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1
1Introduction

1.1   Purpose of this Report

The following report is the first of a series of technical documents of the joint research
project on the mathematical properties of the representation, compression and dynamics of Sur-
fels, which is carried out by ETH (Zurich, Switzerland) and MERL (Boston, USA). It docu-
ments the work performed at ETH between December 1998 and March 1999. The objective of
the initial phase of the project was to give a survey and classification of existing techniques,
each dealing with a particular issue involved in the project or pursuing a similar purpose as the
project. Consequently, this report is mainly presenting a structured literature overview of rele-
vant contributions.

1.2   Introduction

The research being performed in this project is motivated by the desire to render complex
three dimensional objects as efficiently as possible. It is observed that a considerable overhead
is introduced with the conventional polygon based rendering paradigm as soon as the polygonal
rendering primitives get smaller than a pixel on the screen. This has led to the use of images,
rather than polygons, as primitives. Images naturally match the resolution of the frame buffer
and as a consequence, the rendering cost is proportional to the number of pixels in the image
rather than to scene complexity. Recently, a wide variety of image based rendering methods has
been presented demonstrating the speed and viability of the image based rendering paradigm.
Despite their success, those methods come with serious drawbacks such as large memory
requirements, noticeable artifacts from many viewing directions, the inability to handle
dynamic lighting, restricted position of the viewpoint and others.

The fundamental approach of this research is to use points as a display primitive. Objects are
represented as a dense set of surface point samples. In contrast to conventional image based
methods, these point samples are different in that they contain additional geometric information
and that they are view independent. The key to the success of a method working with such sam-
ples is the ability to efficiently project the samples onto the screen and reconstruct continuous
surfaces without holes on the screen. To this aim, a suitable representation of point samples, an
algorithm for projecting them efficiently and a method to reconstruct continuous surfaces have
to be developed. The system envisioned should feature the speed of image based methods with
the quality, flexibility and memory requirements approaching those of the polygonal approach.



5 1.   INTRODUCTION

1.3   Overview

In chapter 2, the problem statement underlying this project is presented, along with an intro-
duction to the concept of Surfels, which is fundamental to the research being done. The main
research issues are listed, motivating the direction of the literature survey given in chapter 3. 
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2
2Problem Statement and

the Concept of Surfels

2.1   Problem Statement and Goal of the Project

The core objective of this project is to design novel methods for real time image synthesis of
three dimensional scenes. A scene is supposed to consist of geometrically complex objects with
different surface properties, such as texture, reflectance and transparency. It should be possible
to perform rigid motion of objects in the scene, as well as to perform shape deformation. The
objects should be rendered under various lighting conditions applying a local illumination
model, which includes multiple, dynamically changing light sources and produces correct shad-
ows. The rendering algorithm should be capable of delivering images at interactive frame rates,
even for very complex objects.

The most common rendering paradigm that is able to perform such a task is the geometry
based rendering approach. Objects are basically represented as triangular surface meshes,
whereas each triangle is rendered onto the screen by transforming its vertex coordinates to
screen space and then scan converting its projected area.

This project will examine the concept of Surfels (see section 2.2) as an alternative rendering
primitive. Our goal is to analyze under which conditions the Surfel representation is superior to
conventional techniques, come up with solutions for the problems involved and demonstrate the
rendering performance with a prototype implementation.

2.2   The Concept of Surfels

The concept of Surfels (surface elements) [42,57] has been proposed with the aim of devel-
oping a representation of three dimensional objects tailored for fast rendering. The Surfel para-
digm basically consists of a novel approach to surface discretization. Unlike classical surface
discretizations, i.e. triangle or quadrilateral meshes, Surfels match the resolution of the frame
buffer. A single Surfel can be viewed as a point sample of the object surface with attributes com-
prising spatial position, texture, normal and others. Combining those two fundamental ideas, the
Surfel representation of a three dimensional object essentially consists of a set of surface point
samples with a certain spatial density, such that its surface can be reconstructed on a screen with
a given resolution. The rendering process is accomplished by shading each Surfel and splatting
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it onto corresponding image pixels. The Surfel representation of geometric objects is computed
as a pre-process with appropriate sampling procedures.

2.3   Research Issues

To develop a Surfel system, a wide variety of issues has to be considered. The most important
ones can be summarized as follows, motivating the focus of the literature survey (chapter 3):

2.3.1   Surfelization, Sampling

Surfel generation (Surfelization) is a discretization, or more precisely, a sampling process of
the underlying geometry, where the sampling density has to be adapted to the resolution of the
frame buffer. Additionally, the computation of correct sampling rates has to be governed by
given surface and texture error bounds. Particular surface representations such as NURBS, sub-
division surfaces, progressive meshes or implicit surfaces have to be examined.

2.3.2   Representation and Compression

To be most useful, Surfels need to be sampled at multiple resolutions. Many problems arise
in efficiently storing and using these samples. Hierarchical representations, progressive meth-
ods and level-of-detail (LOD) approaches should be considered for this purpose. Those con-
cepts could be applied to develop an advanced data structure, allowing efficient storage and
elegant level-of-detail rendering.

2.3.3   Rendering

A rendering procedure that provides interactive frame rates and high image quality is envi-
sioned. Therefore, the procedure has to be fast and simple, opening the way for hardware accel-
eration. Consequently, any surfel rendering algorithm has to conform to the underlying
representation. The aliasing problem has to be investigated.
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3
3Literature Survey

3.1   Real Time Rendering Techniques

3.1.1   Overview

There are two fundamentally different paradigms providing solutions to the problem of syn-
thesizing images from three dimensional scenes in real time, namely geometry based and image
based rendering (GBR and IBR). In the context of this overview, those two names are not used
as labels to classify different techniques, but as terms for the set of certain essential character-
istics of different rendering concepts. As will be shown, there are lots of individual techniques
making use of a mix of properties associated both with the geometry based as well as the image
based paradigm.

The characteristics of the two paradigms are described by distinguishing four conceptual
components of a real time rendering system (table 3.1). The first part describes the form of the
initial scene description that can be handled by the paradigm. For geometry based rendering, the
scene consists of geometrically defined surfaces with various properties, such as color, reflec-
tance or transparency, and a formal specification of the lighting conditions. The image based
rendering paradigm relies on a scene description in terms of the plenoptic function [1] (see also
section 3.1.5). The second stage is the discretization step, which transforms the initial scene
description to the internal representation that will be fed into the rendering procedure. Generally
spoken, this is achieved by sampling the scene description. In the case of GBR, the term tesse-
lation is most commonly used, which means that the surfaces are discretized into triangular
meshes. The triangulation is optimized regarding the geometric properties, e.g. curvature, of the
surfaces. In contrast to that, the sampling strategy of the IBR approach is independent of the
scene and solely optimized regarding the screen resolution. The result of the discretization pro-
cedure is stored in an internal representation. In GBR, this representation consists of a set of
primitives, such as lines, points, triangles, triangle strips, triangle fans etc. and the description
of the light sources. Conversely, IBR stores a set of n-dimensional samples. Finally, the image
synthesis stage is producing a particular view on the scene. In the GBR paradigm, this is essen-
tially a simulation problem, which is tackled by a conventional rendering pipeline [16]. For IBR,
image synthesis is achieved by reconstructing a particular two dimensional slice of the plenoptic
function.
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Note that for either paradigm, conventional systems only perform the image synthesis stage
in real time, which is indicated by the grey shading in table 3.1. The discretization is usually
done in a separate preprocessing step.

The properties of the GBR paradigm induce a number of problems. First of all, the discreti-
zation procedure requires a three dimensional surface representation, which can be difficult to
provide. Additionally, surface properties such as curvature and texture have to be known to per-
form reasonable sampling. In the rendering step, the processing of primitives that are smaller
than the resolution of the frame buffer is an overhead. Hence, the rendering cost is highly depen-
dent on the scene complexity, meaning the number of primitives in a scene.

On the other hand, the IBR approach has certain advantages over GBR. There is no need for
the construction of a geometric model. Models from real scenes can be acquired from sampled
images, e.g. from a CCD-camera. Unlike GBR, the rendering cost in IBR is independent of the
scene complexity. But IBR is basically restricted to a single operation, namely the reconstruc-
tion of a sampled function. Thus it is not clear how to elegantly provide other operations like
changing the shape of objects, changing the lighting conditions or the reflectance properties.

