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Abstract

Texture mapping using trilinearly filtered mip-mapped data is efficient and looks much
better than point-sampled or bilinearly filtered data. But trilinear filtering represents
the projection of a pixel filter footprint from screen space into texture space as a square,
when in reality the footprint may be long and narrow. Consequently, trilinear filtering
severely blurs images on surfaces angled obliquely away from the viewer.

This paper describes a new texture filtering technique called Feline (for Fast Elliptical
Lines). Like other recent hardware anisotropic filtering algorithms, Feline uses an under-
lying space-invariant (isotropic) filter with mip-mapped data, and so can be built on top
of an existing trilinear filtering engine. To texture a pixel, it uses this space-invariant
filter at several points along a line in texture space, and combines the results. With a
modest increase in implementation complexity over earlier techniques, Feline more ac-
curately matches the desired projection of the pixel filter in texture space, resulting in
images with fewer aliasing artifacts. Feline’s visual quality compares well against Ellip-
tical Weighted Average, the best efficient software anisotropic texture filtering algorithm
known to date, but Feline requires much less setup computation and far fewer cycles for
texel fetches. Finally, since it uses standard mip-maps, Feline requires minimal extensions
to standard 3D interfaces like OpenGL.
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Abstract

Texture mapping using trili nearly filtered mip-mapped data
is dficient and looks much better than point-sampled or bilinearly
filtered data. But trili near filtering represents the projection of a
pixel filter footprint from screen space ino texure space asa
squae, when in redlity the footpiint may be long and narow.
Consegjuantly, trilinear filtering severely blursimages on surfaces
argled obliquely away from the viewer.

This pger desaibes anew texture filtering techniquecalled
Fdine (f or Fast Elliptical Lines). Like aher recen hardware
arisotropic filtering algorithms, Felire uses anunderlying space-
invariant (isotropic) filter with mip-mapped dda, and so @n be
built on top of an existing trilinear filtering engine  To texture a
pixel, it uses ths smce-irvariant filter at seeral points along a
line in texture smace,and cambines he reslts. With a modest
increase in im plementation complexity over earlier te chniques,
Feline more accuately matches the desired projecion of the pixel
filter in texture smce, resiting in images with fewer aliasirg
artifacts. Fdine’s visud quality compares well against Elliptical
Weighted Average, the best sofware anisotropic texture filtering
algorithm known to dae, but Fdine requires much less séup
computaion and far fewer cyclesfor texel fetches. Findly, snce
it uses sandad mip-maps, Fdine requires minimal extensons to
standard 3D interfaces ike OpenGL.

CR Categories and Subject Descriptors: 1.3.1 [Compute
Graphics]: Hardvare Architecure — Graphics pocessos; 1.3.7
[Compute Graphics]: Three-dimensond Graphics and Realism —
Color, shading, shadowing, and texture

Additional Keywords: texture mapping anisatropic filtering,
space-wariant filtering

1 INTRODUCTION

Idedlly, computing a textured value for a pixel involves per-
spective projecting a filter from screenspace (irdexed by x and y
coordinates) into texture space(indexedby u ard v coordinaes),
then combining this with a reconstrudion filter to create a unified
filter in texure sm@ce. Eachexd inside the wnified filter's foot-
print is weighted according to the unifiedfilter's correspnding
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value in screenspace,the weighted sanples are accomulated, ard
the sum is dvided by the filter's volume in texture space. Figure
1, inspired by Lansdde [8], gives an intuitive view of this process.
A pixd filter is a“window’ onto aportion of thetexture map; the
windows opaity at each point corresponds to thefilter's weight.
The grid represetts a exture mep; the staded rectargle the screen
We view an dliptical portion of the texture map through a round
pixd filter. (In degenerate cases, acircle projects to an arbitrary
conic secton, but for our purposes arellipse suifices)

Figure 2 shows a tpical pxel filter in screenspace—a

Gaussia with weighting e o+ truncated to zero beyond a
radiusof one pixel, and with an a of 2. Tick marks on thex andy
axes ag¢ atone pixel intervals; the x-y grid is & Y10 pixel intervals.
Figure 3 shows an exemplary pespetive projection of this filter
into texture space,where he ick marks @ the u and v axes are
spacedat one texel intervals, ard the grd is at %2 texel intervals.
We norrrdlize al texture filter volumes to oneto dlow direct
comparisons betweengraghs, then highly exaygerate the vertical
axis. Nde the dstarted filter profile: eachcontour line is an el-
lipse but the dlipses representing lower sample weights are in-
creasingly offse from thefilter center.

