforts like [2] and [3],
as we feel that EWA either supersedes these algorithms, or
th
þ

at they are so slow as to be in a different class.) We dis-
cuss trilinear filtering, which is popular but blurry. We
delve more deeply into Texram, a chip that performs ani-
sotropic filtering by repeated applications of an isotropic

0
�0.

�
1

0.
�

2
0.

�
3

0.
�

4
0.

�
5

0.
�

6
0.

�
7

0.
�

8
0.

�
9
1

Sa
�

mple
We

�
ight

y a� xis

x ax� is

Figure 2: A circular Gaussian filter in screen space.

0.
�

000

0.
�

005

0.
�

010

0.
�

015

0.
�

020

0.
�

025

0.
�

030

0.
�

035

Sa
�

mple
We

�
ight

u ax� is

v ax� is

Figure 3: A perspective projection of a
Gaussian filter into texture space.

0.
�

000

0.
�

005

0.
�

010

0.
�

015

0.
�

020

0.
�

025

0.
�

030

0.
�

035

Sa
�

mple
We

�
ight

u ax� is

v ax� is

Figure 4: An affine projection of a
Gaussian filter into texture space.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

5

filter along a line, and discuss its weaknesses. We briefly
mention other algorithms apparently similar to Texram, but
which are not described in sufficient detail to analyze.

2.1. Elliptical Weighted Average

Paul Heckbert’s and Ned Greene’s Elliptical Weighted
Av

�
erage (EWA) algorithm [4][6] exactly computes the

size, shape, and orientation of an elliptical filter like the
one shown in Figure 4. If the center of the filter in texture
space is translated to (0, 0), then the filter in texture space
can be characterized as:

d2(u, v) = Au2 + Buv + Cv2

The value d2represents the distance squared from the
center of the pixel when the texel position is mapped back
in
ÿ

to screen space. Thus, d2can index a table of weights that
i
ÿ
s unrelated to the affine projection, but depends only upon
the p
þ

ixel filter.
EWA

 determines d2 for each texel in or near the ellip-

tical f
þ

ootprint. Texels inside the footprint (d2 ≤ 1) are sam-
pled, w� eighted, and accumulated. The result is divided by
the
þ

sum of the weights, which is the elliptical filter’s vol-
umý e in texture space.

Given the partial derivatives ∂u/
!
∂x� , ∂v/

!
∂x� , ∂u/

!
∂y� , and

∂v/
!
∂y� , which represent the rates of change of u and v in

tex
þ

ture space relative to changes in x� and y� in screen space,
th
þ

e biquadratic coefficients for computing d2 are:

Ann" = (∂v/
!
∂x�) 2 + (∂v/

!
∂y�)2;

Bnn" = –2 * (∂u/
!
∂x� * ∂v/

!
∂x� + ∂u/

!
∂y� * ∂v/

!
∂y�);

Cnn" = (∂u/
!
∂x�)2 + (∂u/

!
∂y�)2;

F = Ann" *Cnn" – Bnn" 2/4
!

;
A = Ann" /

!
F;

B = Bnn" /
!
F;

C = Cnn" /
!
F;

P
#

ixels that map to a large area in texture space can be
h

�
andled by using mip-maps [11], where each level of a

t
þ
exture’s mip-map is ½ the height and width of the previous
level. Heckbert [6] suggests sampling from a single mip-
m� ap level in which the minor radius is between 1.5 and 3
texels. He later i
þ

mplemented unpublished code in which the
m� inor radius is between 2 and 4 texels, in order to avoid
subtle artifacts.

Ev

en using mip-maps, highly eccentric ellipses may
encompass an unacceptably large area. This area can be
limited by computing the ratio of the major radius to the
m� inor radius, and if this ratio is too large, widening the
m� inor axis of the ellipse and computing the corresponding
coefficients A, B, and C. The combination of mip-maps
and ellipse widening allows EWA to compute a textured
p� ixel with a (large) constant time bound.

Choosing a mip-map level and testing for very eccen-
tric
þ

ellipses requires computing the major and minor radii
of the ellipse:

root = sqrt((A – C)2 + B2);
A’ = (A + C – root)/2;
C’ = (A + C + root)/2;

majorRadius = sqrt(1/A’);
minorRadius = sqrt(1/C’);

W
�

idening a highly eccentric ellipse requires seven
multiplies, a square root, an inverse root, and a divide.
T

�
hese setup computations, plus logic to visit only texels in

or near the ellipse and compute d2, have thus far precluded
hardware implementation of EWA.

T
�

he only complaint that can be leveled against EWA’s
visual quality is its choice of a Gaussian filter. Other filters
produ� ce sharper images without introducing more aliasing
artifacts (see Wolberg [12] for an excellent discussion).
However, these filters have a radius of two or three pixels,
which increases the work required to compute a textured
pi� xel by a factor of four or nine. And as Lansdale [8]
p� oints out, none of these filters are as mathematically trac-
ta
þ

ble as the Gaussian for unifying the reconstruction fi lter
and projected pixel filter (i.e., the warped prefilter).

2.2. Trilinear Filtering

Trilinear filtering emphasizes simplicit y and efficiency
at the cost of visual quality. Rather than computing the
shape of the projected filter footprint, it uses a square filter
in
ÿ

 texture space. By blending two 2 x 2 bili near filters
from adjacent mip-map levels, trilinear filtering crudely
approximates a circular filter of an arbitrary size. Figure 5
shows a trilinear filter that (poorly) approximates the EWA
filter shown in Figure 4. The axis tick marks are spaced
one texel apart, while the grid is spaced at ½ texel intervals.
Strictly speaking, because it blends two 2 x 2 bilinear fil-
tering o
þ

perations, a trilinear filter samples a square area of
2n x 2n texels. However, most of the filter volume resides
inside a circle with the nominal filter radius. In the 2D
p� ictures below, we thus show a trilinear filter’s footprint as
a circle of the nominal radius.

A
�

 trili near filter blurs or aliases textures applied to sur-
faces that are angled obliquely away from the viewer.
T

�
hese artifacts arise because the fixed shape of the trilinear

filter poorly matches the desired elliptical filter footprint,
and so the trilinear filter samples data outside the ellipse,
doesn’ t sample data inside the ellipse, or both.