There has been a lot of research activity to develop efficient rendering techniques and most
of them make use of ideas from the geometry based as well as from the image based rendering
paradigm. An overview arranging some of those techniques is given in fig. 3.1 The techniques
are ordered from left to right, ranging from purely geometry based to image based techniques.
In between, there is a bunch of approaches making use of properties from both sides. In each of
the four stages mentioned above, there is a certain contribution from the GBR as well as the IBR
paradigm. In the figure, the weight of the contribution from the paradigms is indicated by the
distance of a small circle to the corresponding property, whereas the properties of the GBR par-
adigm are placed on the upper and the corresponding IBR properties on the lower side. A circle
lying exactly in the middle of the line between the GBR and IBR characteristic of a certain stage
therefore means equally weighted contributions from both paradigms.

As annotated below the figure, the techniques are further categorized into four groups each
described in more detail in one of the following subsections.

Table 3.1: Properties of real time rendering paradigms

Geometry based paradigm Image based paradigm

Scene Description in terms of ge-
ometry, surface properties, 

lighting conditions

Description in terms of the 
plenoptic function

Discretization Sampling (tesselation) opti-
mized regarding geometric 

properties

Sampling optimized regard-
ing screen resolution

Representation Set of primitives (polygons, 
polygon strips, light sources)

Set of n-dimensional sam-
ples

Image synthesis Conventional rendering Reconstruction
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3.1.2   Geometry Based Rendering and Texture Mapping

3.1.2.1   Shading Techniques

In geometry based rendering the illumination of a scene has to be simulated by applying a
shading model. As hardware systems provided more and more computing power, those models
became more sophisticated. Gouraud shading [19] is a very simple technique that linearly inter-
polates color intensities calculated at the vertices of a rendered polygon across the interior of
the polygon. Gouraud shaded polygonal models look smooth, since the intensities change con-
tinuously across polygon edges. This approach is still used in today’s hardware accelerated ren-
dering pipelines. Phong introduced a more accurate model [43] that is able to simulate specular
highlights. He also proposed to interpolate normals instead of intensities on rendered polygons,
thus enabling more accurate evaluations of the actual shading model. Blinn adapted the Tor-
rance-Sparrow model [55] that describes the reflection of light from real surfaces for use in
computer graphics [3]. This model has predicted experimental results very closely, whereas
some differences arise with the Phong shading function. All of those models are local in the
sense that they fail to model global illumination effects such as reflection.

There is a second class of illumination models that can be applied to polygonal scenes, the
so called global illumination models. Unlike the methods mentioned above, these methods are
able to simulate the inter-reflections between surfaces. On the one hand diffuse inter-reflections
can be simulated by the radiosity method, on the other hand specular reflections are handled by

Figure 3.1: Overview of rendering techniques
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recursive ray-tracing techniques. But both of them are computationally too complex to be used
for real time image synthesis on available hardware.

3.1.2.2   Texture Mapping

In order to improve the visual realism of images synthesized by geometry based rendering
systems, a number of techniques have been developed. The basic mechanism to enhance the
geometry based approach is to add image based information to the rendering primitives. 

The most common of those techniques is texture mapping, which enhances the visual rich-
ness of raster scan images immensely while entailing only a relatively small increase in compu-
tation. A concise survey of texture mapping is given in [24]. Texture mapping is simply defined
as the mapping of a function onto a surface in 3-D. Therefore, a texture is a one, two or three-
dimensional function, which can be represented by discrete values in an array or a mathematical
expression. The study of texture mapping is split into two topics: the geometric mapping that
warps a texture onto a surface, and the filtering that is necessary in order to avoid aliasing. In
general, texture mapping can be applied to any parametric surface patch. In real time systems
however, surfaces are represented as triangular meshes, meaning that texture mapping is applied
to each triangle. Clearly, a texture has to be sampled when the surface upon which it is mapped
is scan converted. This sampling is adapted to the resolution of the frame buffer, i.e. it makes
use of the image based sampling strategy. Texture mapped polygons thus can be regarded as
image based rendering primitives.

There are many different uses for texture mapping, differing mainly in the parameters that
are mapped onto surfaces:

The idea to map an image (i.e. color intensities) onto a surface patch was first introduced by
Catmull in [8]. He was the first to observe that one could make a correspondence between any
point on a patch and an intensity on a picture by establishing a relation between the bivariate
parameterization of the patch and the image. He also realized that in practice this method was
prone to aliasing problems and suggested alleviating it by mapping areas to areas instead of
points to points.

In [5], Blinn introduced the idea to use a texturing function to perform a small perturbation
of the direction of the surface normal before using it in the shading calculations. This process
subsequently became known as bump mapping and yields images with realistically looking sur-
face wrinkles without the need to model each wrinkle as a separate surface element.

Other researchers proposed to map various appearance parameters to surface patches. Blinn
proposes to map the specularity (i.e. the glossiness coefficient) [4]. In his work on the visual
simulation of clouds [17], Gardner uses texture mapping to map transparency (i.e. the alpha
channel) onto surfaces. Another idea is to map the diffuse reflection property [39]. Cook [11]
describes a general method called shade trees to provide flexible shading models. As one of the
more exotic uses of shade trees he presents an extension to bump maps called displacement
maps. Since the location is an appearance parameter, it can actually be moved as well as the sur-
face normal can be perturbed. Cook considers these maps almost a type of modeling.

There is an other kind of texture mapping called environment or reflection mapping, first dis-
cussed by Blinn [6]. A reflection map is not associated with a particular object in the scene but
with an imaginary infinite radius sphere, cylinder or cube surrounding the scene [20]. Whereas
in the above approaches the texture function is evaluated using the surface parameters u and v,
in reflection mapping techniques, the texture is evaluated using the surface normal or the
reflected ray direction, leading to diffuse reflection maps [39] and specular reflection maps [6]
respectively. The technique can be generalized for transparency as well, evaluating by the
refracted ray direction [26]. Environment mapping facilitates the simulation of complex lighting
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environments, since the time required to shade a point is independent of the number of light
sources. Moreover, it is an inexpensive approximation to ray tracing for mirror reflection and to
radiosity methods for diffuse reflection of objects in the environment.

Independent of the optical and semantic implications of a particular technique, there are two
tasks common to all texture mapping approaches: the mapping of the texture function from tex-
ture space to screen space and the filtering that is necessary in order to avoid aliasing. The focus
of both Heckbert’s master thesis [25] as well as his survey [24] is on those computational
aspects of texturing. The mapping from texture space to screen space is split into two phases.
The first step is the surface parametrization that maps texture space to object space, followed by
the standard modeling and viewing transformations that map object space to screen space, typ-
ically by perspective projection. These two mappings are composed to find the overall 2-D tex-
ture space to 2-D screen space mapping, and the intermediate 3-D space isn’t always mentioned
explicitly (fig. 3.2). 

This simplification suggests texture mapping’s close ties with image warping and geometric
distortion. A comprehensive treatise approaching the problem from this side is given in Wol-
berg’s book [61]. Heckbert presents the most basic 2-D mappings such as affine mappings,
bilinear mappings and projective mappings and discusses them in detail. Once the compound
mapping is known, the texture mapped surface can be rendered using one of the following gen-
eral approaches: scanning in screen space, scanning in texture space and scanning in multiple
passes. Screen order, sometimes called inverse mapping, is the most common method. In [25],
an efficient incremental technique to perform correct texture mapping on planar polygons for
projective mappings with screen order scanning is explained. It requires two divisions per pixel,
additionally to the linear interpolation of the texture parameters along a scanline.

After the mapping is computed and the texture is warped, the image must be resampled on
the screen grid. This process is called filtering. The cheapest texture filtering method is point
sampling, wherein the texture value nearest the desired sample point is used. But in general, this
results in strong aliasing artifacts. To get rid of those artifacts, more sophisticated filtering meth-
ods are needed. For a more general introduction to the aliasing problem in computer graphics,
see e.g. [16]. Nonlinear mappings such as projective mappings require space variant filters,
whose shape varies as they move across the image. Space variant filters are more complex and
less well understood than space invariant filters. For texture filtering, those methods rely on the
approximation of a certain pre-image in texture space being mapped to one screen pixel. Pixels
are either regarded as rectangles or circles, resulting in pre-images approximated by quadrilat-
erals or ellipses. The most straightforward filtering technique is direct convolution, which
directly computes a weighted average of texture samples on the pre-image.