Mapping the texel positions n Figure 3 beck into pixel posi-
tionsin Figure 2 (let done creating a unified filter), sothat rea-
tive weights can then be gpplied to thetexel values, is agruesorre
affair. Rater tan using a perspecive projecion, Heckkert and
Greene [4][6] suggest usinga locally paallel (affine) projection,

Figure 1: Viewing an dliptical texture areathrough acircular
pixel window.

Figure 2 A circdar Gaussianfilter in screerspace.



Figure 3: A paspective projection of a Gaussian filter into texture
space.

as shown in Figure 4. This dragtically simplifies cmputing the
footprirt and weights ofthe projected filter. This sinplification is
visually insignificart. The nodest weight differerces letween
Figure 3 andFigure 4 are nad detectabe in images,ard to getthe
distortion shown in Figure 3 requires a nearly edge-on \iew of the
surface bang texture mapped, in which dl ddail is lost anyway.

Our dgorithm approxmates the dliptical filter shown in
Figure 4 by paforming several isotropic (e.g. trilinear, Gaussian)
filtering opeations, caled probes, dong the mgjor axis of the
ellipse. In comparison D other hardware anisotropic filtering
methods Fdine beter approximates the dliptical filter by more
accuately determining the length of the line along which probes
should be placed spacing probes at better intervals, widening
probes un der ¢ ertain ¢ onditions, and Gaussian weighting the
probe results. A more sophidicated dgorithm, “Table Fdine,”
described in [10], also better approximates the dopeand length of
the ellipse’s major and minor aes. Both versionsof Fdine re-
quirejust afew additiond computaionsover previous dgorithms.

In this pger, we first discuss previous work, induding the
best efficient sdtware technique, ard shatcomings of recen
hardware anisotropic filtering techniques. We next desaibe the
desired computations for usng severa probes donga line show
how to meke these computaions amenable to hardware, and dis-
cuss technigues to reduce the nunber of probes pe pixel. Findly,
we present severa pictures comparing the various methods of
filtering. Moreddails about Fdine can befound in [10].

2 PREVIOUS WORK

We first desaibe Elliptical Weighted Average (EWA), the
most efficient direct conwolution method known for computing a
textured pixel. This provides a qudity benchmark against which
to compare othe techniques. (We do not describe previous soft-
ware efforts like [2] and [3], as ve feel that EWA either super-
seds tese ajorithms, or that they are soslow as o be in a df-
ferent class.) We discuss triliner filtering, which is popular but
blurry. We ddve more deegply into Texram, a chip tha performs
anisotrapic filtering by repeated gpplications of an isotropic filter
along a line, ard discuss its weakresses. We briefly mertion
othe algorithms appaently smilar to Texram but which ae nat
desaibed in suficient deail to analyze.

2.1 Elliptical Weighted Average

Paul Heckbert’'s and Ned Greene's Elliptical Weighted Aver-
age(EWA) algorithm [4][ 6] exacty computes he sie, shape, and
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Figure 4: An &fine projection of a Gaussian filter into texture
space.

orientation of an dliptical filter like theoneshown in Figure 4. If
the certer d the filter in texture sgace is traslatedto (0, 0), then
the filter in texture sm@ace carbe characterizeds:

d*(u, v) = Al? + Bwv + CV

The vale d’represetts the dstarce sqared from the ceer
of the pixel when the texel position is mepped back into saeen
space. Thus, d°can index a table of weights tha is unrelated to
the affine projection, but dependsonly uponthepixe filter.

EWA deermines d’ for eachtexel in or near the elliptical
footpiint. Texels insde the footprint (@? < 1) are samled,
weighted, and accunulated. T he resut isdivided by the sum of
the weights, which is the elliptical filter's volume in texture space.

Given the patial derivatives ou/ox, dv/ox, du/dy, and ov/dy,
which regresen the raes d change d u ard v in texture smce
relative to dhanges inx andy in screenspace,the biquadratic co-
efficierts for computing a? are:

Ann = @VI0X) 2 + (Ovidy)*

B, =—2* (0u/dx * OvIOx + du/dy * OvIdy);
Con = OU/0xX)? + Qu/dY)%;

F=A.*Cyn— Bnn2/4';

A=An/F;

B =B, /F;

C=C./F;

Pixelsthat map to a large areain texture spacecan be han-
dledby using mip-maps [12], where eacHhevel of amip-mapis %2
the heght and width of the previous level. Heckbert [6] suggests
sampling from a sinde mip-map level in which the minor radius
is beween 1.5 and 3 texels, thaugh he later implemented urpub-
lished codein which theminor radiusis between 2 and 4 texels, in
order to avoid subte artifacts.