0.
$

000

0.
$

005

0.
$

010

0.
$

015

0.
$

020

0.
$

025

0.
$

030

0.
$

035

Sa
%

mple
we& ight

u ax' is

v ax(is

Figure 5: A trili near filter approximation to Figure 4.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

6

2.3. Texram

Texram [10] provides higher visual quality than
trilinear
þ

filtering with less complexity than EWA. Texram
useý s a series of trili near filter probes along a line that ap-
prox� imates the length and slope of the major axis of
EW

A’ s elliptical footprint.
T

�
he Texram authors considered computation of the el-

lipse parameters too costly for hardware, and so substituted
simplified approximations. These approximations under-
estimate the length of the major axis of the ellipse, causing
aliasing; overestimate the length of the minor axis, causing
blu

�
rring; and deviate from the slope of the major axis,

causing yet more blurring and aliasing. Nonetheless, these
errors are visually insignificant under typical perspective
pro� jections, as discussed further in Section 3.2 below.

 Texram has other problems that do manifest them-
selves as visible aliasing artifacts. It usually samples along
a line that is much shorter than the ellipse, and can space
th
þ

e trilinear probes too far apart. Texram always uses 2n"

equally weighted probes, which causes poor high-
frequency rejection along the major axis. These problems
m� ake Texram’s visual quality noticeably inferior to EWA.

T
�

exram uses the four partial derivatives to create two
vectors in texture space: (∂u/

!
∂x� , ∂v/

!
∂x�) and (∂u/

!
∂y� , ∂v/

!
∂y�).

T
�

he authors claim to sample roughly the area inside the
paral� lelogram formed by these two vectors, by probing
along a li ne that has the length and slope of the longer of
th
þ

e two vectors. This line can deviate from the slope of the
m� ajor axis of EWA’s elliptical filter by as much as 45°.
T

�
his is not as bad as it sounds. The largest angular errors

are associated with nearly circular filters, which are rela-
tivel
þ

y insensitive to errors in orientation.
T

�
exram’s sampling line can be shorter than the true el-

lipse’s major axis by nearly a factor of four. One factor of
tw
þ

o comes from Texram’s use of the length of the longer
vector as the length of the sample line. Note that if or-
tho
þ

gonal vectors are plugged into the ellipse equations in
Section 2.1 above, the major radius is the length of the
longer vector, and so the ellipse’s major diameter is actu-
ally twice the length of this vector. Texram’s error is ap-

paren� tly due to an older paper by Paul Heckbert [5], in
which he suggested using a filter diameter that is really a
filter radius.

An
�

other factor of two comes from non-orthogonal
vectors. If the two vectors are nearly parallel and equal in
length, the elliptical footprint is very narrow and has a ma-
j

�
or radius nearly twice the length of either vector. Again,

t
þ
his is not as bad as it sounds: under typical perspective
distortions the longer vector is at least 93% the length of
th
þ

e true ellipse radius.
T

�
exram approximates the radius of the minor axis of

the
þ

ellipse by choosing the shortest of the two parallelo-
gram side vectors and the two parallelogram diagonals
(∂u/

!
∂x� + ∂u/

!
∂y� , ∂v/

!
∂x� + ∂v/

!
∂y�) and (∂u/

!
∂x� – ∂u/

!
∂y� , ∂v/

!
∂x� –

∂v/
!
∂y�). If the side vectors are nearly parallel and the

shorter is half the length of the longer, this approximation
can be too wide by an arbitrarily large factor.

One of the Texram authors was unsure which values
r� ound up or down in the division that computes the number
of probes. We have assumed values in the half-open inter-
val [1.0 to 1.5) round to one probe, values in [1.5 to 3)
ro� und to two probes, values in [3 to 6) round to four
probes� , etc. Texram does not adjust the probe diameter
when it rounds down (as discussed in Section 3.1 below),
and so can space probes too far apart. In this case, Tex-
ra� m’s composite filter looks like a mountain range with
in
ÿ

dividual peaks. These peaks cause aliasing, and can beat
against repeated texture patterns to create phantom pat-
terns.
þ

"Bound ing "
para l le logram)

Texram area
*

actual ly f i l tered+

EWA's e l l ip t ica l
,

footpr in t
-

Samp l ing
.

l ine
/

 L
Figure 6: Texram area sampled vs. EWA.

0.
$

000
0.

$
005

0.
$

010
0.

$
015

0.
$

020

0.
$

025

0.
$

030

0.
$

035

0.
$

040

0.
$

045

Sa
%

mple
Wei

0
ght

u ax' is

v ax(is

Figure 7: Worst-case 2-probe Texram filter.

0.
$

000
0.

$
005

0.
$

010
0.

$
015

0.
$

020

0.
$

025

0.
$

030

0.
$

035

0.
$

040

0.
$

045

Sa
%

mple
Wei

0
ght

u ax' is

v ax(is

Figure 8: Best-case 4-probe Texram filter.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

7

Figure 6 shows an extreme example of these errors, in
which (∂u/

!
∂x� , ∂v/

!
∂x�) is (13, 0) and (∂u/

!
∂y� , ∂v/

!
∂y�) is (12, 5).

T
�

he area sampled by EWA is shown as the large heavil y
outlined ellipse, while Texram’s trilinear filter footprints
are shown as circles.

T
�

o approximate the elliptical filter shown in Figure 4,
T

�
exram computes that it would ideally use 2.97 probes.

F
�

igure 7 shows the resulting filter if Texram rounds down
t
þ
o 2 probes. Since it does not widen the trilinear probes,
th
þ

e two mountain peaks are quite distinct, and texels near
the
þ

center of the filter are severely underweighted. We
forced an experimental version of Texram to always round
uý p the number of probes to a power of two; its images ex-
h

�
ibited almost as much aliasing as the original version that

ro� unds up or down. Figure 8 shows the resulting filter if
T

�
exram rounds the 2.97 probes up to 4 probes, and helps

explain why aliasing remains. The probes don’ t extend far
enough along the major axis of the ellipse, and the probes
are equall y weighted. This creates a mesa-like filter that
would look at home in Monument Valley, rather than the
smoothly sloped Hawaiian shield volcano filter of EWA.

2.4. O
1

ther Hardware Algorithms

Microsoft’s Talisman [1] uses a filtering algorithm “ in
the
þ

spirit of” Texram. Details are scant, but aliasing evi-
dent in the examples suggest that they may be haunted by
T

�
exram’s problems. Evans & Sutherland holds U.S Patent

#5,65
2

1,104 for using space-invariant probes along a line.
T

�
he patent doesn’ t describe how to compute the probe line,

bu
�

t the diagrams imply a line that is at most a single pixel
in
ÿ

 length in screen space, which is once again so short that
it
ÿ

will produce visible aliasing artifacts.

