MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Framework for Microworld-style
Construction Kits

Carol Strohecker, Adrienne H. slaughter

TR2000-19 December 2000

Abstract

We describe a genre of game-like construction kits and an extensible Java framework that mod-
els method and structures for generating them. We include descriptions of tbenkiéptual

bases and design principles, and explain how work with users dfitfer Kitsframework in-
formed modifications promoting use by people with a broad range of expertise in programming,
design, multimedia production, and learning theory. Continued development of the framework
is informed by museum-based contexts for kit use.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or

republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 2000
201 Broadway, Cambridge, Massachusetts 02139

MITSUBISHI ELECTRIC RESEARCH LABORATORY

A Framework for Microworld-style Construction Kits

Carol Strohecker
Adrienne Slaughter

TR2000-19 May 2000

Abstract

We describe a genre of game-like construction kits and an extensible Java framework that models
method and structures for generating them. We include descriptions of the kits’ conceptual bases
and design principles, and explain how work with users of the “Kit for Kits” framework
informed modifications promoting use by people with a broad range of expertise in programming,
design, multimedia production, and learning theory. Continued development of the framework is
informed by museum-based contexts for kit use.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or
in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission of MERL - A Mitsubishi Electric Research
Laboratory, of Cambridge, Massachusetts; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a
license with payment of fee to MERL - A Mitsubishi Electric Research Laboratory. All rights reserved.

Copyright © Mitsubishi Electric Research Laboratory, 2000
201 Broadway, Cambridge, Massachusetts 02139

A Framework for Microworld-style Construction

Carol Strohecker
MERL - Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02139 USA
+1 617 621 7517
stro@merl.com

ABSTRACT

We describe a genre of game-like construction kits and an
extensible Java framework that models method and
structures for generating them. We include descriptions of
the kits” conceptual bases and design principles, and
explain how work with users of the “Kit for Kits”
framework informed modifications promoting use by people
with a broad range of expertise in programming, design,
multimedia production, and learning theory. Continued
development of the framework is informed by museum-
based contexts for kit use.

Keywords
Java framework, construction kit, learning, interaction
design

INTRODUCTION
We are developing a Java framework to facilitate
implementation of a genre of kits based on principles of
Constructionist learning [16, 17, 18, 24, 25, 46]. The kits
bear a family resemblance to Tinker Toys™, LEGOs™, and
other building toys, but are dynamic and especially visual.
Currently the kits are prototyped as highly interactive 2D
graphical software, but we project iterative development
including augmentation with tangible input and output
devices, and concurrent development of social contexts
supporting the playful building activity.

4 =
! ; <> 1

. g i S iail®
The kits are inspired by the notion of “microworlds,”
perhaps best exemplified by Logo-based Turtle Geometry
[1, 24]. This computational world elegantly models basics
of differential geometry: the graphical “turtle” is
characterized by just two properties, position and heading.
Users (typically children) interact by typing commands to
effect operations of movement. The turtle responds by
translocating forward, turning, and so on, leaving a trace as
it goes. Delightful pictures result, which can become
complex quickly. Thus children play with ideas in
building-block fashion as the properties of a vector ground
development of further understandings — of angles, the
geometries of squares and spirals, etc.

Adrienne Slaughter
Stanford University
c/0 310 W. Michigan Avenue
Clinton, MI 49236 USA
+1 517 456 4822
ahs@alum.mit.edu

N N
BEERERESEE

Some of our kits are intended for children, and others are
intended for people of all ages, but all involve similar
modeling of a conceptual domain. Players build with basic
elements and operations, and then activate the
constructions. Dinosaur skeletons balance as they walk and
run; maps reveal street-level views; geometric tiles form
symmetric patterns; animistic creatures spawn, maintain,
and disrupt social distances; and dancers’ breathing patterns
determine cyclic timing for a shared dance.

Various collaborators have developed versions of these kits
during the past several years. Commonalities of design and
implementation, as well as conceptual underpinnings, have
led us to formulate a “Kit for Kits” (K4K), extensions to
Java’s Abstract Windowing Toolkit (AWT) that facilitate
development of the growing genre. Because the kits are so
strongly visual, much of the Kit4Kits supports creation of
structure, function, and appearances of objects. K4K works
with Java for capturing and dealing with actions and
elaborates Java2D facilities for transforms, shapes, painting,
and image-handling to provide highly customizable,
manipulable objects.