Figure 3.2: The compound mapping is the composition of the surface parametri-
zation and the viewing projection

2-D texture space

3-D object space

2-D screen space

parametrization

projection

compound mapping



13 3.   LITERATURE SURVEY

Mentioning the idea of texture mapping for the first time in [8], Catmull computes an
unweighted average of the texture pixels being mapped to each screen pixel. Though he pro-
vides few details, his filter appears to be a quadrilateral with a box cross section. An improve-
ment to this was presented by Blinn and Newell [6]. They used a better filter taking the form of
a square pyramid with a base width of 2x2 pixels in screen space. At each pixel the 2x2 region
is inverse mapped to the corresponding quadrilateral in texture space. The values in the texture
pattern within the quadrilateral are then weighted by a pyramid distorted to fit the quadrilateral
and summed. A more sophisticated filter was proposed by Feibush, Levoy and Cook [15]. An
arbitrary filter function is centered on each pixel and a bounding rectangle is found. Instead of
mapping the filter to texture space, only the bounding box is transformed to texture space. Then
all corresponding texture values are mapped to screen space and a weighted average is formed
using a two dimensional lookup table of the filter indexed by each sample’s location. Since the
filter is in a lookup table, any high quality filter can be used. Heckbert proposed the elliptical
weighted average (EWA) in [21], which is discussed in [25] in more detail as well. This tech-
nique assumes overlapping circular pixels in screen space and maps them to arbitrarily oriented
ellipses in texture space. Similar to Feibush’s approach, the filter is stored in a lookup table, but
instead of mapping texture pixels to screen space, the filter is mapped to texture space. In con-
trast to Feibush’s method, the filter table indices are computed incrementally such that it is not
necessary to map each pixel from screen space to texture space or vice versa, as in Feibush’s
method.

Direct convolution methods often are extremely slow, since a pixel pre-image can be arbi-
trarily large along silhouettes or at the horizon of a textured plane. To speed up the process, the
texture can be prefiltered in order to reduce the number of texture samples that have to be
accessed for each screen pixel during rendering. Two data structures have been used for prefil-
tering: image pyramids [14][59] and integrated arrays [12]. Several methods for prefiltering tex-
tures are summarized below, each making its own trade-off between speed and filter quality.

An early method using a pyramidal data structure was proposed by Dungan [14]. The pyra-
mid is built by filtering the texture to resolutions of powers of two. To filter an elliptical texture
area one of the pyramid levels is selected on the basis of the average diameter of the ellipse and
that level is point sampled. This idea was improved by Williams in [59] by proposing a trilinear
interpolation scheme for pyramidal images. Bilinear interpolation is performed over two levels
of the pyramid followed by linear interpolation between them. This filter has a constant cost of
8 pixel accesses and 7 multiplies per screen pixel. Williams also introduced a particular layout
for color image pyramids called the mipmap (mip stands for ‘multum in parvo’). Greene sug-
gested to combine the EWA filter with an image pyramid. Unlike other prefiltering techniques
such as trilinear filtering, this approach allows arbitrarily oriented ellipses to be filtered, yield-
ing higher quality. As an alternative to the pyramidal filtering techniques, Crow proposed the
so called summed area table [12], which allows orthogonally oriented rectangular areas to be
filtered in constant time. The original texture is pre-integrated in the u and v directions and
stored in a high-precision summed area table. To filter a rectangular area the table is sampled in
four places.

3.1.3   Image Warping

3.1.3.1   General Image Warping Techniques

Available real time rendering systems are designed to render every frame from scratch even
though smooth frame sequences contain a great amount of coherence. It has been observed that
this process can be accelerated significantly by reusing image data instead of considering the
complete geometric description of the scene to generate new frames, thus exploiting spatial and
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temporal coherence. By measuring the geometric and photometric error induced by this approx-
imation, it can be determined whether image data must be refreshed or not. In this subsection,
a list of techniques is summarized each using different kinds of image based information and
associating it with geometric primitives in a different way. But common to all of them is the
underlying mathematics used to reproject the image data to synthesize new views, which is basi-
cally the same as used for texture mapping. In fact, some of the techniques simply use hardware
texture mapping facilities to achieve this task. The techniques described are commonly summa-
rized as image warping techniques. A comprehensive coverage of all aspects of image warping
is provided in [61].

In [31], Maciel and Shirley describe a visual navigation system which uses texture mapped
primitives to represent clusters of objects to maintain high and approximately constant frame
rates. Together with traditional LOD representations, the textured clusters are called impostors.
An impostor is defined as an entity that is faster to draw than the true object, but retains the
important visual characteristics of the true object. The key issue is how to decide which impos-
tors to render to maximize the quality of the displayed image without exceeding a user-specified
frame time. In contrast to this approach, where all impostors are generated in a pre-process,
Schaufler introduced the dynamically generated impostors in [46]. In his work, an impostor is
always represented by an opaque image of an object mapped onto a transparent polygon
(fig. 3.3). He points out that as the number of objects increases the approach with pre-generated
impostors becomes impractical because of texture storage requirements. Moreover, texture res-
olution cannot be chosen properly in advance and the discretizations of viewing directions
limits the points of view for which impostors can be used. Instead he proposes to generate
impostors per object and during render time, arguing that the generation of an impostor is hardly
more costly than rendering the object into the final image. To determine the validity of an
impostor, he approximates the maximum angle under which the user would see any point on the
object and the image of the point on the impostor. As long as this angle remains below a certain
threshold the impostor is considered valid. He observes that if the viewpoint is not translated
but only the viewing direction is changed impostors will always be valid. In that case the pro-
jection of the textured rectangle onto the screen accounts for the changed intersection of the pro-
jection rays with the viewing plane.

The image warping approaches described so far all treat the images as planar polygons.
Depth priorities are assigned to individual image layers in order to composite multiple layers.
But this does not correctly resolve visibility in general, since only one object can be in front of
the other. Replacing complex objects by partially transparent textured polygons also produces
visibility errors because polygons mutually intersect or intersect other geometry. Another short-

Figure 3.3: An object (a) and its impostor (b). The impostor is seen from a dif-
ferent viewpoint than the original geometry.

(a) (b)
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coming of warping planar images is that parallax as well as disocclusion effects can’t be simu-
lated.

Schaufler proposed a rendering primitive called nailboards that solves the visibility problem
[47], extending his concept of dynamically generated impostors [46]. Nailboards are polygons
onto which an RGB∆ texture is mapped to mimic the appearance of a complex object. For every
pixel in the texture (texel) the additional component ∆ measures how far the point of the object
depicted on this texel deviates from the polygon. When the texture of the nailboard is generated
from object geometry, the ∆ values are taken from the depth buffer and stored in the texture
together with the RGB values of the image. When the nailboard is rendered, the ∆ values are
used to change the depth values of the polygon into the depth values of the object represented
by the nailboard (fig. 3.4). Schaufler describes the transformations needed in order to determine
the depth buffer values when a nailboard is rendered, thus allowing correct determination of vis-
ibility using a depth buffer. He points out that nailboards can be mixed arbitrarily with polygo-
nal rendering because they fully integrate into depth buffered rendering.

Another extension of [46] is the concept of layered impostors [48]. A dynamically generated
impostor replaces an object by one transparent polygon onto which the opaque image of the
object is mapped. A layered impostor consists of many such transparent polygons. On every
polygon all drawn texels show those parts of the surface of the object which are at a similar dis-
tance to the viewer of the polygon, i.e. the pixels of one single image are distributed to multiple
texture layers according to their depth values (fig. 3.5). Since layered impostors provide approx-
imate depth values it is possible to resolve visibility correctly. A similar error metric as with
single layer impostors is used to estimate the accuracy of layered impostors, but they can be
reused by an order of magnitude longer. 

Figure 3.4: From left to right: objects represented by nailboards with 2,4 and 8
bits to represent deviation from nailboard polygon. Far right: visibil-
ity artifacts with impostors (figure from [47]).