3.
3

 The Feline Algorithm

Like Texram, Feline uses several isotropic probes
along a line L to implement an anisotropic filter. However,
we compute a more appropriate length for the sampling line
L, allow the number of probes to be any integer, don’t
space probes too far apart, and weight the probes using a
Gaussian curve. In some circumstances we use a mip-
m� apped Gaussian filter for the probes. Feline requires little
additional logic over Texram, yet achieves visibly superior
r� esults.

W
�

e first describe the desired computations to yield the
locations and weights for a series of probe points along a
line. We next describe two versions of our algorithm,
which differ only in their approximations of the major and
m� inor axes of the ellipse. “Simple Feline” inherits Tex-
ra� m’s approximations of the major and minor radii, after
which it implements the desired computations in a fashion
suitable for hardware. Under highly distorted perspective
pro� jections, which may occur when environment mapping,
Simple Feline’s major and minor radii approximations re-
sult in blurring. “Table Feline” uses a two-dimensional
tab
þ

le to compute the ellipse axes more accurately. We con-
clude with techniques to reduce the number of probes.

3.1.
3

 The Desired Computations

The combination of multiple isotropic probes should
closely match the shape of the EWA filter. Thus, the probe
p� oints should occur along the major axis of the ellipse, the
p� robes should be Gaussian weighted, and the probe filter
width should be equal to the minor axis of the ellipse.

(Ideally, the probe filter width would be related to the
width of the ellipse at each probe position. We initially did
n� ot investigate this because we didn’t know how to opti-
m� ize the trade-off between the probe diameter, probe
weighting, probe spacing, and the number of probes. After
im
ÿ

plementing constant diameter probes, we saw no reason
t
þ
o pursue variable diameter probes. The “ improvement”
was unlikely to be visible, but would signif icantly increase
t
þ
he number of probes due to tighter spacing of small probes

near the e� nds of the ellipse.)
W

�
e compute majorRadius and minorRadius as in Sec-

t
þ
ion 2.1 above, and then the angle theta of the major axis:

theta = arctan(B/(
!

A-C))/2;
// If

!
 theta is angle of minor axis, make it

// an
!

gle of major axis
 if (A > C) theta = theta + π/2

!
;

If
�

 minorRadius is less than one pixel (that is, we are
m� agnify ing along the minor axis, and possibly along the
m� ajor axis), the appropriate radii should be widened—there
is no
ÿ

 point in making several probes to nearly identical
locations. Heckbert’s Master’s Thesis [6] elegantly ad-
dresses this situation. He unifies the reconstruction and
warped prefilter by using the following computations for A
and C rather than the ones shown in Section 2.1 above:

Ann" = (∂v/
!
∂x�)2 + (∂v/

!
∂y�)2 + 1;

Cnn" = (∂u/
!
∂x�)2 + (∂u/

!
∂y�)2 + 1;

T
�

his makes the filter radius sqrt(2) texels f
þ

or a one-to-
one mapping of texels into pixels. (The filter radius ap-
proach� es one texel as magnif ication increases.) While
theo
þ

retically superior, this wider filter blurs more than the
rad� ius one trili near filter conventionall y used for unity
m� appings and for magnifications. In order to match this
convention, and to make hardware implementation feasible,
we instead clamp the radii to a minimum of one texel:

minorRadius = max(minorRadius, 1);
majorRadius = max(majorRadius, 1);

T
�

he space-invariant probes along the major axis have a
no� minal radius equal to minorRadius, and so the distance
betw

�
een probes should also be minorRadius. The end

probes� should be set in from the ellipse by a distance of
minorRadius as well, so that they don’t sample data off the
ends of the ellipse. Therefore, the number of probes we’d
like (f

4
Probes), and its integer counterpart (iProbes), are

derived from the ratio of the lengths of the major and minor
rad� ii of the ellipse:

f
4
Probes = 2*(majorRadius/

!
minorRadius) – 1;

iProbes = floor(f
4
Probes + 0.5);

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

8

To guarantee that texturing a pixel occurs in a bounded
ti
þ

me, we clamp iProbes to a programmable value max-
Probes. An application can use a small degree of anisot-
ropy at high frame rates, and then allow more eccentric
filters for higher visual quality when motion ceases.

iProbes = min(iProbes, maxProbes);

Wh
�

en iProbes > f
4
Probes, because f

4
Probes is rounded

uý p, we space probes closer than their radius, rather than
b

�
lur the image by sampling data off the ends of the ellipse.

Wh
�

en iProbes < f
4
Probes, either because f

4
Probes is

rou� nded down, or because iProbes is clamped, the ellipse
will be probed at fewer points than desired. Spacing the
probes� farther apart than their radius, or shortening the line
L, may cause aliasing artifacts. Instead, we blur the image
by

�
 increasing minorRadius to

þ
 widen the ellipse, effectively

redu� cing its eccentricity to match iProbes. Increasing mi-
norRadius increases the level of detail and thus the nominal
rad� ius of the probe filter.

if
ÿ

 (iProbes < f
4
Probes)

minorRadius = 2*majorRadius / (
!

iProbes+1);
levelOfDetail = log2(minorRadius);

An
�

alogous to clamping minorRadius and majorRadius
to
þ

 1, we also use a single probe in the smallest 1 x 1 mip-
m� ap. This reduces cycles spent displaying a repeated tex-
ture in t
þ

he distance. We don’ t attempt a similar optimiza-
t
þ
ion for the 2 x 2 or 4 x 4 mip-maps. Consider the worst
2 x 2 case, in which a checkerboard is mirror repeated, and
an ellipse with a minorRadius of 1 is centered at a corner of
the
þ

texture map. Figure 9 depicts this situation, where the
thi
þ

n lines delineate texels, and the thick lines delineate the
(repeated) 2 x 2 mip-map. The circle on the left uses one
p� robe to compute an all-white pixel. The ellipse on the
ri� ght uses 6 probes to compute the darkest possible pixel of
52% white, 48% shaded. (The white texels apparently in-
side the ends of the ellipse don’t contribute to the pixel’s
color, as only texel centers are sampled.) Since longer el-
lipses converge so slowly to an intermediate color, we re-
strict ourselves to the trivial adjustment:

if
ÿ

 (levelOfDetail > texture.maxLevelOfDetail) {
levelOfDetail = texture.maxLevelOfDetail;
iProbes = 1;

}

W
�

e compute the stepping vector (∆u, ∆v), which is the
distance between each probe point along the line:

lineLength = 2*(majorRadius – minorRadius);
∆u = cos(theta) * lineLength / (iProbes – 1);
∆v = sin(theta) * lineLength / (iProbes – 1);

(The stepping vector is irrelevant if iProbes is 1.) The
sample points are distributed symmetrically about the mid-
poi� nt (um5 , vm5) of the sampling line L in the pattern:

(un" , v6 n") = (um5 , v6 m5) + n/2
!