Four existing construction kits and designs for a fifth
informed development of a first version of K4K. We made
it available to people who used it for developing their own
kits. These experiences helped us to improve the
framework. While implementing the refinements, we
continued using K4K to develop our own new kit. Next
steps include creating facilities for sound and for web-
supported play.

K4K BEGINNINGS

PatternMagix players build colorful tiles and spread them
into mosaic-like patterns (below left). Panels change size as
the player moves from the build area to the activation area,
modeling the turn-taking of a dialog [2, 5, 7, 47, 48].
PatternMagix was the third of our microworld-style kits but
the first to be implemented in Java (version 1.1.6). The
straightforward implementation involves rectangular
building elements and filters effecting geometric

! These illustrations are adapted from [24, 72-73].

transformations of the tiles. We added image buttons and
structures for looping series of image buttons as
animations.

5

AnimMagix players select and adjust behavioral attributes
that simulate social behaviors of animistic creatures (above
right). Varying degrees of awareness and attraction affect the
creatures” movements as they interact with one another [2,
5,7, 47, 48]. The AnimMagix interaction design is again
based on the idea of a conversation between the player and
the system. Its implementation (in Java 1.1.8) makes use of
many of the same structures as PatternMagix. We added
filters to achieve color blending as creatures’ perceptual
fields overlap, and structures enabling transparent
backgrounds for the image files containing creatures’
animistic costumes.

WayMaker players diagram a city, real or imagined, by
forming a map from geographic primitives such as districts,
paths, and landmarks (below). The software then transforms
scale, view, and representation to illustrate a stroll through
the mapped environment. The dynamic illustration takes
the form of a frame-by-frame animation that preserves
topological relationships among the primitive structures
[21, 22, 34, 36, 37, 38, 39]. The current version (in Java
1.1.8) is the second WayMaker prototype. Building
elements are Java polygons, as in AnimMagix, but we
added facilities for manipulations like scaling and
stretching. We also elaborated the construction process by
enabling specification of particular images, such as towers
and mountains for landmarks, which appear in both the
maps and path views. A miniature echoes the building of
the map and maintains its screen position as the display
changes to reveal street-level views. Variable transparency
filters allow visibility of views beneath the miniature map
and effect edge blending between image segments. We also
developed processes and structures for saving and retrieving
constructions so they can be extended and/or re-viewed.

Bones players put dinosaur parts together and then test the
skeletons to see if they can balance while standing or
moving (below). Based on a constructed creature’s number
of legs, the location and mass of its center, and a user-
selected speed of movement, the software analyzes structural
integrity and whether the creature can maintain balance as it
moves. Animations, including a rich set of gait patterns,

derive from the literature on biomechanics and animal
locomotion [3, 19, 27, 32]. The current version (in Java
1.1.8) is the third Bones prototype. As in PatternMagix,
the building elements are image files, but we added a
requirement for arbitrarily shaped polygonal images rather
than rectangular ones. This change had profound
implications for image production, for mouse event
structures and manipulability, and for filters that effect
geometric transformations and size and color changes. We
also developed a two-phase construction process in which
players first assemble a creature and then indicate which
bones are meant to constitute the legs. This process shifted
a burden from the software to the player but complicates the
interaction design. As in WayMaker, Bones players can
save constructions as images and retrieve them as objects
that can be reactivated and manipulated. This capability
will become the starting point for web-based trading of
constructions.

S zé& S
g TN

6B TRS BN e e T AT B
i) b B
== 2| el T

“Microworld” approach

The design of these kits relates to the “microworld”
approach exemplified by Turtle Geometry, in which
fundamental elements and operations characterize a
conceptual domain. A program-assigned mass value and a
player-determined position characterize the elements in
Bones. When combined to locate the overall center of mass
for a composited creature, these properties determine
whether it will maintain its structural integrity and balance.
The conceptual domain is motion study; more particularly,
it is balance; still more particularly, it is the role of center
of mass in balancing. Focusing on the most salient features
of a conceptual domain is one of our design challenges, as
is developing manipulable representations that people can
build with. For WayMaker, the domain is topology, basic
relations of proximity. The building elements are
representations of districts, edges, paths, nodes, and
landmarks; operations consist of positioning the elements
with respect to one another. For PatternMagix, the domain
is geometric symmetry. The building elements are square-
shaped tiles, and the operations are rotation and reflections.
For AnimMagix, the domain is social dynamics. The
elements are representations of sensori-motor/attract
functions, and the operations consist of adjustments to
degrees of perceptivity, sociability, and motility.