Figure 3.5: Principles of layered impostors (figure from [48])
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In [36], McMillan observes the computational advantage of perspective mappings consid-
ered as image warping functions [25,61] over pure geometric representations in computer
graphics. The warping equations are uniquely invertible and well suited for incremental evalu-
ation. But since single perspective transforms can only convey planar shapes, textures are gen-
erally considered as merely an augmentation of the shading process rather than a shape
description. He consequently develops a modified perspective mapping function that can repre-
sent shape as well as changes of viewing positions. The resulting warping equation takes the
form of a perturbation of the planar perspective mapping. The perturbation is given through a
generalized disparity term containing the depth information. McMillan explains the relationship
of this generalized disparity to the well known stereo disparity. The second important contribu-
tion by McMillan is an algorithm that computes visibility without depth [35,34] for his new
warping technique. When introducing a perturbation to the perspective mapping, it is not invert-
ible any more, meaning that the one-to-one correspondence between pixels in the reference and
the reprojected image is lost (fig. 3.6). Consequently, holes appear and a visibility problem
arises. Interestingly enough, the latter can be solved independent of any information relating to
the geometry of the scene, including depth information. McMillan describes how to compute a
particular drawing order in which the last surface written at each pixel corresponds to the visible
surface at that point, similar to the classic painter’s visibility algorithm [45]. The drawing order
can be determined by finding the projection of the desired viewpoint on the surface to be
reprojected. A prove of the algorithm’s correctness is provided in [34]. Approaches to the prob-
lem of reconstructing the holes are discussed later in this section. A number of applications that
use McMillan’s warping technique were developed, some of the work is mentioned in the next
section. In [37] a variation of the algorithm is applied to reproject a cylindrical image to a planar
view, this paper is described in more detail in section 3.1.5.

Two new image based primitives, namely sprites with depth and layered depth images, were
introduced by Shade in [51]. Their work relies heavily on McMillan’s ordering algorithm
described above. They start with explaining the concept of sprites, which is basically the same
as Schaufler’s concept of impostors: a textured polygon containing some portion of the scene
projected to the image plane. This concept is enhanced by adding an out-of-plane displacement
component at each pixel in the sprite, resulting in a primitive very similar to Schaufler’s nail-
boards. But instead of just using the depth information for correct determination of visibility,
they describe a warping algorithm that uses this information to represent the shape of the warped
objects i.e. simulates parallax effects, too. As mentioned above, in this case the mapping func-
tion is not invertible any more. When forward mapping the source image to the destination
image, visibility ambiguities as well as holes appear in the latter. McMillan provides an elegant
solution to the visibility problem, but does not mention the holes problem in either [36,35] or

Figure 3.6: McMillan’s warping process: (a) reference image (b) lines describ-
ing translation of points when warped (c) destination image with
holes, but correct parallax (figures from [36])

(a) (b) (c)
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[34], though some solutions are proposed in [33] and [37]. In Shade’s work, this problem is
addressed by using a two step algorithm that first forward maps the original displacements and
then backward maps the sprite using the new view based displacements. He points out that the
use of sprites with depth provides a fast means to warp planar or smoothly varying surfaces, but
more general scenes require the ability to handle more general disocclusions and large amounts
of parallax as the viewpoint moves. Such problems can be solved by the layered depth image
(LDI) representation. Like a sprite with depth, they store depth values for each pixel along with
its color (i.e. a depth pixel), but in addition contain potentially multiple depth pixels per pixel
location. The farther depth pixels, which are occluded from the LDI center, will act to fill in the
disocclusions that occur as the viewpoint moves away from the center. LDIs are rendered using
a fast incremental warping algorithm. It forward maps pixels and splats them into the output
image. The warping algorithm as well as a method for calculating the splat size, which is based
on an estimated size of the reprojected pixel, are described in detail. They use McMillan’s order-
ing algorithm to resolve visibility. Moreover, a real-time rendering system is described perform-
ing two tasks in parallel: a low-priority task constructs layered depth images from multiple
prerendered images containing a single depth value and a high-priority task generates images at
interactive frame rates using the LDIs.

An overview of the image warping techniques described so far including texture mapping as
described in section 3.1.2.2 is given in table 3.2.

The so called view interpolation method [10] is a slightly different approach to the problem
of synthesizing new views using image data. Instead of warping one or multiple reference
images to generate a new view, new views are interpolated between several source images using
an image morphing technique. Image morphing essentially relies on pixel-by-pixel correspon-
dences between preacquired images called morph maps, which have to be precomputed as well.
Using these maps, corresponding pixels are linearly interpolated to create in-between images at
interactive frame rates. The interpolation is an approximation to the transformation of the pixel
coordinates by a perspective mapping. They state that when the viewpoint moves parallel to the
viewing plane, the linear interpolation produces an exact solution. Since the interpolation is a
forward mapping process, overlaps and holes may occur in the interpolated image, much as with

Table 3.2: Overview of image warping techniques

Method Mapping Func-
tion

Mapping Direc-
tion

Depth Information Visibility Cal-
culation

Hole Filling

Hardware supported 
texture mapping

perspective backward no backward 
mapping

backward 
mapping

Dynamic Impostors perspective backward no backward 
mapping

backward 
mapping

Nailboards perspective backward one value per pixel, for visibil-
ity calculation

z-buffer backward 
mapping

Layered Impostors perspective backward depth per layer, for visibility 
calculation, parallax and inter-
object disocclusion

z-buffer backward 
mapping

Images with gener-
alized disparity val-
ues

perspective 
with disparity 
perturbation

forward one disparity value per pixel, 
for parallax

list ordering multiple ref-
erence imag-
es

Sprites with Depth perspective 
with depth

two-pass for-
ward-backward

one per pixel, for parallax list ordering two-pass 
mapping

Layered Depth Im-
ages

perspective 
with depth

forward multiple values per pixel, for 
parallax and disocclusion

list ordering splatting



3.1   REAL TIME RENDERING TECHNIQUES 18

image warping techniques. They propose to use multiple source images to avoid holes. Other-
wise holes can be filled by interpolating from neighboring pixels. Another possibility would be
to treat a pixel as a little square, interpolate its vertices and scan convert its area in the new
image, but they consider this method too costly. The visibility problem caused by overlaps is
solved by establishing a list-priority for pixels, guaranteeing correct visibility for a certain range
of viewpoints through rendering order. Moreover, they observe that since adjacent pixels tend
to move together in the mapping, a block compression scheme such as a quadtree can be applied
to compress the morph map. The priority for correct visibility can then be assigned per block
instead of per pixel.

3.1.3.2   Applications of Image Warping

A myriad of applications for the image warping techniques summarized in the previous sec-
tion has been developed. Some examples are collected in this subsection. Rendered images of
parts of a scene can be used elegantly as dynamically created view-dependent level-of-detail
(LOD) models. This is the basic approach to accelerate rendering of the two papers described
next.

Shade et al. presented a method that utilizes path coherence to accelerate walkthroughs of
geometrically complex static scenes [50]. A BSP-tree that hierarchically partitions the geomet-
ric primitives is constructed as a preprocessing step. In the course of a walkthrough, images of
nodes at various levels of the hierarchy are cached for reuse in subsequent frames. A cached
image is reused by texture-mapping it onto a single quadrilateral that is drawn instead of the
geometry contained in the corresponding node. Clearly, a cached image is a dynamically gen-
erated impostor in the sense of [46]. But unlike those impostors, images are cached using a spa-
tial rather than an object hierarchy. Thus they represent regions of the scene rather than
individual objects. Spatial partitioning allows depth-sorting the cached images and therefore
correct visibility calculation avoiding occlusion artifacts. In fact, Schaufler presented a method
[49] very similar to Shade’s. The two approaches differ mostly in the formulation of the error
metric in the cost-benefit analysis performed in order to decide whether or not to cache an
image.

Sillion et al. describe a system for real-time visualization of urban scenery [52]. They intro-
duce a meshed impostor representation for the distant geometry in a complex scene. Meshed
impostors combine three dimensional geometry to correctly model depth discontinuities and
parallax, and textures to rapidly display visual detail. They consist of the image of the distant
geometry, which is used as a texture, as well as a triangular mesh, which is used to approximate
the geometry (depth) of the distant scene. They describe an algorithm to manipulate those
impostors in the context of a city walkthrough considering the special properties of such scenes.