 * (∆u, ∆v)

where n = ±1, ±3, ±5, … if iProbes is even, as shown in
F

�
igure 10, and n = 0, ±2, ±4, … if iProbes is odd, as shown

i
ÿ
n Figure 11.

We
�

apply a Gaussian weight to each probe n by com-
pu� ting the distance squared of the probe from the center of
th
þ

e pixel filter in screen space, then exponentiating:

d = n/2
!

 * sqrt(∆u2 + ∆v2) / majorRadius;
d2 = n2/4

!
 * (∆u2 + ∆v2) / majorRadius2;

relativeWeight = e-α	 * d
7 2

;

Finall y, we divide the accumulated probe results by the
sum of all the weights applied.

T
�

his ideal algorithm uses 6 probes to approximate the
filter in Figure 4. The resulting composite filter is shown
i
ÿ
n Figure 12. It provides a remarkably close match.

3.2.
3

 Implementing Simple Feline

Simple Feline implements the above computations, ex-
cept it uses Texram’s approximations to the ellipse axes
rath� er than computing the exact values. We use the longer
of the two vectors (∂u/

!
∂x� , ∂v/

!
∂x�) and (∂u/

!
∂y� , ∂v/

!
∂y�) as the

Figure 9: Ellipses sampling a 2 x 2 texture map oscillate
around a blend of the two colors as eccentricity increases.

n = -3 n = -1

n = +1

n = +3

mid-
point8

Figure 10: Positioning an even number of probes.

n = -4
n = -2

n = +2
n = +4

n = 0

Figure 11: Positioning an odd number of probes.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

9

major radius, and the shortest of those and the two diago-
nals (∂u/

!
∂x� + ∂u/

!
∂y� , ∂v/

!
∂x� + ∂v/

!
∂y�) and (∂u/

!
∂x� – ∂u/

!
∂y� ,

∂v/
!
∂x� – ∂v/

!
∂y�) as the minor radius length.

We w
�

ere surprised that under typical perspective pro-
j

�
ections, these approximations work essentially as well as

th
þ

e exact values. We discovered that the two vectors
(∂u/

!
∂x� , ∂v/

!
∂x�) and (∂u/

!
∂y� , ∂v/

!
∂y�) are more or less orthogo-

n� al under typical perspective distortions. In the images
shown below, the angle between the two are in the range
90° ± 30°. The most extreme angles occur with very une-
qual vector lengths, where the approximations slightly
overestimate the minor axis length but accurately estimate
th
þ

e major axis. The simple approximations are tolerably
close to the true values under these conditions.

W
�

e use a two-part linear approximation for the vector
length square root. Without loss of generality, for a vector
(a, b) assume that a, b > 0 and a > b. The following func-
tio
þ

n is within ±1.2% of the true length sqrt(a2 + b2):

if
ÿ

 (b < 3a/8) retu
!

rn a + 5b/3
!

2
else return 109a/

!
128 + 35b/64

!

We do n
�

ot compute the stepping vector with trigono-
m� etric functions, but instead scale the longer vector di-
rectl� y. Call the longer vector components (majorU, ma-
jo

9
rV). Either this vector describes majorRadius, or else

iProbes is one and the stepping vector is irrelevant. By
substituting majorU/

!
majorRadius for cosine, and ma-

jo
9

rV/
!
majorRadius for sine, we get:

r = minorRadius / majorRadius;
i = oneOverNMinusOneTable[iProbes];
∆u = 2*(majorU – majorU*r) * i;
∆v = 2*(majorV – majorV*r) * i;

Finall
�

y, we use a triangularish two-dimensional weight
table to av
þ

oid computing and exponentiating d2. We use
the s
þ

maller of f
4
Probes truncated to a couple fractional bits,

or iProbes, as the weight table’s row index, so that each
ro� w of weights applies to a small range of ellipses. The
column index is floor((abs(n)+1)/2). By dividing each of
the
þ

raw weights in a row by the sum of the weights for that

ro� w, the weights in each row sum to 1. Consequently, we
n� eed not normalize the final accumulated result. Note that
if
ÿ

 iProbes is odd, the W0
: entry in a row should count half as

m� uch as the other entries when computing the sum: it is
uý sed once, while the other weights are used twice.

Most of
;

 the computations specific to Feline can use
group scaled numbers with a precision of 8 bits. That is,
the p
þ

artial derivative with the largest magnitude determines
a group exponent for all four derivatives, which are then
shifted to yield four 8-bit values. Only the derivative with
the large
þ

st magnitude is guaranteed to be normalized; any
or all of the smaller derivatives may be denormalized. The
small errors introduced by limiting precision causes sam-
plin� g along a line at a slightly different angle, and at inter-
vals that are slightly smaller or larger than desired. These
errors are negligible compared to the inaccuracies caused
b

�
y Simple Feline’s gross approximations to the ellipse

axes, or by Table Feline’s small table size.
Simple Feline computes 4.97 probes, which it rounds

to
þ

 5 probes, to approximate the filter show in Figure 4.
Fig

�
ure 13 shows the resulting filter. Simple Feline aver-

ages fewer probes than the desired computations. But un-
der ordinary perspectives, we couldn’ t see any visible dif-
ference between images created with the desired Feline
computations and the Simple Feline computations.

3.3.
3

 Implementing Table Feline

Extreme perspective distortions may occur when pro-
j

�
ecting images onto surfaces in a 3D scene. This includes

environment mapping (projecting fake reflections of the 3D
scene onto shiny surfaces), projecting a film image onto a
screen, or painting light transmitted by a stained glass win-
dow onto the floor and walls of a room. Under high per-
spective distortions, mismatches between the approximate
and true ellipse parameters cause Simple Feline to blur
i
ÿ
mages excessively. We obtained more accurate approxi-

m� ations of the ellipse parameters by using a two-
dimensional 16 x 16 entry table. The table encodes the
EWA

 setup computations of Section 2.1 and the trigono-

0.
$

000

0.
$

005

0.
$

010

0.
$

015

0.
$

020

0.
$

025

0.
$

030

0.
$

035

Sa
%

mple
Wei

0
ght

u ax' is

v ax(is

Figure 12: The desired Feline computations use 6 probes
for a most excellent approximation to the elliptical filter.