Design highlights

Consistent with our “screen-first” approach, we have
formulated design heuristics of “object permanence,”
“transparency,” and “multiple simultaneous views” [c.f.
16, 29]. We recommend designing miniature
representations or other recall mechanisms for screen areas,
buttons, and other devices, so that when they are not in use

they are still present and easily accessible [43].
Visualizations of algorithms, calculations, and processes are
the biggest design and implementation challenges but are
crucial to this highly visual genre [42, 44]. We represent
constituent properties of objects, often in ways that facilitate
users’ modifications of them, and we provide various forms
of visual and aural feedback so that results of actions are
apparent. Comparisons help people to perceive the shifts of
scale, perspective, time, and representation that can be
fundamental to understanding dynamic phenomena.
Through the use of graphic treatments such as side-by-side
views, miniature displays, and the like, we address the
principle that you understand something best when you
understand it in more than one way [23]. Kits employing
such treatments may also be more accessible to a range of
users with diverse thinking styles [45].

Adjustments of panel sizes in Magix exemplify one kind of
visualization. The changes provide concrete representation
of the distributed control between the between the player
and the system as their “conversation” proceeds.

Activate
area

Build
area

Side-by-side comparisons of the miniature map next to
path-level views in WayMaker provide shifts of scale,
perspective, and representation to facilitate players’ notice
of relative placements of elements.

Bones includes a diagrammatic visualization of the center-
of-mass calculation and projection of the center to the base
formed by the creature’s points of contact with the ground.
This is a representation of static balancing. Leg movements
act as visualizations of gait patterns. In the next version we
hope to improve the visualizations of dynamic balancing
and to add footprints as complementary visualizations of
gait patterns.

w1
vt

UNDO)

rrrrrrrrrrrr

“grar i

(L Ce
C@&@"wb’% etd @@“&Q“*’ - ﬁﬁ?
?@%% jrEe S i % '«%ﬁb Z I\

m, stnou] nunns] pasn ston [aépain] save | ciean]_cer

K4K DEVELOPMENT

The Kit4Kits framework includes the “elements and
operations” conceptual basis as well as Java structures
acknowledging the importance of visual presentation to the
genre of kits [16, 24, 35, 40]. We chose Java for object
orientation in implementing the highly interactive systems,
and in anticipation of cross-platform, web-friendly
requirements as communities of players evolve.

During the course of the work, key aspects of our
requirements and of Java were changing. Java 1.1.8
introduced a new event model; with Java2 came Java2D,
which provided for complex screen areas, new image
objects, transformations, custom cursors, and other helpful
functionality. However, Java2D greatly slowed down image
painting and introduced scores of bugs. We considered
Swing, newly incorporated into the Java2 JDK, but it was
still too nascent for our tastes and more extensive than our
needs. Some of the bugs were resolved in Java 1.3 beta, in
which K4K is currently implemented. Meanwhile we had
increasingly complicated wants from Java. In the
beginning, it was acceptable to use a rectangle to describe
the bounds of a particular object; soon it had to be a
polygon. Originally we wanted to rotate a square by
increments of 90 degrees; soon we wanted to rotate
complex polygons by 3 degrees and have corresponding
images also rotate so they could fill the polygons exactly.
Originally transparent backgrounds in image files were
sufficient; soon we needed transparency filters for image
blending as well as a range of filters beyond geometric
transformations, such as color changes and gradients. The
basic classes evolved as well.

Version 1

The first version of K4K includes several kinds of classes:
screen areas, building elements, widgets, and structures for
managing them. Everything happens within a MainFrame,
or top-level window. The Mode layout manager determines
what objects need to be in the MainFrame when, and
enables specification of their absolute positions on the
screen.

Elements are components that implement mouse events,
specific ~ geometric forms, and transformations.
ImageElements are Elements that implement image loading
and painting. As players build with Elements they form
Constructions, similar but more complex structures useful
in activation processes.

Java Panels are not flexible enough for our notions of
building and activation, so we created Zones, containers
that can take on various shapes and implement special
painting code such as borders and background images. A
Composer is a kit-specific Zone that holds Elements and
allows them to be manipulated within it. An Arena is
another kit-specific Zone that holds Constructions and
performs the necessary functionality for them to interact
with each other or otherwise activate. A Bench is the third
kit-specific Zone, which displays snapshots of saved
Constructions, allowing them to be accessed individually
or from a file.