Figure 3.7: Meshed impostors (a) texture, (b) depth image, (c) triangle mesh.
(Figures from [52])

(a) (b) (c)
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In [33], a more general method to re-render a scene from nearby viewpoints is proposed. This
work applies McMillan’s algorithm to perform warping of images containing prerendered
scenes, so called reference images. The problems of McMillan’s algorithm mentioned in
section 3.1.3.1 are attacked by extending it in two ways. On the one hand they avoid occlusion-
related artifacts by warping two different reference images and compositing the results
(fig. 3.8). If a region of the scene is visible in any of the reference frames, it can be correctly
placed in the derived frame. On the other hand, they develop heuristics to reconstruct portions
of the scene which happen to be occluded in both reference images. They propose to apply a
reconstruction kernel with varying size depending on the disparity and normal vector orienta-
tion of the corresponding reference pixel. This approach is a form of splatting. The second tech-
nique treats the reference frame as a mesh. Reconstruction occurs by rendering the mesh
triangles in the derived frame, linearly interpolating the original pixel colors across the recon-
structed mesh element. If the reference-frame mesh is treated as completely continuous, sur-
faces are implied at silhouette boundaries between foreground and background that almost
never actually exist. In the derived image, these surfaces appear as so called “rubber sheets”
stretching from the edge of the foreground object to the background object and falsely occluding
objects behind them. They developed a sophisticated compositing algorithm that takes a binary
decision for each pixel in the derived frame, the contribution of which reference image to use
in order to avoid occlusion and rubber sheet artifacts.

3.1.3.3   Hardware Architectures for Image Warping

If one doesn’t consider hardware support for texture mapping, not many hardware systems
for image warping have been implemented to date. Just two of them are described in this sub-
section.

It was observed (e.g. [46]) that as long as the viewpoint is not translated but only the direction
of view is changed, new views of a three dimensional scene can correctly be generated by a
planar perspective reprojection of a projected image of the scene. This observation is the basic
idea of Regan and Pose’s virtual reality address recalculation pipeline [44] as well. They pro-
posed a hardware architecture for virtual reality systems that guarantees very high frame rates
of 60+ Hz during user head rotation. Special purpose hardware called address recalculation
pipeline is used to perform orientation viewport mapping post rendering, meaning that the ori-
entation mapping occurs after the scene has been rendered rather than as the scene is being ren-
dered. For this purpose, the rendered view must completely encapsulate the user’s head, so

Figure 3.8: Warping with multiple reference images and compositing. (Figure
from [33])
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when the user’s head orientation changes the view from the new orientation can be computed
by the address recalculation pipeline from the prerendered image, the pipeline running at video
display rates. They chose the surface of a cube as the encapsulating rendering surface. Conse-
quently, the pipeline implements an image warping algorithm similar to the approaches
described in section 3.1.2.2. Additionally, they combine the address recalculation pipeline with
an image composition technique [41], which makes it possible to render different parts of a
scene at different rates. The determination of the rate at which objects have to be redrawn is
demand driven, meaning that an object is not redrawn until its image in the display memory has
changed by a predetermined threshold. This concept is particularly powerful in conjunction
with the post rendering image warping approach, since the rendered image of an object is almost
independent of user head rotations and does not need to be re-rendered in that case. 

The Talisman hardware architecture described by Torborg and Kajiya [54] employs a similar
combination of post rendering image warping and image composition. This system was tailored
to provide real-time 3-D graphics for the PC at a low cost in order to promote 3-D graphics as
an ubiquitous medium. Individually animated objects are rendered into independent image
layers which are composited together at video refresh rates to create the final display. During
the compositing process, a full affine transformation is applied to the layers to simulate 3-D
motion of objects. Layers are treated as flat polygons and presented to the compositor in back
to front order, allowing proper transparency calculations using an alpha buffer. The rendering
pipeline therefore contains a conventional polygon pipeline followed by an image warping and
composition unit. Whereas the polygon pipeline is designed to provide a pixel rendering rate of
40 Mpixels per second with anisotropic texturing and antialiasing, the image layer compositor
has a compositing rate of 320 Mpixels per second, in the best case multiplying the overall 3-D
rendering performance. It is due to the host software to assign objects to image layers and main-
tain a priority list of the layers to be updated based on perceptible error and object priorities.
This error is computed based on a least square error of selected points within the object, but little
detail on this is provided in the paper.

3.1.4   Object Representation with Point Samples

Warping algorithms rely on images as models for scenes or objects. Images therefore can be
regarded as point sampled representations of the underlying scene, whereas the point samples
are acquired by projecting the geometry to a projection manifold (e.g. plane, cylinder). Some
warping algorithms use more information than a conventional two dimensional image can pro-
vide, for example multiple depth values per pixel [51]. Still, those techniques have in common
that the representation of the scene is view-dependent and doesn’t provide a complete model
that can be used for rendering from arbitrary points of view. In this section, methods are
described that attempt to represent objects with point samples in a view-independent, object
rather than image centered fashion.

Levoy and Whitted considered the use of points as a display primitive and as a meta-primi-
tive to represent objects in [32]. They proposed an approach requiring two separate stages. The
first stage converts objects to points, usually in a preprocessing step, and the second renders
those points. They explain their ideas with a simple example, namely a flat rectangular polygon
represented as an array of points. The shading of each point is calculated using a color texture,
a reflectance map and a perturbation of its height coordinate. A rendering algorithm is described
that is able to display such data with the texture properly filtered, edges antialiased and the array
completely obscuring its background. The focus of this work is on the filtering technique
applied to achieve this. A radially symmetric Gaussian filter is centered at each image pixel and
the contribution of each source point to each pixel is determined by computing the distance from
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the point to the center of the pixel, then weighting that distance according to the Gaussian func-
tion. This can be regarded as a form of splatting [58]. Obviously, the sum of the contribution
varies, since the density of source points in close proximity to the center of a pixel varies with
the viewing transformation. This problem can be readily solved by summing the weights for
each pixel and then dividing the accumulated color by this sum. When a spatially perturbed tex-
ture is rendered, silhouette edges may occur at any place in the interior of the texture. Conse-
quently, variations in the sum of the contributions in a display pixel may result not only from
variations in the density of the source points but from partial coverage along silhouette edges as
well. In the latter case, partial coverage should be computed in order to perform proper blending
between texture and background color. They propose to discern between the two cases by pre-
dicting the density of source points in a neighborhood surrounding the current transformed
source point. The prediction is used to pre-normalize the contributions forcing them to sum to
unity. If they do not sum to unity despite the pre-normalization, it is because the texture only
partially covers the pixel. The sum of the contributions is then equal to the coverage and may
be used to control blending. They propose an algorithm for determining visibility that uses so
called bins, each basically storing the contributions of one surface to a display pixel. Once all
surfaces are rendered, the bins are merged to compute the final color of the pixel. They shortly
discuss the conversion of geometries into points. Their rendering algorithm requires that sur-
faces have to be contiguous and differentiable in a small neighborhood around each point but
nothing is required about the spacing or distribution of the points.

The delta tree representation was introduced by Dally, McMillan et al. [13] as an object-cen-
tered approach to image based rendering. It basically represents an object using a set of refer-
ence images with depth. They observe that typically several hundred images from different
viewpoints are required to represent an object and that rendering an image of an object at a new
viewpoint may involve reprojecting pixels from several of those images. Unlike this, an ideal
space-efficient representation would store exactly one sample for every potentially visible com-
ponent of an object down to some minimal solid angle of resolvability. Moreover, a representa-
tion that requires reading only one sample for each pixel rendered to the screen would provide
for optimal rendering performance. The delta tree stores images with depth of an object in a
multirooted tree. The images, so called views, are taken from certain viewpoints regularly dis-
tributed over a sampling sphere centered on the object. The sampling sphere is parametrized by
two angles (θ,φ) and a region on the sphere is defined as the area covered by a given range for
each angle. Each node in the tree corresponds to a region of the sampling sphere and stores one
particular image from a certain viewpoint lying on a corner of the region associated with the
node. Each child of a node inherits a quarter of the region of its parent and stores an image of
the object taken from that corner of its region that is also a corner of the region of its parent
(fig. 3.12, (a) and (b)). In order to provide a space-efficient representation, the image stored at
each node is compressed by discarding pixels that can be reconstructed by warping the images
of its ancestors to the viewpoint of the node. This results in so-called partial views. A partial
view is a sparse matrix of pixels, which is stored as a list of arrays or patches of 8x8 pixels.
These patches are transformed into the frequency domain using a DCT, thus elegantly enabling
image filtering and compression similar to JPEG. The structure of the delta tree implies that cer-
tain nodes contain views taken from identical positions on the sampling sphere. Consequently,
these views are shared among nodes by reference to ensure space-efficient representation. The
image synthesis process traverses a portion of the delta tree and reprojects the views associated
with the nodes visited to a new viewpoint. The traversal path is determined such that the object
as seen from the new viewpoint can be reconstructed with a minimal set of views (fig. 3.12, (c)).
This process thus performs a kind of implicit visibility culling by leaving out all the views that
are not relevant to the new viewpoint. The projected partial views are composited using a z-
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Buffer. Reprojection is achieved by applying McMillan’s warping algorithm [36] that uses fast
incremental calculations. In order to avoid holes, four neighboring points are connected to a
quadrilateral which is then scan converted. A limitation of representing objects with images
from a sampling sphere is that in general, views from inside the convex hull of an object cannot
be generated, because surfaces may be visible inside the object that are not visible from the sam-
pling sphere. In practice, they work around this problem by subdividing objects to render views
from inside the convex hull.