Even using mip-maps, highly eccertric ellipsesmay encom-
pass an unaccepably large area. This area can be limited by
computingtheratio of the mgor radiusto the minor radius and if
this ratio is too large, widening the minor ais of the dlipse and
rederiving the ccefficients A, B, and C. The combination of mip-
maps and dlipse widening dlows EWA to compute a textured
pixel with a condant time bourd.

Choosng a mip-map level and testing for very eccentric d-
lipses requires mmputing the major and minor raii of thedlipse:

root = sqt((A —C)? + B%;
A’ = (A +C-root)/2;
C' = (A +C +root)/2;
magorRadus = sgrt(L/A");
minorRadius = sqt(1/C’);



Widening an dlipserequires seven multiplies, a square roat,
an inverse root, and a divide These setup computaions plus
logic to visit only texels in or near the dlipse and mmpute d°,
have thusfar precluded hardware implementation of EWA.

The only complaint that can beleveled against EWA's visud
qudity is its doice of a Gaussia filter. Othe filters produce
sharper images without introducing more diasing artifads (see
Wolberg [13] for an excellent dsaussion) However, these filters
have a radius of two or three pixels, which increases the work
required to compute a textured pixel by a factor of four or nine
And @& Lansdde [8] points out, none of these filters ae as
mathematcaly traciable as he Gaussin for unifying the recan-
strudion filter and projected pixel filter (warped prdilter).

2.2 Trilinear Filtering

Trilinear filtering emphasizes simplicity and eficiency at the
cost of visud qudity. Raher than computing the shage of the
projectedfilter footprint, it uses a square filter in texture space.
By blending two 2x 2 bilinear flters from adacent mip-map
levels, trilinear filtering approximates a circular filter of an arbi-
trary size. Figure 5 stows atrilinear filter tha (poorly) approx-
mates theEWA filter shown in Fgure 4. The axis tick marks are
spacedone texel apart, while the grd is spacedat % texel inter-
vals. Strictly speaking, becawse t blends two 2x 2 bilinear fl-
tering opeations, atrilinear filter sanples a squae area of 2" x 2"
texels. However, most of thefilter volume resides insidea circle
with the nomind filter radius. Inthe2D picures bdow, we thus
showatrilinear filter's footprirt as acircle of thenomind radius.

A trilinearfilter blurs or aliases tetures aplied to sufaces
that are obliquely angled away from the viewer. These arifacts
arisebecasethe fixed shape d the trilinear flter poorly matches
the desired filter footpiint, and so te trilinear filter samples dda
outsdethedli pse doesn’t sample daa inside theeli pse or both.

2.3 Texram

Texram [11] provides higher visud quality than trilinear fil-
tering with less omplexity than EWA. Texram uses a series of
trilinear filter probes dongalinethat approximates thelength and
slopeof themgjor axis of EWA's dliptical footprint

The Texram auhors corsidered computaton of the elipse
parameters too astly for hardware, and so substiited sinplified
approximations These approximations undaestimate the length
of themagjor axis of the dlipse, introdudng aliasing overestimate
the length of the minor ais, introdudng blurring, and deviate
from the slopeof the mgjor axis, introdudng yet more blurring

Figure 5: A trili neer filter gpproxmation to Figure 4.
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and diasing. Noneheless, with the exception of environment
mapping, theseerras are vsually insignificart under typical per-
spective projections, as discussed further in Section 3.2 bdow.

Texram has othe problems tha manifest themselves as
diasing attifacts. Its sanpling line is usudly much shorte then
the ellipse, and the trilinear probes can be spacedtoo far apart.
Texram always uses 2 equdly weighted probes, which causes
poa high-frequency rejection dong the major axis. These prob-
lems make Texram'’s visud qudity noticealy inferior to EWA.

Texram uses he four partia derivativesto creae two vecbors
in texture smce: (0u/ox, ov/dx) and (@u/dy, ov/dy). The auhors
claim to sanple roughly the arearside the parallelogram formed
by these two vectors, by probing dong a line tha has the length
and dope of the longer of the two vectors. This line can deviate
from the slopeof the mgjor axis of EWA’s dliptical filter by as
much as 45°. This is notas bad as it sounds The largest angular
errors ae assodated with nearly circular filters, which ae rela-
tively insensitive to sud errors in orientation.