Java’s standard button functionality was not rich enough for
the state changes and visual signalling that we needed, so
we developed particular kinds of buttons. An ImageButton
uses an image for painting. A SpeedButton continues to
execute when the mouse is pressed and held on it: the
longer the hold, the faster the button performs its action.
An AnimButton performs an animation of a sequence of
images when the mouse rolls over the button. A
SpinButton displays a number that can be modified
through some action like pressing an up or down arrow.

The OutputPanel is a feedback mechanism that typically
appears at the bottom of the screen and displays textual
messages. A ToolTip provides for a short, descriptive
string to appear over a component in the interface.

Commands are objects that encapsulate instructions for
responding to particular events. Commands remember all
aspects of what they do, primarily so these actions can be
undone. StateObserver uses Commands to keep track of
undoable and redoable events.

TimeContext keeps track of time and notifies
TimeListeners registered with it that some specified period
of time has elapsed. Many TimeListeners can be notified at
once. An object implementing the Selectable interface can
respond to a mouse event by being selected. This has
implications for some associated action, such as the object
painting itself differently. Selectable objects register
themselves with SelectListeners.

Two interfaces enable special pictorial treatments. Trailable
specifies that a component will leave some kind of
depiction in its wake, such as a trail of fading images.
Traceable specifies that a component will leave a trace as it
moves, such as a line describing its path.

Usage trials

To test the usefulness and robustness of these facilities, we
invited people interested in producing “computer games
more meaningful than shoot ‘em ups” to try out the K4K.
An interesting mix of people responded. One participant
was fluent in Java but had little visual or interaction design
experience; another had a lot of non-Java programming
experience and extensive knowledge of computer games and
their interaction design; another participant had some
experience with Java and as an architect had extensive
visual design knowledge; still another had no programming
experience but expert knowledge in linguistics and
cognition. This diversity was fortuitous: because of our
application-orientation we had been focusing on players of
the kits as “users,” but from the perspective of K4K they
are end-users. We needed now to address ranges and extents
of expertise for people who would want to use a framework
like K4K.

We organized the workshop as a design studio. During the
course of a few days we hoped to explain the microworlds
approach and design principles, and to work with
participants in using K4K to develop cursory examples of
construction kits. Demos and supporting documentation
described our existing kits, their conceptual grounding,
design, relevant digital image production, K4K
documentation, and coding examples showing how K4K

could be applied to create each of our kits. There was
insufficient time to do a thorough “elements and
operations” analysis for the kits that participants proposed.
We addressed these concerns but emphasized a “screen-
first” approach, which brought designers and developers
together by centering implementation around devices on-
screen. The approach also helped us to clarify the genre’s
“build — activate — save — trade” premises, emphasizing
focuses on end-users’ constructions of graphical objects and
potential behaviors, the software’s activation of
constructions, and ultimately, social contexts in which
saving and trading the constructions can enhance learning.

One participant wanted to make a kit with which players
could explore timing relationships in the context of music-
making. A ball falling on a soundpad makes a sound,
which can be specified as a particular tone. Building
consists of adding ball and soundpad elements to the
Composer. Upon activation, each ball strikes its soundpad,
and the Arena displays strike patterns in a graph-like
notation resembling a musical score. The patterns could be
saved for replay. In this design, as in Bones, the build and
activate processes share a screen area but constitute distinct
activities. Thus our Composer and Arena constructs were
suitable.

Two other participants pooled their skills in programming,
visual design, and linguistics. They began a kit with which
players can build words (below). Their design evolved
through several arrangements of screen areas and
corresponding work flow:” Eventually they settled on an
arrangement based on downward movement as the player
progresses through a process of word building: letters
combine to form phonemes, which become syllables that
form words. Letters must match according to particular
sonority rules in order to form a phoneme [20]. Matches are
saved into pockets ordered according to position of the
phoneme within a word: an onset phoneme combines with
a vowel to begin a word, which ends with a coda syllable.
Saved words may or may not yet appear in an English
dictionary, but must follow the onset-vowel-coda pattern.
The collaborators carefully separated the screen areas
according to each of these functions, yet the main areas
support both building and a kind of activating, which takes
the form of checking for proper letter matches and syllable
patterns. They implemented both areas by extending our
Composer structure, rather than using the Composer for one
and the Arena for the other. Composers typically handle
operations on elements, which in this case take the form of
validity checking.