Grossman and Dally proposed an object representation consisting of a dense set of surface
point samples (fig. 3.10), which contain color, depth and normal information [23][22], thus
enabling Z-buffer composition, Phong shading and other effects such as shadows. They called
their system point sample rendering. The point samples are obtained by sampling orthographic
views on an equilateral triangle lattice. They present a method for determining the side length
of the triangles that guarantees so called adequate sampling of the object and thus controls sam-
pling density. The samples from each projection are grouped into blocks of 8x8 samples and a
greedy algorithm is used to collect a suitable subset of all blocks needed to represent the whole
object but avoiding redundancy.

The blocks can be projected to screen using a fast incremental warping algorithm similar to
the approaches summarized in section 3.1.3. The fundamental challenge of this technique is the

Figure 3.9: The delta tree: (a) Each node corresponds to a region of the viewing
space, the whole tree covers (θ,φ)=[0..45,0..45]. (b) The associated
tree structure. (c) Traversal path to display a new view from point p.
(Figure from [13])

Figure 3.10: An object in (a) and it representation as a dense set of surface point
samples in (b). (Figure from [22])

(a) (b) (c)

(a) (b)
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on-screen reconstruction of continuous surfaces. They propose a method for detecting gaps in
projected surfaces and propose to use a push-pull algorithm similar to the one described in [18]
in order to reconstruct the surfaces. This problem is not specific to point sample rendering; it is
the general problem of image reconstruction given incomplete information, or more general the
problem of scattered data interpolation. The described rendering process includes sophisticated
visibility testing based on the blocks of samples. For each block, they calculate a visibility cone
for fast backface culling and a visibility mask, which is a concept based on normal masks as
introduced by Zhang [63]. 

It is very instructive to compare this technique to the delta tree representation summarized in
the last paragraph. Instead of taking perspective projected views, point sample rendering
acquires samples from orthographic projections and consequently uses a different warping algo-
rithm. Samples are grouped in 8x8 blocks as well, but there is no structure such as the delta tree
that organizes those blocks in a hierarchical fashion. Instead of the implicit visibility culling
achieved by traversing the tree, other techniques for visibility computation are applied. Further-
more, the push-pull algorithm used in point sample rendering implements a much more efficient
surface reconstruction technique than the simple quadrilateral rasterization performed in the
delta tree approach.

The concept of surfels (surface elements) was developed at MERL [42,57] and is very sim-
ilar to the point sample rendering approach by Grossman and Dally. The idea was inspired by
the Caviar rendering tool, which was developed by Animatec [2]. In fig. 3.11, a sample image
of an object rendered with the Caviar player is shown. The player provides interactive frame
rates on a Pentium class PC without using dedicated graphics hardware.

Objects are represented by surface point samples containing color, depth and normal infor-
mation, similar to the point sample rendering approach [22]. The techniques differ mainly in the
sampling strategy and the data structure used to store the samples. Surfels are acquired by ras-
terizing the object on a regular three dimensional rectangular grid. The grid spacing is identical
to the pixel spacing of the frame buffer and thus controlling the sampling density. They store
the samples in sequential lists. The rendering process can then be accelerated by using incre-
mental calculations. Several solutions to the surface reconstruction problem are proposed. They
considered a shear-warp factorization of the viewing transformation [27]. The object is first pro-

Figure 3.11: Object rendered with Caviar Player by Animatec. The blocky arti-
facts are due to the box reconstruction filter used for splatting the
point samples.
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jected to a base plane by a shearing operation and then warped to the final view. This method
has the disadvantage that the object has to be resampled twice. Holes could be avoided by super-
sampling the object. This is a brute force method that significantly increases rendering cost. A
third alternative is to use a splatting method, where the contribution of one sample point is
spread to multiple pixels in the frame buffer. This is similar to the method proposed by Levoy
and Whitted [32], it anti-antialiases by blurring the colors of the object. The system developed
by Animatec also implements a splatting technique that uses a box reconstruction kernel. This
amounts to simply treating each point sample as a little square with varying size according to
the magnification of the object. In [42], some work on physics based motion and deformation
of surfel objects is presented as well.

The layered depth cube representation was introduced by Lischinski and Rappoport in [30]
and can be regarded as an extension to Shade’s layered depth images [51]. This paper provides
some methodological contribution: it places image-based rendering, light field rendering and
volume graphics in a common framework of discrete raster-based scene representations. The
layered depth cube representation combines view-independent scene information and view-
dependent appearance information. All view-independent scene information (i.e. geometry and
diffuse shading) is represented using three orthogonal high-resolution LDIs. The view depen-
dent scene information is stored as a separate, larger collection of low-resolution LDIs
(fig. 3.12). They describe rendering algorithms that recombine these two components. The ren-
dering process consists of two stages: first, 3-D warping using the fast algorithm described in
[51] is applied to the view-independent LDIs. But since samples are not guaranteed to arrive in
back to front order, the simple splatting approach of [51] cannot be used. Instead, they apply a
simple heuristic to detect and fill holes using a ray tracing technique. This stage results in a pri-
mary image, which is a correct representation of the geometry of the scene as seen from the new
viewpoint. This image can be shaded using a local shading model, e.g. Phong’s model [43]. In
the second stage, reflections are calculated using one of the following two techniques. The first
alternative is called light-field gather and integrates the view-dependent low-resolution LDIs by
using them similar to environment maps. The second technique applies ray tracing through the
view-independent LDIs. The overall process doesn’t reach interactive frame rates, but provides
ray tracing-like image quality. The paper [30] hardly introduces any new techniques, but pre-
sents an appealing novel combination of different techniques resulting in a system with inter-
esting properties.

Figure 3.12: (a) A parallel LDI of a 2D scene. Pixel 6 stores scene samples a, b,
c, d, pixel 9 stores samples e, f, g, h. (b) the view-independent high-
resolution and (c) the view-dependent low-resolution LDI in 2-D.
(Figure from [30])
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An overview of the methods summarized in this section is given in table 3.3. For the layered
depth cube representation, only the first stage of the reconstruction algorithm is considered,
since the other methods don’t provide techniques similar to the light field gather or image based
ray tracing step.

3.1.5   Image Based Rendering Methods

This section summarizes techniques that show all the properties making up the image based
rendering paradigm as described in section 3.1.1. Unlike the image warping methods presented
in section 3.1.3, which use images as intermediate representations of the scene restricted to cer-
tain objects or certain viewpoints, scenes are completely modeled by images in these tech-
niques. This resembles the methods described in section 3.1.4, but in contrast to those object
centered approaches, the rendering systems described below are image centered. Moreover,
they don’t rely at all or not as much on geometrical information as the methods from
section 3.1.4. As a consequence, they provide all the advantages of the image based rendering
paradigm. Most important, the rendering cost is truly independent of scene complexity and the
acquisition of real scenes is achieved by sampling images, e.g. from a CCD-camera. On the
other hand, they are basically restricted to static scenes with static illumination, though some
papers make suggestions on how to work around this problem. A second problem appearing in
certain techniques is that the movement of the viewpoint is confined to particular locations.