Texram’s sampling line can be shorte than the true dli psés
major axis by nearly afactor of four. Ore facor of two comes
from Texram's useof thelength of thelonger vector & thelength
of the sanple line. Note that if orthogond vectors are plugged
into the dli pseequdionsin Section 2.1 aove, themajor radius is
thelength of the longer vector, and 9 the dlipse’'s major diameter
is actudly twice the length of this vector. Texram's error is ap-
parently dueto an older pgper by Paul Heckbert [5], in which he
suggestead usingafilter diameter tha is really afilter radius.

Anothe factor of two comes from non-orthogond vectors.
If the two vecbrs are rearly parallel ard equal in length, the el
liptical footprint is very narrow and hasa major r adius nearly
twice the length of ether vector. Again, this isnot as bad as it
sourds typical perspective distortions yield a true dlipse radius
thatis nolarger han atout 7% of the longer vecbr.

Texram approximates the radius of the minor axis of the el-
lipse by choosng the shortest of the two paralelogram side vec-
tors and the two parallelogram diagonds (Qu/ox + du/dy, oviox +
0v/dy) and (Qu/ox — du/dy, dv/ox — ovidy). If the side vecbrs are
nearly paralel andthe shorter is hdf thelength of thelonger, this
approximation can betoo wide by an arbitrarily large factor.

One of the Texram authors was unsire which values round
up or down in the division tha computes the number of probes.
We have asumed values in the hdf-open interval [1.0 to 15)
round 0 oneprobe, values in [1.5 to 3) round to two probes, val-
uesin [3to 6) round to four probes, etc. Texramdoes not adjust
the probediameter when it roundsdown (as discussed in Setion
3.1 below), and socangpace pobes bo far apart. Rater thanthe
smoothly slopal “shield volcano” filter of EWA, Texram can use
a“mountan range” filter with individud peaks. These peaks beat
aganst repeaedtexture petterns o creaeé phantom patterns.

Figure 6shavs anexteme example d these erros, in which
(ou/ox, ovidx) is (13, 0) and (Ou/dy, ov/dy) is (12, 5). The area
sanpled by EWA is show &s the large heavily outlined elli pse
while Texram's trilinear filter footprints @e shown &s circles.

EWA's elliptical
footprint

; o . T
Bounding \___ Sanpling exram area
parallelogram line L actuall filtered

Figure 6: Texram area smpled vs. EWA.



2.4 Other Hardware Algorithms

Microsot's Talisman [1] uses a filtering dgorithm “in the
spirit of” Texram. Few details are provided, but the diasing evi-
dent in the exanples suggest tha they may have inherited some or
all of Texram's problams. Evans & Sutheland holds U.S Patent
#5,651,104 for using ace-nvariarnt probes abng a ine. The
paent doesn’t describe how to compute the probe line but the
diagrams imply a line tha is & most asinge pixel in length in
screenspace, vhich is once again so stort that it will produce
visible alasing artifact.

3 THE FELINE ALGORITHM

Like Texram, Feline uses sevel isotropic probes abng a
line L to implement an anisotrgpic filter. However, we computea
more appropride length for the sampling line L, alow thenunmber
of probes to be any integer, don't spaceprobes bo far apart, ard
weight the robesusing a Gaussian curve. Feline acheveshigher
visud qudity than Texram with little additiond logic.

Wefirst describethedesired computaionsto yield theloca
tions and weights for a series of probe points along a line We
then desaibe “Simple Fdine,” which inherits Texram’s approx-
mations of the major and minor radii, after which it implements
the desired computaionsin a fashion suitable for hardware. Un-
der highly distorted pespective projections which may occur
when environment mapping, Sinple Fdine’s magor and minor
radii approximations result in blurring. “Table Fdine,” desaibed
in [10], uses a table to compute the dlipse axes more accurately.
We condude with techniques to reduce the number of probes,
without sibgantialy decreasing Fdine’s image qudity .

3.1 The Desired Computations

The combination of multiple isaropic probes stould dosdy
match the shae of the EWA filter. Thus, theprobe paints $ould
occur aong the major axis of the dlipse, the probes shaild be
Gaussian weighted, and theprabe filter width stould beequd to
the minor ais of thedlipse.

(Theoretically, the probe filter width shaild be related to the
width of the ellipse at eaclprobe position. We initially did not
investgate tis becawse we didn't know how to optimize the
trade-off between the probe diameter, probe weighting, probe
spacing, and the number of probes. After implementing congant
diameter pobes, we sav no reasm to pursue variabe diameter
probes. The “improvement” was unlikely to bevisible, butwould
significartly increasethe number of probes diwe o closer spacing
of small probes nex the endsof thedlipse.)