e TIkBA~CV HESI

E [—— 14 L "8 od | T A

=i Pa kA v ED

! XE + ¢ o B [

=)\K_m/,;\ -B-R *
) B
e N

\]ifP Ph T T
Tl PR I

Another participant wanted to make a simulation kit that
would deal with notions of ecology. He wanted players to
be able to control aspects of the environment, which

2 Graphical letterforms are from [30].

resembles an ant farm, and creatures that inhabit it, which
he called “bugs” (below). He separated the two functions
into screen displays that differed but maintained common
features. Both modes include both build and activate
processes. In environment mode, the player can add bugs
and food for the bugs while the simulation is running. In
bug mode, the player can specify rules governing bugs’
properties and behaviors, such as being hungry, seeking or
avoiding food, seeking or avoiding other bugs, seeking
food stores, dying when hungry and not finding food, and
so on. At first he represented the rule structure as a kind of
logical chart, but through discussion moved to more
graphical representations. This notion of build mode is like
the specification phase of building in our prototypes. He
implemented this specification functionality by extending
our Composer structure.

\
i

LAY
AAY

b\

Version 2

In addition to general debugging, we made structural
modifications to K4K based on these experiences. We
concluded that maintaining the notions of build and
activate was worthwhile, but these functions could happen
in many different ways. Our separate Composer and Arena
constructs therefore seemed overspecified. In the next
version of K4K we collapsed them as a single structure, the
Holder, which maintained the flexibility inherent in the
Zone structure but had implications for some of the image
treatments and control mechanisms. We also rethought our
notion of Mode, which had implicitly incorporated three
concerns: what the player is doing at a given time, what is
happening on the screen at a given time, and what a
Construction is doing at a given time. We concluded that
it would be most helpful to separate these concerns and
distribute them among the relevant Holder, Construction,
and Command structures.

We added functionality for new classes: CommandDoer,
RepeatingButton, KitSlider, ImageSlider, and
YesNoWindow. We also developed methods for necessary
but potentially cumbersome considerations like double
buffering and loading images and sounds. We protected and
included setters and accessers for all variables, and ensured
that instances of an object could not be created without
initializing relevant variables. Additionally, we reduced
the number of abstract classes, improved the code for
several classes, and refined the comments overall. We
changed some terminology so it would pertain more
specifically to our effort: MainFrame became KitFrame and
Command became Doer. We also changed the names of
some methods so they were more compatible with AWT
terminology. Generally we aimed to make all the structures
as accessible and malleable as possible.

Interface Widget

Abstract Class eI AT

Element

i
i

Class

Construction

java.lang. |
Object Command

Doer }_‘ Mode

TimeContext ConstructionDoer I

Miscellaneous

I

!

ToolTip

java.awt.
Component

Element
ImageElement
java.awt.
Container
[—— Construction

—— Holder }— Bench |

StateObserver, [— ImageButton
Seloctable _ nimeuton_|
SelectListensy mrlmg—auﬂ
— SpinButton
java.awl
Panel
OutputPanel
| java.awt.
Window

java.awt.
Frame
KitFrame
java.awt.
Dialo
YesNoWindow

Many of the modifications were geared toward enhancing
ease of use for people with less Java programming
experience than we had originally envisioned. We have not
attained a “low threshold, high ceiling” profile for K4K as
an environment in which to learn programming, but that
could become an interesting direction for the work.
Nevertheless, in addition to Java code and documentation,
the K4K includes code examples for specific kits and
documents addressing varying degrees of expertise in
programming, visual design, interaction design,
multimedia production, and learning theory. We include
code-starter “seeds” for creating screen areas, Elements,
Constructions, widgits, and Doers, and for basic data and
control structures. The documents also answer simple
questions that first-time K4K users would typically ask,
and briefly describe the Java interface model. For more
experienced Java users, K4K provides the Java API and
relevant documentation.

|

Application

Our fifth kit, Zyklodeon (implemented in Java 1.3 beta),
helped initially in identifying functionality for K4K and
subsequently in testing the code for bugs, completeness,

and extraneous constructs. Zyklodeon is the most complex
of the kits we have implemented, mainly because of the
shape and arrangement of items on the screen (below). As
in Bones, the building elements are arbitrarily shaped
polygonal image files, which in Zyklodeon represent a
dancer’s arms, legs, torso, and head. Players build by
composing dance figures and setting properties that affect
their movements and cyclic timing for a shared dance. We
added arbitrarily shaped image buttons, a two-tiered
structure for saving and retrieving constructions, and a
greatly elaborated system of event-triggered visualizations.
In this world of time/space relationships, dancers’
movements visualize breathing cycles, progress through a
shared dance «cycle, and characteristics affecting
choreographic concerns such as leap moments and heights
[4, 10, 15, 26, 32, 41].