The plenoptic function of Adelson and Bergen [1] can be used to formulate a concise prob-
lem statement for these image based rendering systems. The plenoptic function is a parame-
trized function for describing everything that is visible from a certain point in space. It can be
parametrized using seven parameters. Imagine an idealized eye which can be placed at any point
in space (Vx,Vy,Vz). From there any of the viewable rays can be selected by choosing an azimuth
and elevation angle (θ,φ) as well as a band of wavelengths λ, which should be considered. In
the case of a dynamic scene, the time t can additionally be chosen, at which the function should
be evaluated. This results in the following form for the plenoptic function:

(3.1)

Image based rendering systems can be completely described by specifying particular pro-
cesses for sampling, reconstruction and resampling of the plenoptic function. Most methods

Table 3.3: Overview of object representations with point samples

Method Sampling Data Structure for Storing Samples Warping Surface Reconstruction

Levoy example: regular 2-D 
grid; not described for 
the general case

example: 2-D array; not described 
for the general case

per point trans-
formation

splatting, uses estima-
tion of density of pro-
jected samples

Delta Tree multiple perspectively 
projected images

delta tree storing compressed partial 
views at its nodes; each consists of 
DCT transformed 8x8 blocks of 
samples

McMillan’s al-
gorithm per 
partial view

rasterization of quadri-
laterals

Point Sample 
Rendering

multiple orthographi-
cally projected images

8x8 blocks of samples; visibility 
mask per block

incremental 
warping per 
block

hierarchical z-buffer, 
push-pull filtering algo-
rithm

MERL Surfels rasterization on 3-D 
grid

linear list incremental 
offset warping

shear warp factoriza-
tion, supersampling or 
splatting

Layered Depth 
Cube

three orthographically 
projected LDIs

not described McMillan’s al-
gorithm

ray tracing

p P θ φ λ Vx Vy Vz t, , , , , ,( )=
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acquire samples only at a single point in time, which directly leads to the limitation to static
scenes and illumination as mentioned above.

The movie-map system by Lippman [29] is an early approach to navigate in virtual environ-
ments. The streets of a city are filmed from a set of points with a distance of only a few feet
between each other. Four cameras are used to shoot the views at every point, thereby giving the
user the ability to pan to the left and the right. At playback time, two videodisc players are used
to retrieve corresponding views to simulate the effect of walking. This system was restricted to
redisplaying stored images and therefore provided only limited navigability and interaction.
Lippman’s plenoptic function reconstruction technique can thus be characterized as a nearest
neighbor interpolation. When given a set of input parameters , the movie-

map system can select the nearest partial sample (i.e. image). This can also be interpreted as a
table based evaluation of the plenoptic function. Several other systems were developed (e.g. the
“Virtual Museum” [38]), which required that every displayable view was created and stored in
the authoring stage as well, thus having similar disadvantages.

Apple’s QuickTimeVR system [9] uses 360-degree panoramic images to compose a virtual
environment. The images are created with computer rendering, specialized panoramic cameras
or by stitching together overlapping photographs taken with a regular camera. The stitcher uses
a correlation based image registration algorithm to match and blend adjacent pictures, but no
details are provided on that. Panoramic images can be regarded as cylindrical environment maps
(c.f. [Greene:1986:AWP]). They describe a player for panoramic images that allows the user to
perform continuous panning in the vertical and horizontal directions. Obviously, the panoramic
images provide less than 180 degrees vertical field-of-view. The player performs continuous
zooming as well. It uses a warping algorithm that is able to display perspectively correct planar
projections from the cylindrical images at interactive frame rates, but this algorithm is not
described in the paper. Walking in 3-D space can be accomplished only by hopping to different
panoramic points. Notably, the authors focus on the overall design of the system rather than on
the technical details.

The plenoptic modeling system [37] was presented by McMillan and Bishop at the same time
as [9]. Moreover, it’s a very similar concept that uses cylindrical projections to represent the
samples of the plenoptic function as well. They describe the registration process in much more
detail than [9]. The process uses several planar projected images taken from a common point of
view and applies a sophisticated camera model and correlation methods to establish a mapping
function between any pair of those images. The images can thus be reprojected onto arbitrary
surfaces. Unlike [9], they make use of multiple cylindrical projections from different viewing
positions to eventually compute stereo disparities between cylinder pairs. This is achieved by
establishing a cylindrical epipolar geometry. Applying methods from computer vision, they get
an additional disparity image for each cylinder, which implicitly stores depth information for
each pixel and can be used in the rendering process to simulate parallax effects. The reconstruc-
tion algorithm is an extension to McMillan’s warping algorithm [36] that handles cylindrical to
planar projections. It integrates the disparity values into the rendering process to correctly sim-
ulate parallax effects. McMillan’s list ordering approach [35] is used to resolve visibility. Not
much information is given on the hole reconstruction problem. It seems that they use a splatting
approach as mentioned in their related work [33] and introduced by Westover [58]. This
involves computing the size of the projected kernel based on the current disparity value and the
derivative along the epipolar curves. In order to avoid occlusion artifacts, they warp multiple
reference images as described in [33] and combine them on a pixel-by-pixel basis according to
the smallest reconstruction kernel.

θ φ λ Vx Vy Vz t, , , , , ,( )
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Levoy and Hanrahan introduced the light field rendering method in [28]. This is a simple and
robust technique for generating new views of a scene from arbitrary camera positions without
depth information or feature matching, but simply by combining and resampling the available
images of the scene. The major idea behind the technique is a representation of the so-called
light field, which describes the radiance as a function of position and direction. This definition
is equivalent to the plenoptic function introduced by Adelson and Bergen [1]. Note that in
regions of space free of occluders (free space), this is a 4-D function since the radiance doesn’t
change along a ray in free space. 4-D light fields may be interpreted as functions on the space
of oriented lines. The crucial issue in choosing a representation of the 4-D light field is how to
parametrize the space of oriented lines such that it provides favorable properties. They propose
to parametrize lines by their intersection with two arbitrary planes and call this configuration a
light slab (fig. 3.13 (a)). By convention, the coordinate system on the first plane is (u,v) and on
the second plane is (s,t). They argue that this representation provides efficient geometric calcu-
lations. Most important, the inverse mapping of an image pixel to the parameters of the corre-
sponding line in the light slab is a projective map. Another issue related to the parametrization
is the sampling pattern. Assuming that all views are equally likely to be generated, then any line
is equally likely to be needed. In the so called line space, each line is represented as a point
(fig. 3.13 (b)). Thus all regions of line space should have an equal density of samples.

Light fields can easily be generated by assembling a collection of images. For synthetic
scenes, a 2-D array of images is rendered, each representing a slice of the 4-D light slab. The
center of projection of each image is placed at a sample location on the uv-plane and the per-
spective projection is sheared such that the xy samples of each image exactly lie on the sampling
locations on the st-plane. They shortly discuss the aliasing problem coming with this sampling
process and suggest a prefiltering method that has to be applied in 4-D line space. A method for
acquiring light fields from real scenes is presented as well. They built a special computer-con-
trolled camera gantry that positions the center of projection of the camera at the sampling posi-
tions on the uv-plane. The camera is panned and tilted to point to the center of the object. The
acquired image is reprojected to the st-plane using standard texture mapping. Light field arrays
are very large (fig. 3.14 (a)) and they have to be compressed in order to make creation, trans-
mission and display practical. Fortunately, they contain a high degree of redundancy in all four
dimensions and thus can be highly compressed. The compression process can be asymmetrical,
since compression is done in a preprocess and decompression has to be achieved in real time.
Moreover, decompression has to be possible with random access, since the set of samples that
have to be accessed to extract an image is dispersed in memory. They developed a compression
pipeline consisting of two stages: the first step is a vector quantization followed by an entropy
coding step (they simply use gzip) resulting in an overall compression ratio of about 120:1.

Figure 3.13: (a) The light slab representation. (b) Definition of the line space.
Each oriented line in Cartesian space is represented by a point in line
space. (Figures from [28])

(a) (b)



3.1   REAL TIME RENDERING TECHNIQUES 28

Decompression is performed by applying these two steps in reversed order. First, gzip decoding
is performed as the file is loaded into memory. Vector dequantization is then applied on the fly
as samples addressed by (u,v,s,t) coordinate tuples are requested by the display engine. The dis-
play engine extracts an image from the light slab given the image geometry by resampling a 2-
D slice of lines from the 4-D light field. Each line represents a ray through the eye point and a
pixel center. Once the (u,v,s,t) parameters of a line are calculated, the radiance has to be resam-
pled at those line parameters (fig. 3.14 (b)). A big advantage of the light slab representation is
that this inverse transformation from (x,y) to (u,v,s,t) reduces essentially to two texture coordi-
nate calculations per ray, which is an operation accelerated by most of today’s graphics hard-
ware. They tried out different interpolation techniques for resampling the radiance such as
nearest neighbor interpolation, linear interpolation in uv only or quadrilinear interpolation in
uvst. Quadrilinear interpolation coupled with the proper prefiltering generates images with
fewer artifacts than the other techniques. However, it is obviously more expensive. A major lim-
itation of the light field rendering approach is that the observer is restricted to regions of space
free from occluders. It is proposed to address this by stitching together multiple light fields
based on a partition of the scene geometry.