We compute miajor Radius andminarRadus as i Secion 2.1
above, and then the angle theta of the major axis:

theta = arcan(B/(A-C))/2;
Il If theta is angle of minor acis, meke it angle of major axis
if (A >C) theta = theta + W2;

If minorRadus is less han onepixel (that is, we are magni-
fying alongthe minor axis, and pasibly adongthe mgjor axis), the
appropriate radii should be widened—there is no point in making
sever probes b nearly idertical locaions. Hecklert's Master’s
Thesis [6] eegantly addresses this situéion. He unifies the recon-
strudion and warped preilter by using the following computa
tionsfor A ard C rather than the ones shown in Section 21 eove:

Ann = @OVIOX) 2 + @VIdy)? + 1;
Cpn = (QU/0xX)? + @U/dy)? + 1;
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This makes thefilter radius sgrt(2) texels f or a one-to-one
mapping of texels into pixels. (The radius gpproaches onetexel
as magnification increases.) While theoretically supeior, this
wider filter blurs nore than the radius e trilinear filter conven-
tiondly used for unity mappings and megnifications. In order to
match this convention, and to make hadware implementation
feasible, we cdlamp theradii to aminimum of onetexel:

minorRadius = max(minorRadius 1);
magorRadus = max(mgorRadus, 1);

The space-nvariant probes abng the mgjor axis have a
nominal radius equd to minorRadius andso he dstance between
probes slould also be minorRadius The end probes should be set
in from the dlipse by a distance of minorRadius as well, so tha
they don’t sample daa off the ends of the dlipse. Therefore, the
nunber of probes we'd lik e (fProbes), and its integer countepart
(iProbes), are deived from theratio of the major and minor radii
of thedlipse as follows:

JfProbes = 2*(major RadiugminorRadiug) —1;
iProbes = floor(fProbes + 05);
if (iProbes > maxProbes) iProbes = maxProbes;

To guarariee hat texturing a pixel occurs in a bounded time,
we clamp iProbes to a programmable value maxProbes. An ap-
plicaion canuse a small degree & arisotropy at high frame rages,
ard then allow more eccetric filters for higher visual quality
whenmotion ceases.

When iProbes > fProbes, becawsefProbes is rounded up, we
space pobes closer thantheir radus, rather thanblur the image by
sanpling daa off theends oftheellipse

When iProbes < fProbes, either becawse fProbes is rounded
down, or becawseiProbes is damped, thedlipse will be probed at
fewer pointsthan desired. Spaing the probes farther gpart or
shortening the line L may cawse alasing arifact. Instead we
blur the image by increasing minorRadus to widen the dlipse.
Increasng minorRadius increases the level of detail and thus the
nonind radiusof the probefilter.

if (iProbes <fProbes)
minorRadius = 2*mgorRadus/ (iProbes+1);
leveDfDetail = log,(minorRadius);

Anaogousto ¢ lamping minorRadius and mgorRadus, we
use a snge probe in the smallest 1 x 1 mip-map, which reduces
cycles spert dispaying a reatd texture in the distarce. We
dont bother with a similar optimization for the2 x 2 or 4x 4 mip-
maps. Consider the worst 2 x 2 casejn which a checkerloard is
mirror repeated, and an dlipse with a minarRadus of 1 is cen-
tered at a caoner of the exture mep. Fgure 7 depicts this situa-
tion, where the thin lines dédineate texels, and the thick lines de-
lineak the (repeakd) 2 x 2 mip-map. The cicle on the left uses
oneprobeto computean dl-white pixel. The dli pse ontheright
uses 6 probes to computethe darkest possible pixel of 52% white,
48% shaled. (The white texels gppaently insidethe ends of the
ellipse don't contribute to the pixel’s color, as only texel centers
are sanpled.) Sine longer dlipses mnverge so slowy to an in-
termediate color, we restrict oursédves to thetrivial adjustment:

panll N
Ny D

Figure 7: Ellipses in a2 x 2 texture map osdllate around ablend
of the wo cdors as eccdricity increase.



if (leveDfDetail > texure.maxLeveDfDetail) {
leveDfDetail =texure maxLeveDfDetail;
iProbes=1;

}

We compute the sepping vecor (Au, Av), which is te dis-
tance ketweeneachprobe pant along the line, as bllows:

lineLengh = 2*(mgorRadius — minarRadus);
Au = cos(theta) * lineLength/ (iProbes —1);
Av = sin(theta) * lineLength / (iProbes —1);

(The stepping vector is irrelevant if iProbesis 1.) The sam-
ple points are distributed symmetrically about the midpoint
(U, Vi) Of thesampling line L in thepatern:

(Uny Vi) = U Vi) + /2 * (Au, AV)

wheren = £1, £3, 45, ... if iProbes is even, a shown in Figure 8,
andn=0, £2, +4, ... if iProbes is odd, as shown in Figure 9.