L-BED il 2 §/>3 LS iy
E EL
ey, & 7t < >

RS - b)“_g

ek e
L / A £
f;\k X is f;%: i 1 %L '\
Shae, N 2 a0 SHa. Il glO

> =5 A > =S

RELATED WORK

During the course of this work we compared our concerns
and output to other software construction kits, authoring
tools for simulations and multimedia, environments for
learning about programming basics, and Java frameworks.
There is a large amount of interesting work in each of these
related areas. While the distinguishing characteristic of our
effort remains the basis in microworld theory, we would
hope to develop or maintain features that several notable
projects have also achieved or pointed toward, should our
kits and the Kit4Kits move beyond prototype to more
widely disseminable forms.

Other software construction kits, such as SimLife,
SimCity, Incredible Machine (and its sequel, The Even
More Incredible Machine), Lemmings, Tom Snyder
Productions, ToonTalk, and HyperGami, resemble our kits
in various ways. Several of these could be described by
some aspects of the “build — activate — save — trade”
mantra. Some include a range of media as we would
ultimately like for our kits. Tom Snyder Productions, for
example, distributes some kits with printed booklets and
activities, and HyperGami includes user-designed printed
output in the construction process [8].

It is interesting that authoring tools for simulations — such
as SimLife, SimCity, Microworlds Pro, AgentSheets /
Visual AgenTalk [28], Cocoa, and Stagecast (KidSim) —
tend to have more in common with environments for
learning about programming basics than do multimedia
authoring tools such as 3D MovieMaker, Macromedia
Director, and NACDRAW (though of course a tool like
Microworlds Pro can be used for both). Although it is still
not clear to what extent we hope K4K will become an
environment for learning about programming basics, we
have learned from environments such as Microworlds Pro,

ToonTalk, Cocoa, AgentSheets / Visual AgenTalk,
Squeak, SmallTalk [13, 14].

The two Java frameworks we have found most beneficial to
consider are the Interactive Illustrations produced at Brown
University and the growing movement toward developing
HCI patterns. We believe that despite the Constructionist
grounding of the Interactive Illustrations and their
similarity to our genre of kits, both the kits and K4K
maintain a stronger focus on users’ and end-users’
deliberations and constructions [31]. We considered
presenting K4K as a kind of pattern language for
microworld-style construction kits, but feared engendering a
“cookie-cutter” approach that would work against
flexibility [9, 11, 12, 42]. We feel that including various
forms of support for novice programmers will prove a more
fruitful direction.

K4K FUTURES

In the immediate term we aim to develop better facilities for
handling sound and for facilitating kit players’ web-based
trading of constructions. We are looking into recent
versions of Swing and Java Beans to see whether they may
now be more robust and compatible with our effort. Up to
now Beans have not sufficiently addressed reliance on
imagery to the extent that our genre demands, but we
anticipate evolution of Beans and their potential
compatibility with our notion of “seeds.” We also plan
improvements to our existing kit prototypes, which will
contribute to further K4K facilities. Toward this end we
have begun collaboration with exhibit and program
developers at Boston’s Museum of Science. Several of the
kits are currently installed there as test exhibits that visitors
can try and critique. In addition to improving the kits and
K4K, these trials will help in developing museum-based
social contexts for long-term kit use. We anticipate
developing separate versions of each kit, to support
episodic use within exhibit areas and extended use within
studio-like environments in museums, homes, and other
situations that ideally would be networked to one another.
Including tangible input and output for the kits will help to
effect craft-based activities with learning communities.