At the same time as [28], the Lumigraph system [18] was published by Gortler et al. This
approach is very similar to light field rendering. They propose the same parametrization of the
space of oriented lines in 3-D space free of occluders using the intersection points on two par-
allel planes. They use the ray coordinates for an illustrative analysis of the parametrization,
which is equivalent to the so-called ray space of [28]. The theoretical aspects of the discretiza-
tion step is discussed in more detail than in [28]. They describe the general problem of project-
ing a continuous multidimensional function to a finite dimensional function space. It is
mentioned that this projection can be interpreted as point sampling the continuous function after
it has been low pass filtered with the dual of the reconstruction kernel. Unlike Levoy’s work,
which doesn’t rely on any kind of geometric information about the scene, they developed a
method for integrating depth information into the discrete Lumigraph representation. Given a
depth value at which a ray intersects a surface of the object, the corresponding basis functions
can be reshaped to match the continuous Lumigraph function more closely. This idea of shaping
the support of the basis functions to match the structure of the function being approximated is
well known from finite element methods, e.g. from the radiosity method. In the Lumigraph sys-
tem, depth corrected quadrilinear basis functions are used. They describe the acquisition of a
Lumigraph representation from synthetic and real scenes. For synthetic scenes, they apply the
same technique as [28]. Whereas Levoy et al. developed a computer-controlled camera gantry
to acquire real scenes, the Lumigraph system uses a regular hand-held camera. To achieve this
goal, the camera has first to be calibrated to determine the mapping between directions and
image coordinates. Next, the pose of the camera has to be computed. Both problems have been

Figure 3.14: (a) Typical light slab configurations and storage requirements. (b)
The resampling process. (Figures from [28])

(a) (b)
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subject to extensive research in the area of computer vision. Gortler et al. use an algorithm orig-
inally developed by Tsai [56] and extended by Willson [60]. The approximate shape of a real
object needed to perform the depth correction mentioned above is computed using the octree
construction algorithm [53]. When acquiring a Lumigraph, each pixel in an input image repre-
sents a single sample of the Lumigraph function. Since a hand-held camera is used, the sample
points in the domain cannot be pre-specified or controlled. In addition, there is no guarantee that
incoming samples are evenly spaced. Constructing a Lumigraph from these samples is similar
to the problem of multidimensional scattered data approximation. But the distribution of the
data samples have two qualities complicating the process: first, sampling density can be quite
sparse with large gaps, and second, sampling density is typically very non-uniform. They devel-
oped an algorithm combining concepts of a hierarchical polynomial fit filter by Burt [7] and a
method proposed by Mitchell [40] that is able to handle non-uniformly distributed samples.
Their novel algorithm proceeds in three phases. The first is called splat, whereas the sample data
is used as a first approximation of the discrete Lumigraph representation. Second, the pull phase
computes coefficients for basis functions at a hierarchical set of lower resolution grids by com-
bining coefficients from higher resolution grids. The third phase is called push. It combines
information from each lower resolution grid with the next higher resolution grid filling the gaps
and avoiding excessive blurring. The reconstruction process described by Gortler et al. is again
very similar to the one proposed by Levoy and Hanrahan. Texture mapping hardware is used to
accelerate the process. Unlike Levoy and Hanrahan, the compression problem is discussed only
shortly and no implementation is described. With a resolution of 32x32 on the (s,t) and 256x256
on the (u,v) plane and six pairs of parallel planes building up a complete viewing cube, an
uncompressed Lumigraph typically requires 1.125 GB of storage. They state that preliminary
experiments suggest that a 200:1 compression ratio reducing the storage requirements to under
6MB could be achieved with almost no degradation in image quality, which seems to be con-
sistent with the results from [28].

None of the two techniques summarized above is able to display dynamic scenes or varying
lighting conditions. The second problem is addressed by [62]. Wong et al. describe an image-
based rendering system with controllable illumination, which is based on the light field and
Lumigraph systems. Following the terminology of Levoy and Hanrahan, they extend the 4-D
light field by adding two more dimensions that represent the bidirectional reflectance distribu-
tion function (BRDF) for each 4-D ray stored in the light field. They call this an apparent BRDF
since it can be interpreted as the BRDF of a pixel on the st-plane that captures the aggregate
reflectance of objects visible through that pixel window. Whereas the light vector from a light
source defines one direction of the BRDF, the viewing direction is implicitly defined by the
coordinates of the corresponding ray in the light field. They argue that the rendering and storage
cost of this approach doesn’t depend on the scene complexity, the technique avoids aliasing
problems and can be easily integrated in the light slab data structure. It is pointed out that the
apparent BRDF represents the response in the presence of the rest of the scene, not merely a
surface reflectivity. Consequently, if one works with views that include shadows, they appear
in the reconstruction as well. The BRDF is measured by capturing images of synthetic or real
scenes under different illumination conditions. A directional light source is cast on the scene
from as many as 400 different directions and the fraction of the reflected light on each sampling
ray is measured. Only a partial BRDF has to be stored for each ray in the light field, which is
parametrized by two angles for the direction of the incoming light. Thus, for each ray the partial
BRDF can be approximated using spherical harmonics. With this representation, 16 to 25 coef-
ficients were found to be sufficient to approximate the BRDF. It thus requires far less storage
than a table with entries for each BRDF sample. The reconstruction process computes the inten-
sity for each ray in the light field by summing up the weighted contribution from multiple light
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sources. Directional light sources can be handled easily. For point light sources, additional
depth information is needed. It is possible to apply light sources from arbitrary directions and
with different intensities. The main disadvantage of this approach is the huge storage require-
ment, which is a multiple of the basic light field or Lumigraph representation.

An overview of the image based rendering systems summarized in this subsection is shown
in table 3.4.

Table 3.4: Overview of image based rendering systems

Method Parametrization of Ple-
noptic Function by Ray 
Intersection of ...

Attributes Available 
per Sample

Reconstruction

Perspective Warping point and plane color, optionally depth plane to plane warping (optionally with 
depth)

Movie Maps point and plane, multiple 
images

color image indexing

QuickTimeVR point and cylinder, multi-
ple images

color cylinder to plane warping

Plenoptic Modeling point and cylinder, multi-
ple images

color, disparity value cylinder to plane warping with disparity 

Light Field Rendering plane and plane (light 
slab), 1 to 6 slabs

color inverse mapping, resampling with 
quadrilinear filtering

Lumigraph plane and plane, 1 to 6 
pairs of planes

color, depth value inverse mapping with depth correction, 
resampling with quadrilinear filtering

Light Field Rendering 
with Controllable Illumi-
nation

plane and plane (light 
slab), 1 to 6 slabs

color, partial BRDF inverse mapping, resampling with 
quadrilinear filtering, BRDF reconstruc-
tion
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4
4Conclusion

In this report, a survey and classification of real time rendering methods is presented. To this
aim, the rendering process is divided into four conceptual components, namely scene descrip-
tion, discretization, representation and rendering. The geometry based and the image based ren-
dering paradigm are defined by specifying a characteristic property corresponding to each of the
four steps. It is shown, that almost all rendering methods make use of properties associated with
either of the two paradigms. In fact, the methods are classified by determining for each of the
four conceptual concepts, whether the geometry based or the image based characteristic is used.
The rendering methods are summarized in four groups, starting with geometry based rendering,
then image warping techniques, followed by methods relying on a point sample representation
and finally image based rendering methods. For each group, the most important contributions
are described, compared and the results collected in a table for overview.

The focus of this report is to give a survey of existing, state-of-the art rendering techniques.
The goal of the ongoing research will be to develop algorithms for efficient rendering of 3-D
scenes and suitable object representations. The method envisioned should provide a better
image quality to computation cost ratio than previous techniques. Moreover, it should facilitate
multi-resolution representation of objects as well as object deformation.
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