0.
$

000

0.
$

005

0.
$

010

0.
$

015

0.
$

020

0.
$

025

0.
$

030

0.
$

035

Sa
%

mple
Wei

0
ght

u ax' is

v ax(is

Figure 13: Simple Feline uses 5 probes
to n
þ

icely approximate the elliptical filter.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

10

metric computations of Section 3.1. The table yields two
scaling factors we apply to the longer vector length to yield
minorRadius and majorRadius, and two values we use to
scale and rotate the longer vector components to yield
(majorU, majorV).

W
�

e first map the two vectors into a canonical repre-
sentation: the longer vector becomes (1, 0), and the shorter
vector is represented as a length between 0 and 1, and a
counter-clockwise angle from the longer vector between 0°
and 90°. To this end, we compute the relative length of the
shorter vector to the longer, and a representation of the
angle between them. These two values index the table.

R
<

epresenting the angle between the two vectors re-
quires some care. We initially used the sine, but were un-
h

�
appy about arcsine’s sensiti vity when the sine is near 1:

the q
þ

uantization error involved in indexing a 16-entry table
can result in a major axis rotated 15° from the true value.
T

�
his problem was compounded by the inexact square root

length approximation used as the sine’s denominator. We
i
ÿ
mproved accuracy by using sine for angles between 0°

and 45°, and cosine for angles between 45° and 90°. But
we got even better results using the tangent and cotangent,
whose inverse functions are less sensitive than sine and
cosine, and whose computation avoided the square root
approximation.

T
�

he first half of the table is indexed by the tangent,
which is the cross product divided by the dot product, for
angles between 0° and 45°. The second half of the table is
i
ÿ
ndexed by the cotangent, which is the dot product divided
by

�
 the cross product, for angles between 45° and 90°.

Shorter vectors that are between 270° and 360° (a.k.a.
–90° to 0°) from the larger vector are handled through post-
proces� sing of the table data. Shorter vectors between 90°
and 270° are implicitly rotated 180°, and thus lie between a
–90° and 90° degrees. 180° rotation of a vector is equiva-
lent to negating both of its coordinates. Examining the
derivation of the desired ellipse parameters in Section 2.1
above, we see that negating either of the two vectors does
no� t change the ellipse parameters.

T
�

he following code shows how to convert the
(∂u/

!
∂x� , ∂v/

!
∂x�) and (∂u/

!
∂y� , ∂v/

!
∂y�) vectors to table indices:

xLen� = SqrtLengthApprox(∂u/
!
∂x� , ∂v/

!
∂x�);

yLen� = SqrtLengthApprox(∂u/
!
∂y� , ∂v/

!
∂y�);

if
ÿ

 (xLen� > yLen�) {
 longU = ∂u/

!
∂x� ;

 longV = ∂v/
!
∂x� ;

longLen = xLen;
ratio = yLen /

!
xLen� ;

// if
!

 cross product positive, short vector
// is co

!
unterclockwise from long vector

ccw = True;

} else {
 longU = ∂u/

!
∂y� ;

 longV = ∂v/
!
∂y� ;

longLen = yLen;
ratio = xLen /

!
yLen� ;

// if
!

 cross product positive, short vector
/

!
/ is clockwise from long vector
ccw = False;

}
// (

!
∂u/

!
∂x� , ∂v/

!
∂x�) ✖

=
 (∂u/

!
∂y� , ∂v/

!
∂y�)

cross = ∂u/
!
∂x * � ∂v/

!
∂y – � ∂v/

!
∂x * � ∂u/

!
∂y� ;

// (
!

∂u/
!
∂x� , ∂v/

!
∂x�) • (∂u/

!
∂y� , ∂v/

!
∂y�)

dot = ∂u/
!
∂x * � ∂u/

!
∂y + � ∂v/

!
∂x * � ∂v/

!
∂y;�

ccw = ccw ^ (cross < 0.0) ^ (dot < 0.0);
cross = abs(cross);
dot = abs(dot);
if
ÿ

 (cross < dot) { // Compute tangent
tanCotan = cross / dot;

} else { // Compute cotangent + 1.0
tanCotan = dot / cross + 1.0;

}
// Co

!
nvert into integer indices for a 16 x 16 table.

iRatio = (int) (16 * min(0.999, ratio));
//

!
tanCotan is between 0 and 2, so uses steps of 1/8.

iTanCotan = (int) (8 * min(1.999, tanCotan));

W
�

e extract values from the table to compute the vector
(majorU, minorU) describing majorRadius, and to compute
t
þ
he unclamped lengths majorRadius and minorRadius.

(uvScale, uvScale90, minorRadiusScale,
majorRadiusScale) =
ellipseParamTable[iRatio][iTanCotan];

if
ÿ

 (ccw) {
// C

!
ompose major axis from long vector, and

// lon
!

g vector rotated 90º counterclockwise.
majorU = longU*uvScale – longV*uvScale90;
majorV = longV*uvScale + longU*uvScale90;

} else {
/

!
/ Compose major axis from long vector,
/

!
/ and long vector rotated 90º clockwise.
majorU = longU*uvScale + longV*uvScale90;
majorV = longV*uvScale – longU*uvScale90;

}
// C

!
reate major, minor axis radius lengths

minorRadius = longLen * minorRadiusScale;
majorRadius = longLen * majorRadiusScale;

Fro
�

m here, Table Feline looks just like Simple Feline.