ACKNOWLEDGMENTS

Bones was developed between 1993 and 2000 by Carol
Strohecker, William Abernathy, Dan Gilman, John Shiple,
and AARCO medical illustrators. WayMaker was
developed between 1996 and 2000 by Carol Strohecker,
Barbara Barros, Adrienne Slaughter, Dan Gilman, and
Maribeth Back. PatternMagix was developed between 1996
and 1997 by Edith Ackermann, Carol Strohecker, and
Aseem Agarwala. AnimMagix was developed between
1997 and 1998 by Edith Ackermann, Carol Strohecker,
Aseem Agarwala, Adrienne Slaughter, and Dan Gilman.
Zyklodeon was developed between 1999 and 2000 by Carol
Strohecker, Adrienne Slaughter, Mike Horvath, Noah
Appleton, Nadir Ait-Laoussine. The Kit4Kits was
developed between 1999 and 2000 by Adrienne Slaughter

3 See www.lcsi.com, www.toontalk.com,
www.crim.ca/~hayne/Cocoa/, www.agentsheets.com,
www.squeak.org.

and Carol Strohecker. In addition to visitors to Boston’s
Museum of Science, Nadir Ait-Laoussine, Cara Brooks,
Kristoff Brooks, Larry Burks, Jutiki Twan Gunter,
Surapong Lertsithichai, Pau Sola-Morales, and Mark
Strehlow have participated in usage trials for various kits.
John Evans, Aradhana Goel, Tim Gorton, and Milena
Vegnaduzzo participated in usage trials for the Kit4Kits.
Mike Eisenberg, Doug Smith, Tom Wrensch, Glenn

Blauvelt, and Matthew Brand have participated in
development of models for museum-based learning
environments. We also thank David Cavallo, Adele

Goldberg, Stephanie Houde, Sarah Kuhn, Fred Martin,
Seymour Papert, Barry Perlman, Vicki Porter, Vennila
Ramalingam, Warren Sack, Tim Shea, Brian Silverman,
and Doug Smith for helpful discussions during the course
of this work. The effort is supported by Mitsubishi Electric
Research Laboratory.

REFERENCES

1. Abelson, H., and DiSessa, A. Turtle Geometry: The
Computer as a Medium for Exploring Mathematics.
MIT Press, Cambridge, MA, 1980.

2. Ackermann, E., and Strohecker, C. Build, launch,
convene: Sketches for constructive-dialogic play kits.
MERL TR99-30, Mitsubishi Electric Research
Laboratory, Cambridge, MA, 1999.

3. Alexander, R. M. Dynamics of Dinosaurs and Other
Extinct Giants. Columbia Univ. Press, New York,
1989.

4. Armitage, M. (ed). Martha Graham: The Early Years.
Da Capo Press, 1978.

5. Bakhtin, M. The Dialogic Imagination.
Texas Press, 1981.

6. Berger, J. The moment of Cubism, in The Look of
Things, ed. Stangos. Viking Press, 1974.

7. Bruner, J. Actual Minds, Possible Worlds. Harvard
Univ. Press, Cambridge, MA, 1986.

8. Eisenberg, M. and Nishioka, A. Creating polyhedral
models by computer. Journal of Computers of
Mathematics and Science Teaching (1997).

9. Erikson, T., and Thomas, J. Putting it all together:
Pattern languages for interaction design. Proceedings of
CHI’97, 226. See also the summary report of the
workshop at
http://www.pliant.org/personal/Tom_Erickson/Patterns
.WrkShpRep.html.

10. Freedman, R. Martha Graham: A Dancer’s Life.
Clarion Books, 1998.

11. Gabriel, R. P. The failure of pattern languages. Journal
of Object-Oriented Programming (1994).

12. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA, 1977.

13. Goldberg, A. What should we learn? What should we
teach? Proceedings of the 10th Annual Conference on

Univ. of

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.
33.

Object-Oriented Programming Systems, Languages,
and Applications (1995), 30-45.

Goldberg, A., and Robson, D. Smalltalk-80: The
Language. Addison-Wesley, Reading, MA, 1989.

Graham, M. The Notebooks of Martha Graham.
Harcourt Brace Jovanovich, 1973.

Gruber, H. E., & Voneche, J. J. (eds.). The Essential
Piaget. Basic Books, New York, 1977.

Harel, 1., & Papert, S. (eds.). Constructionism. Ablex,
Norwood, NJ, 1991.

Kafai, Y., and Resnick, M. (eds.) Constructionism in
Practice: Designing, Thinking, and Learning in a
Digital World. Lawrence Erlbaum, Mahwah, NJ,
1996.