We apply a Gawssian weight to eachprobe n by computing
the distance squared of the probefrom the center of the pixel filter
in screerspace,then eponentiating:

d =n/2 * sqt(Au? + AVP) | mgorRadius;
d® = n?/A* (AU®+ AV?) | maorRadius’;

relativeWeght = e®" %,

Finally, we divide the accunulated probe resilts by the sun
of al the weights gplied.

3.2 Implementing Simple Feline

Simple Fdine implements theabove computaions, except it
uses Texram's dlipse axes gpproxmations raher than computing
the exactvalues. We use the longer d the wo vecors ©Qu/ox,
0v/0x) and (@u/dy, ov/dy) as the major radius, and the shortest of
those and the two diegonds (dwdx + du/dy, dviox + ov/idy) ard
(0u/ox — ou/dy, ov/ox — ov/dy) as theminor radius length.

We were surprised that these approximations work essen-
tially as well as the exact values unde typical perspective projec-
tions. We discovered that the wo vecors @u/ox, dv/ox) ard
(ou/dy, ov/dy) are more or less orthogonal under typical perspec-
tive dstortions. In the imagesshown below, the angle between
the two are in the rarge 90° + 30°, and the most extreme angles
occur with very unequd vector lengths. The simple approxima
tions are blerally close o the true values umler these caditions.

We use a two-pat linear approximation for the vector length
squaeroot. Without loss of generdlity, for a vector (a, b) assime
tha a, b >0 anda>b. The following fundionis within +1.2% of
thetruelength sqt(a® + b?):

if (b < 3a/8) retuna + /32
else retun 109a/128 + 35b/64

We do nd compute the stepping vector with trigonometric
functions, but instead sca the longer vecor direcly. Cal the
longer vector components (mgorU, mgorV). Either this vector
describes majorRadius, or dse iProbes is one ard the steppng
vector is irrdevant. By substituting mgorU/majorRadius for
cosine, andmgorV/mgorRadus for sing we get:

r = minorRadius/ majorRadius

i =onedver NMinusOneTable[iProbes];
Au = 2*(mgorU —mgorU*r) * i;

Av = 2*(mgorV —mgorV*r) * i;

Findly, we use atriangularish two-dimensond weight table
to avoid computing and exponentiating d®>. We use the snaller of
fProbes truncaied to a cowple fraciond bits, or iProbes, as the
weight table’s row index, sothat eachrow of weights applies © a
small rarge d ellipses. Te cdumn index is floor((abs(n)+1)/2).
By dividing eachof the rektive weights in a rov by the sum of
the weights for that row, the weights in eachrow sumto 1. Con-
seqiently, we need not normalize he final accumulated resut.
Note tha if iProbes is odd, the Wy entry in a row should count
haf as nuch as he aher ertries when computing the sum: it is
used once, while the oher weights are gedtwice.

Most of the canputations specific to Feline canuse graip
scaled nunbes with a precision of 8 bits. (The center point
(U, Vi must still be computed with high precision of course)
Small erras cawse sanpling along a line ata sightly different
argle, ard at intervals tat are sightly smaller or larger han de-
sired Thesearithmetic erras are egligible comparedto the in-
accuacies @used by the grass ajproximations to the elipse axes.

3.3 Increasing Efficiency
We investigated how far we could “ push the envelopé€’ to re-
duae thenumber of probes by shortening and widening thedli pse,
and by spreading probepointsfarther gpart than their radius

We canstorten the elipse wsing alengthFactor <=1

magorRadus = max(mgorRadus * lengthFador,
minorRadius);

mgorU *= lengthFactor;

magorV *= lengthFacor;

The code in Section 3.1 proportionaely widens an dllipse
more when rounding down a small vaue of fProbes than a large
one We caninstead conpute iProbes so hat for dl values of
fProbes, we widen the dlipse to at most a blurFactor times the
minor radius We dso dlow dretching the distance between
probe postionsby up b aliasFactor times the probefilter radius:

f=1/(blurFador * aliasFador);
iProbes = celling(f * 2 * (majorRadiugminorRadius)) — 1;