3.4.
3

 Increasing Efficiency

W
�

e investigated how far we could reduce the number
of probes by shortening and widening the ellipse, and by
spreading probe points farther apart than their radius. We
can shorten the ellipse using a lengthFactor <= 1:

majorRadius = max(majorRadius * lengthFactor,
 minorRadius);

majorU *= lengthFactor;
majorV *= lengthFactor;

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

11

The code in Section 3.1 proportionately widens an el-
lipse more when rounding down a small value of fProbes
th
þ

an a large one. For ex
�

ample, if f
4
Probes is 1.499, round-

in
ÿ

g down to 1 scales minorRadius up by 25%; if f
4
Probes is

4.499
>

, rounding down to 4 scales minorRadius up by only
10%. We can instead compute iProbes so that for all val-
ueý s of f

4
Probes, we widen the ellipse to at most a blurFac-

tor times the minor radius. We also allow stretching the
distance between probe positions to at most an aliasFactor
ti
þ

mes the probe filter radius:

f
4
 = 1 / (blurFactor * aliasFactor);
iProbes =

ceiling(f
4
 * 2*(majorRadius/

!
minorRadius)) – 1;

If
�

 iProbes is not clamped to maxProbes, we can ac-
commodate the reduction of f

4
Probes to iProbes by some

combination of blurring and aliasing within the limits of
blurFactor and aliasFactor. For computational simplicit y,
we blur (widen the ellipse) by increasing minorRadius by
upý to blurFactor:

minorRadius = min(2*majorRadius/(
!

iProbes+1),
minorRadius * blurFactor);

 The computations of ∆u and ∆v automatically make
uý p any remaining difference between iProbes and f

4
Probes

by
�

 increasing probe spacing.
If

�
 iProbes is clamped, we must exceed either blur-

Factor or aliasFactor. In this case, we blur (in excess of
blurFactor) to the point where the computations of ∆u and
∆v will i ncrease probe spacing by exactly aliasFactor:

minorRadius = 2 * majorRadius /
((iProbes+1) * aliasFactor);

We
�

chose two sets of parameter values empirically.
T

�
he “high-quality” set (lengthFactor .9625, blurFactor

1.15625, aliasFactor 1.1532) reduces the number of probes
by

�
 24% with almost no degradation of image quality, com-

pared t� o the constant rounding of Section 3.1. The “high-
efficiency” set (lengthFactor 0.9625, blurFactor 1.3125,
aliasFactor 1.3544) uses the same number of probes as
T

�
exram to provide images superior to Texram, though with

m� ore artifacts than the high-qualit y set.
T

�
he high-eff iciency aliasFactor allows probes to be

spaced quite far apart, which introduces aliasing artifacts.
Fig

�
ure 14 shows how Simple Feline approximates the filter

of Figure 4 with the high-efficiency parameters. Figure 15

0.
$

000

0.
$

005

0.
$

010

0.
$

015

0.
$

020

0.
$

025

0.
$

030

0.
$

035

Sa
%

mple
Wei

0
ght

u axis'

v axis(

Figure 14: Simple Feline with blurFactor 1.31
 and aliasFactor effectively 1.26

0.
$

0
0.

$
1

0.
$

2
0.

$
3

0.
$

4
0.

$
5

0.
$

6
0.

$
7

0.
$

8
0.

$
9

1.0

Sa
%

mple
We

0
ight

u ax' is

v ax(is

Figure 15: A trilinear filter with a nominal radius of sqrt(2)

0
�0.1

�0.2
�0.3

�0.4
�0.5

�0.6
�0.7

�0.8
�0.9

� 1

Sa
�

mple
W

�
eight

u axi� s

v axi� s

Figure 16: A mip-mapped Gaussian
filter with nominal radius of sqrt(2)

0.
$

000

0.
$

005

0.
$

010

0.
$

015

0.
$

020

0.
$

025

0.
$

030

0.
$

035

Sa
%

mple
Wei

0
ght

u ax' is

v ax(is

Figure 17: Figure 14 using a Gaussian probe

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

12

shows a detailed picture of a single trilinear probe. Note
how especially at high weights, a trilinear filter is not cir-
cularly symmetric: the isocontour lines extend substantially
farther along the u and v axes than along the diagonals, and
th
þ

e peak in the center is sharp.
We

�
obtained slightly better images

b
�

y changing the probe filter on each of
th
þ

e two adjacent mip-map levels from a
b

�
ilinear filter to a Gaussian filter trun-

cated to a 2 x 2 square. We then line-
arly combine the two Gaussian results
usiý ng the fractional bits of the level of
detail. Figure 16 shows a mip-mapped
Gaussian with a nominal radius of
sqrt(2) texels. The circular symmetry
and lack of a sharp central peak result
in
ÿ

the smoother composite filter shown
i
ÿ
n Figure 17, and in images with fewer
aliasing artifacts. The Gaussian also
ma� kes single-probe magnifications
look better. However, note that the
Gaussian also slightly reduces the
sharpness of images.

T
�

he Gaussian is the epitome of a
separable filter, and so a hardware
trilinear
þ

filter tree is easily adapted to
im
ÿ

plement Gaussian weightings [9]. A
trilinear filter tree
þ

uses the fractional
b

�
its of u and v directly as filter weights.

T
�

he Gaussian requires four copies of a
small one-dimensional table to map the
fractional bits of u and v before using
t
þ
hem as weights.

4. Co
?

mparisons with
Previous Work

Figure 18 through Figure 22 show
various algorithms generating a pattern
of curved lines. Figure 23 through
F

�
igure 26 show a floor of bricks, and

F
�

igure 27 through Figure 30 show
m� agnif ied texture-mapped text. These
im
ÿ

ages should not be viewed with
Adobe Acrobat, which uses a reduction
filter that introduces artifacts. Please
pri� nt them on a high-quality ink-jet
p� rinter.

T
�

exram images use the original al-
gorithm in [10]; correcting the errors
described in Section 2.3 above results
i
ÿ
n many more probes and degrades
visual quality! Aliasing artifacts
m� ostly remain, and images signif i-
cantly blur due to the equal weighting
of probes along a long line.

Simple Feline images use parameters as described in
Section 3.4 above, and a mip-mapped Gaussian for the
p� robe filter.

Mi
;

p-mapped EWA samples from a mip-map level
where the minor radius is between 1.5 and 3 texels; this

Figure 18: Trilinear paints curved lines with blurring.

Figure 19: Texram paints curved lines with strong Moiré artifacts.

Figure 20: High-eff iciency Simple Feline paints curved lines with fewer artifacts.

Figure 21: High-quality Simple Feline paints curved lines with few artifacts.

Figure 22: Mip-mapped EWA paints curved lines with few artifacts.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

13

looks identical to a radius between 2 and 4,
b

�
ut samples about half as many texels.

Trilinear, Texram, and Feline images
use a radý ius 3 Lanczos filter to create mip-
maps. EWA images use a box filter: the
L

@
anczos filter causes “bluriness banding”

artifacts when EWA jumps from using a
large ellipse in one mip-map to using a small
ellipse in the next higher mip-map.