Hildebrand. How animals run. Scientific American
(May, 1960) 148-157.

Kenstowicz, M. Phonology in Generative Grammar.
Blackwell, Cambridge, MA, 1994.

Lynch, K. The Image of the City. MIT Press,
Cambridge, MA, 1960, 1992.

Lynch, K. Reconsidering the image of the city, in
Cities of the Mind: Images and Themes of the City in
the Social Sciences, ed. Rodwin, L. and Hollister, R,
M. Plenum Press, New York, 1984, 151-161.

Minsky, M. The Society of Mind. Simon and
Schuster, New York, 1986.

Papert, S. Mindstorms: Children, Computers, and
Powerful Ideas.Basic Books, New York, 1980.

Papert et al., http://el.www.media.mit.edu/.

Poggi, C. Frames of reference: Table and tableau in
Picasso’s collages and constructions, in In Defiance of
Painting: Cubism, Futurism, and the Invention of
Collage. Yale Univ. Press, New Haven, CT, 1992.

Raibert, M. Legged Robots That Balance. MIT Press,
Cambridge, MA, 1986.

Repenning, A. AgentSheets®: An interactive
simulation environment with end-user programmable
agents, Proceedings of Interaction 2000 (Tokyo,
Japan).

Resnick, M., Berg, R., and Eisenberg, M. Beyond
black boxes: Bringing transparency and aesthetics back

to scientific investigation. Journal of the Learning
Sciences (1999).

Rey, H. A. Curious George Learns the Alphabet.
Houghton Mifflin, Boston, 1963, 1991.

Simpson, R. M., Spalter, A. M., van Dam, A.
Exploratories: An educational strategy for the 21%
century. Brown University online ID number:
schoolhouse_1449, 1999.

Stein, G. Picasso. Dover, New York, 1938, 1984.

Strohecker, C. A model for museum outreach based on
shared interactive spaces. Multimedia Computing and
Museums: Selected Papers from the Third

34.

35.

36.

37.

38.

39.

International Conference on Hypermedia and
Interactivity in Museums, (Archives & Museum
Informatics, Pittsburgh, 1995), 57-66.

Strohecker, C. Cognitive zoom: From object to path
and back again, in Spatial Cognition II, Springer
Verlag, 2000.

Strohecker, C. Construction kits as learning
environments. Proceedings of IEEE International
Conference on Multimedia Computing and Systems 2
(Florence, 1999), 1030-1031.

Strohecker, C. Toward a developmental image of the
city: Design through visual, spatial, and mathematical
reasoning. Proceedings of Visual and Spatial
Reasoning in Design (Massachusetts Institute of
Technology, 1999), University of Sydney, 33-50.

Strohecker, C. What would Cézanne think?
Proceedings of Creativity = and Cognition
(Loughborough University, 1999).

Strohecker, C. and Barros, B. WayMaker. Extended
Abstracts, CHI’97 (Atlanta, GA, 1997), ACM Press.

Strohecker, C., and Barros, B. Make way for
WayMaker. Presence: Teleoperators and Virtual
Environments 9:1, 97-107, 2000.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Strohecker, C., and Slaughter, A. Kits for learning and
a kit for kitmaking. Extended Abstracts, CHI'2000
(The Hague, Netherlands, 2000), ACM Press.

Strohecker, C., Slaughter, A., and Horvath,
M., and Appleton, N. Zyklodeon. Mitsubishi Electric
Research Laboratory, Cambridge, MA, forthcoming.

Tidwell, J. Common ground: a pattern language for
human-computer interface design.
http://www.mit.edu/~jtidwell/ui_patterns_essay.html,
1999.

Tufte, E. R. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, CT, 1983.

Tufte, E. R. Envisioning Information. Graphics Press,
Cheshire, CT, 1990.

Tufte, E. R. Visual Explanations: Images and
Quantities, Evidence and Narrative. Graphics Press,
Cheshire, CT, 1997.

Turkle, S., and S. Papert. Epistemological pluralism:
Styles and voices within the computer culture. Signs
16:1, 1990, Chicago University Press, 128-33.

Vygotsky, L. Mind in Society. Harvard Univ. Press,
Cambridge MA, 1978.

Wertsch, J. V. Voices of the Mind. Harvard Univ.
Press, Cambridge MA, 1991.

	Title Page
	Title Page
	page 2

	A Framework for Microworld-style Construction Kits
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