If iProbes is nat cdlamped to maxProbes, we blur (widen the
elipse) by increasing minorRadiusby up © blurFactor:

Figure 8: Postioning an even number of probes.
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Figure 9: Postioning an odd number of probes.



minorRadius = min(2*majorRadius/ (iProbes+1), EWA images usea box filter: the Lanczos filter causes “bluriness
minorRadius* blurFactor) banding’ artifacts when EWA jumps from usinga large dlipse in
onemip-map to usingasmel ellipse in the next.higher mip-map.
L ; : X . Fdine with high-qudity parameters generates images com-
remglenlng (_1|fferefn_oe bgwemlerot&js ardbflPro_bes by |ncrfea|sng paable to EWA, but with slightly stronger Moiré paterns. The
probe s@cing. If iProbes is damped, we blur (in excess of blur- only exception occurs if aboxfilter is usel to create mip-maps for

Factor) to the pant where the computations of Au and Av will textures like checkerboards. Becatse the base exture ard all its
increase mbe spacing by aliasFador:

The computaions of Au ard Av automaticaly make up ary

minorRadius= 2* majorRadius/
((iProbest+1) * aliasFador);

We cho= two sets of paameter values
empiricaly. The “high-qudity” se
(lengthFador 097, blurFactor 1.16, alias-
Factor 1.15) reduces the number of probes
by 24% with amost no deradation of im-
age qudity, compared to the constant
rounding of Section 3.1. The “high-
efficiercy” set (lengthFador 097, blur-
Factor 1.3, aliasFactor 1.36) uss the
same nunmber of probes as Texram to pro-
vide images bat contain more artfact than
the “high qudity” seting, but are nonethe-
lessmuch beter than Texram.

The hgh-efficiency aliasFador cre-
ates brge valleys between the peaks ¢ a
trilinear filter, especialy aong diagond
probe lines. We obtaned slightly beter
images by changing the probefilter from a
bilinear filter on eachof the two adacert
mip-map levels to a Gaussian filter trun-
caed to a 2x 2 square. We then linearly
combine thetwo Gaussian results usingthe
fractiond bits of the level of detail. (This
also makes single-probe magnificationslook
better.) A hadware trilinear filter tree is
easly adapted to implemernt Gawssanrather
thanbilinear weightings [9]. Four copesof
a small one-dimensiond table map the frac
tiond bits of u andv on eachof the wo
mip-mapsto Gaussian weights

4 COMPARISONS WITH
PREVIOUS WORK

Figure 10t hrough F igure 14 s how
various dgorithms generating a patern of
curved lines. Figure 15 through Figure 18
show a floor of bricks, and Fgure 19
through Figure 22 show magnified texture-
mapped text. Texramimages use the origi-
nd algorithm; correcting the errors de
scribed in Section 23 ebowe results in many
more probes and degrades visud qudity!
Aliasing artifacts mostly remain, and im
ages ginificartly blur due © the equal
weighting of probes. Sinple Fdine images
use paameters as described in Section 3.3
abowe, and a mip-mappal Gaussian for the
probe filter. Mip-mapped EWA sanples
from a mip-map level where he minor
radius is beween 1.5 and 3 texels; this
looks identical to a radius beween 2 and 4,
but smples about hdf as many texels.
Trilinear, Texram, and Féine images usea
radius 3 Lanczos filter to aeate mip-maps.

Figure 14: Mip-mapped EWA paints arved lines with few artifacts.
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mip-maps then contdn illegally high frequendes
tha Fdines reatively narow filter cannot re
move, Feline dsplays much stronger Moiré art-
factsthan EWA. Usinga beter filter, sud as the
Lanczos, to creaé the nip-maps makes Feline
display fewerartifacts than EWA—Fdine is more
likely to usefiltered mip-mapped daa, rather than
the unfiltered basetexture

Both ses of Feline images aremuch sharper,
ard exhbit far fewer Moiré artfacs, than those
gengated by trilinear filtering.  Thoudh ot
shown hee, we note tha high-efficiency Fdine
and Texram are both subject to “probe banding”
on repeaked extures: sane images slow a visible
line where the number of probes ncreasesrbm
onevaue to another.