Simple Feline with high-quality pa-
ra� meters generates images comparable to
EWA

, but with slightly stronger Moiré pat-

tern
þ

s. The only exception occurs if a box
filter is used to create mip-maps for textures
like checkerboards. Because the base texture
and all its mip-maps then contain illegally
hig

�
h frequencies that Feline’s relatively nar-

ro� w filter cannot remove, Feline displays
m� uch stronger Moiré artifacts than EWA.
Using

A
 a better filter, such as the Lanczos, to

create the mip-maps makes Feline display
fewer

4
 artifacts than EWA—Feline is more

likely to use filtered mip-mapped data, rather
th
þ

an the unfiltered base texture. Unfortu-
n� ately, images showing such artifacts are
severely misrendered by all printers we’ve
tested
þ

.
B

B
oth sets of Feline images are much

sharper, and exhibit far fewer Moiré arti-
facts, than those generated by trili near fil-
te
þ

ring. Though not shown here, we note that
T

�
exram, high-efficiency Feline, and even to

some degree high-quality Feline are subject
to
þ

 “probe banding” on repeated textures.
Some images show a visible line where the
n� umber of probes increases from one value to another.
(Setting all parameters to 1.0 removes the banding from
F

�
eline images, but requires many more probes.)

T
�

exram images sometimes seem a little sharper than
Felin

�
e images, but then, aliased images always seem

sharper than antialiased images. Repeated texture patterns

amplify Texram’s aliasing problems to create strong Moiré
pattern� s, as shown in the curved lines and bricks images.
T

�
hese patterns are even more disturbing in moving images,

where they shimmer across the surface. Texram’s aliasing
is m
ÿ

ore subtle in non-repeated textures such as text. Com-
p� aring the high-eff iciency Feline images to Texram is es-
peci� ally interesting: both use the same number of probes,

Figure 23: Texram paints bricks with herringbone artifacts.

Figure 24: High-eff iciency Simple Feline paints bricks with fewer artifacts.

Figure 25: High-quality Simple Feline paints bricks with few artifacts.

Figure 26: Mip-mapped EWA paints bricks with fewest artifacts.

Figure 27: Trilinear paints blurry text.

Figure 28: Texram paints text with stairstepping.

Figure 29: High-eff iciency Simple Feline
p� aints smooth text.

Figure 30: Mip-mapped EWA paints smooth text.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

14

b
�

ut the Feline images exhibit far fewer artifacts. Experi-
ments show that Feline’s quality is due to the use of a
Gaussian probe filter, the Gaussian weighting of probe re-
sults, the widening of the ellipse, and the end-to-end cover-
age of the ellipse.

Un
A

der modest perspective distortions that feel “nor-
ma� l,” Simple Feline and Table Feline have equivalent vis-
ual ý quality, as the Simple Feline approximations result in
an f

4
Probes that is only slightly smaller than desired. How-

ever, under extreme distortions, Simple Feline underesti-
m� ates the major axis and overestimates the minor axis.
T

�
his results in blurring, as shown in Figure 31. Table Fe-

line’s approximations are much more accurate, resulting in
a sharper image, as shown in Figure 32. For such scenes,
t
þ
hough, Table Feline requires many more probes. Figure
33 shows that Simple Feline uses two to four probes per
pi� xel to paint Figure 31, while Figure 34 shows that Table
F

�
eline uses as many as 16 probes to paint Figure 32.

Higher visual quality comes at increased computa-
tio
þ

nal cost for setup and sampling. Fortunately, Feline’s
extra setup is easy to hide in pipe stages, which exacts a
chip real estate cost but not a performance cost. In today’s
ASIC

�
technology, even Table Feline’s setup logic is quite

acceptable. The ellipse parameter table requires 1024
b

�
ytes, and 8 x 8 multipliers are small. Since much of Fe-

line’s setup can be performed in parallel with the perspec-
tive d
þ

ivide pipeline, it increases pipeline length over Tex-
r� am by only a few stages. Feline’s setup costs are
substantially smaller than mip-mapped EWA’s.

T
�

he increased texel fetching inherent to anisotropic
tex
þ

ture mapping increases the cycles required to texture a
p� ixel. This cost is impossible to eliminate, and diff icult to
keep

C
 small without sacrificing visual quality.
B

B
oth Feline and Texram access eight texels each

probe.� Since it is easy to compute each probe’s location,
and efficient trili near filtering is well understood, we as-
sume both algorithms can perform one probe per cycle.
Any

�
 higher performance requires duplicating large portions

(100k to 200k gates) of the texture mapping logic. Fortu-

natel� y, probes overlap substantiall y (especially in the
smaller of the two mip-maps), and a texel cache [7][9]
eliminates most redundant memory fetches. Thus, the de-
m� and upon memory system bandwidth does not scale di-
rect� ly with the number of probes per textured pixel.

Mip-m
;

apped EWA fetches each texel at most once per
p� ixel and samples a substantially larger area. To provide a
lower bound on cycles/pixel, we instrumented “Optimistic
EW

A,” which naively assumes we can sample 8 tex-

els/cycle on all but the last cycle for each pixel. This as-
sumption is quite aggressive. Unli ke probe-based schemes,
we don’t know how to design hardware for EWA that
quickly traverses an ellipse with perfect efficiency. Our
“Realistic EWA” assumes that hardware traverses the el-
lipse using a 4 x 2 texel “stamp” for u-major ellipses, and a
2 x 4 stamp for v-major ellipses. Each cycle several of the
stamp’s texels usually lie outside the ellipse, averaging
about three outside for highly eccentric ellipses, and over
four outside for nearly circular ellipses. This substantiall y
redu� ces the efficiency of an EWA implementation.

Figu
�

re 35 shows how many cycles/pixel each algo-
ri� thm uses for different viewing angles of one exemplary

Figure 31: Simple Feline blurs highly
distorted perspective projections.

Figure 32: Table Feline is much sharper for
h

�
ighly distorted perspective projections.

Figure 33: Simple Feline uses a few probes that are too
wide (light blue is 2 probes, dark blue is 4 probes).

Figure 34: Table Feline uses many more probes
(pure green is 8 probes, pure red is 16 probes).

0
$1
2

D3
E4
F5
G6
H7
I8
J9
K10

11
12
13
14
15
16

0
$

15 30 45 60 75 90

View
L

ing Angle

C
yc

le
s/

P
ix

el

R
M

ealistic EWA
Op

N
timistic EWA

High-qua
O

lity Feline
Te

P
xram

Hi
O

gh-efficiency Feline

Figure 35: Performance at increasingly oblique viewing
angles.