Texram images sametimes sem a little
sharper than Feline images, but then, aliasedim-
ages alvays seem sharper than artialiasedimages.
Repeaed texture petterns anplify Texram's
aliasing prodems to aeate strongMoiré paterns,
as slown in the cuved lines and bricks images.
Thesepatterns are evermore dsturbing in mov-
ing images, where they simmer acres he su-
face. Texram's diasing is more subtlein non-
repeakd textures, swch as ext.  Comparing the
high-efficiency Fdine images to Texram is espe-
cialy interesting bath use the sane nunber of
probes, but the Feline images ghibit far fewer
artifacts. BExperiments showtha Fdine’s quality
is dueto the useof a Gaussian probefilter, the
Gaussian weighting of probe results, and the end-
to-end coverage of thedlipse.

Higher visud qudity comes at increased
computdiond cost for setup and smpling. But
much of Fdine’s setup @n be peformed in par-
allel with the paspetive divide pipdinge, and so
increases ipeline length over Texram by only a
few stages. Feline’s setp costs are sutstantialy
smeller than mip-mapped EWA's.

Both Fdine and Texram access éght texels
eachprobe, and probes overlap subsantialy (esgcially in the
smaller of the two mip-maps). A texel cache [7][9] diminates
most redundant memory fetches. We assume these algorithms
can paform one probe pe cycle; higher peformance requires
dudicating large pottions (100k to 200k gates) of the texture
mappinglogic.

Mip-mappead EWA doesn’'t fetch texels more than once per
pixel and sanples asubstatialy larger area. “Optimistic EWA”

~ R R - - =
— W N =
—— e T = -5 B
-~ _— - ’;/5 — -
Figure 19 Trilinear pants blurry text.
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Figure 20: Texram pdnts text with starstepping

Figure 15 Texram pants bricks with herringbone artif acts.
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Figure 16: “High-eficiency” Simple Fdine pants bricks with fewer artifacts.

=—

Figure 17: “High-quality” Simple Fdine pants bridks with few artifacts.
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Figure 18 Mip-mapped EWA pants bridks with fewest atifacts.

navely assumes we can sample 8 texels/cycle on all but the last
cycle for eachellipse. “Realistic EWA assunes that hardware
traverses thedlipse using a4 x 2 texel “stamp” for u-major dlip-
ses, and a2 x 4 gamp for v-major ellipses. Thus, eachcycle sev-
eral of thestamp’s texels usudly lie outsidethe dlipse.

Figure 23 shows how many cyclespixel eachalgorithm uses
for differert viewing argles d one exemplary suface. At 0°, the
surface norndl is paallel to the viewing angle, and mip-mapped
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Figure 22 Mip-mapped EWA pants smooth text.
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Figure 23: Performance atincreasngly oblique viewing argles.

EWA samples the sane size circle for eachpixel. We made this
circle's areathe same as would be obtained ty averaing resits
from randonly distributed viewing distances. This graph sould
beinterpreted like EPA gas mileage nunbers: it is usdul for rela-
tive comparisons, butmileage will vary depending upon position
on the screenperspecive dstortion, etc.

Findly, notethat if a sene uses multiple textures per su-
face, anisotropic texture mapping peformance doesn’t adways
slow down bythese cycles/pixel ratios. Forexample, illuminaion
mapstend to be smell, so ae usudly magnified [7], which takes a
single probe. They dso tend tobeblurry (tha is, contdn mostly
low frequencies), so evenwhen minified, an applicaion might
limit illuminaion meppingto one or two pradoes pe pixel.

5 CONCLUSIONS

Fdine provides nearly the visud qudity of EWA, but with
much simpler setup and texel visiting logic, and many fewer cy-
cles pe textured pixel. Fdine provides better image qudity than
Texram, esgecially for repeakd textures,evenwhenlimited to use
the sane number d probes. Feline requres sanewhat more setip
and texel weighting logic than Texram, but ths cost is snall com-
pared to theincrease in visud quality. Fdine can be built on top
of an existing trilinear filter implementation; for beter resuls, the
trilinear filter can be converted to amip-mapped Gaussian at little
cost Since severahspcs d Feline are parameterized Feline
can gracefully degrade image qudity in orde to keep frame rates
high duing movemert. This degrachtion might acceruate
aliasing for irregular textures, in oder to preserve image shap-
ness, and accetuate blurring f or repeatdregular t extures,i n
order to avad Moiré artfacts.

In the Sep/Oad 1998 isaue of IEEE Compuer Graphics ard
Applications Jim Blinn wrote in his olumn tha “No one will
ever figure out how to quickly rende legible antialiased text in
perspetive.  Textures in paspective will always be ether too
fuzzy or too jayjgy. No me will ever build texturemapping
hardware tha uses a 4x4 interpolation kernel or anisotropic fil-
tering.” Fdine is smple enough to implement, yet of high enouch
visud qudity, to prove him &t least partially wrong
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