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

15

surface. At 0°, the surface normal is parallel to the viewing
angle, and mip-mapped EWA samples the same size circle
for each pixel. We made this circle’s area the same as
would be obtained by averaging results from randomly
distributed viewing distances. This graph should be inter-
p� reted like EPA gas mileage numbers: it is useful for rela-
tive co
þ

mparisons, but mileage will vary depending upon
p� osition on the screen, perspective distortion, etc.

Finall
�

y, note that if a scene uses multiple textures per
surface, anisotropic texture mapping performance doesn’t
always slow down by these cycles/pixel ratios. For exam-
p� le, illumination maps tend to be small, so are usuall y
m� agnif ied [7], which takes a single probe. They also tend
to
þ

 be blurry (that is, contain mostly low frequencies), so
even when minified, an application might limit ill umination
m� apping to one or two probes per pixel.

5.
Q

 Conclusions
?

Feline provides nearly the visual quality of EWA, but
with much simpler setup and texel visiting logic, and many
fewer cycles per textured pixel. Feline provides better im-
age quality than Texram, especially for repeated textures,
even when limited to use the same number of probes. Fe-
line requires somewhat more setup and texel weighting
logic than Texram, but this cost is small compared to the
increase i
ÿ

n visual quality. Feline can be built on top of an
existing trili near filter implementation; for better results,
the trili
þ

near filter tree can also permit mip-mapped Gaus-
sian filtering at little cost. Since several aspects of Feline
are parameterized, Feline can gracefull y degrade image
quality in order to keep frame rates high during movement.
T

�
his degradation might accentuate aliasing for irregular

tex
þ

tures, in order to preserve image sharpness, and accen-
tu
þ

ate blurring for repeated regular textures, in order to
avoid Moiré artifacts.

T
�

able Feline proves visually superior to Simple Feline
only for large perspective distortions occur when projecting
i
ÿ
mages onto surfaces in a 3D scene. It requires an ellipse

t
þ
able and a few pipe stages over Simple Feline.

In
�

 the Sep/Oct 1998 issue of IEEE Computer Graphics
and Applications, Jim Blinn wrote in his column that “No
one will ever figure out how to quickly render legible an-
tialiased
þ

 text in perspective. Textures in perspective will
always be either too fuzzy or too jaggy. No one will ever
bu

�
ild texture-mapping hardware that uses a 4x4 interpola-

tio
þ

n kernel or anisotropic filtering.” Feline is simple
enough to implement, yet of high enough visual quality, to
p� rove him at least partially wrong.

6.
R

 Acknowledgements

Thanks to Paul Heckbert for answering questions and
for providing us with the EWA source code, and to Gunter
Knittel for answering questions about Texram. Thanks to
Mark

;
 Manasse for suggesting the use of two trigonometric

functions to reduce angular errors in inverse trig functions.

References

[1] Anthony C. Barkans. High Quality Rendering Using
th
þ

e Talisman Architecture. Proceedings of the 1997
SIGGRAPH/EUROGRAPHICS Workshop on Graph-
ics Hardware, pages 79-88. ACM, August 1997.
IS

�
BN 0-89791-961-0.

[2] Fran
�

k C. Crow. Summed-Area Tables for Texture
M

;
apping. In Hank Christiansen, editor, Computer

Graphics (SIGGRAPH 84 Conference Proceedings),
volume 18, pages 207-212. ACM, July 1984.

[3] Ala
�

in Fournier & Eugene Fiume. Constant-Time
Filterin

�
g with Space-Variant Kernels. In Richard J.

B
B

each, editor, Computer Graphics (SIGGRAPH 88
Conference Proceedings), volume 22, pages 229-238.
AC

�
M SIGGRAPH, Addison-Wesley, August 1988.

IS
�

BN 0-89791-275-6.

[4] Ned Green
S

e & Paul Heckbert. Creating Raster Om-
ni� max Images from Multiple Perspective Views Us-
ing t
ÿ

he Elliptical Weighted Average Filter. IEEE
Computer Graphics and Applications, 6(6):21-27,
Ju

T
ne 1986.

[5] P
#

aul S. Heckbert. Texture Mapping Polygons in Per-
spective, Technical Memo #13, NY Inst. Tech. Com-
pu� ter Graphics Lab, April 1983.

[6] P
#

aul S. Heckbert. Fundamentals of Texture Mapping
and Image Warping (Masters Thesis), Report No.
UC

A
B/CSD 89/516, Computer Science Division, Uni-

versity of California, Berkeley, June 1989.

[7] Homan Igehy, Matthew Eldridge, Kekoa Proudfoot.
P

#
refetching in a Texture Cache Architecture. Pro-

ceedings of the 1998 EUROGRAPHICS/SIGGRAPH
Workshop on Graphics Hardware, pp. 133-142.
AC

�
M, August 1998. ISBN 0-89791-1-58113-097-x.

[8] R
<

obert C. Landsdale. Texture Mapping and Resam-
pl� ing for Computer Graphics (Masters Thesis), De-
partm� ent of Electrical Engineering, University of To-
ron� to, Toronto, Canada, January 1991, available at
ftp://dgp.toronto.edu/ pub/lansd/.

[9] J
T
oel McCormack, Robert McNamara, Chris Gianos,

L
@

arry Seiler, Norman Jouppi, Ken Correll, Todd
D

U
utton & John Zurawski. N

V
eon: A (Big) (Fast) Sin-

gle-CW hip 3D Workstation Graphics Accelerator, WRL
R

<
esearch Report 98/1, Revised July 1999, available at

www.research.digital.com/wrl/techreports/
p� ubslist.html.

[10] And
�

reas Schilli ng, Gunter Knittel & Wolfgang
Strasser. Texram: A Smart Memory for Texturing.
IEEE C

X
omputer Graphics and Applications, 16(3):

32-41, May 1996. ISSN 0272-1716.

[11] L
@

ance Williams. Pyramidal Parametrics. In Peter
T

�
anner, editor, Computer Graphics (SIGGRAPH 83

WR
�

L RESEA
�

RCH REPO
�

RT 99/1 SI
�
MPLE AND TAB

�
LE FEL

�
INE: FAS

�
T ELLI

�
PTICAL LIN

�
ES FOR ANI

�
SOTROPIC TEX

�
TURE MAP

�
PING

16

Conference Proceedings), volume 17, pages 1-11.
ACM, July 1983. ISBN 0-89791-109-1.

[12] George Wolberg. Digital Image Warping, IEEE
Computer Society Press, Washington, DC, 1990.
IS

�
BN 0-8186-8944-7.

