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Abstract

We address the super-resolution problem: how to estimate missing high spatial

frequency components of a static image. From a training set of full- and low-

resolution images, we build a database of patches of corrsponding high- and

low-frequency image information. Given a new low-resolution image to enhance,

we select from the training data a set of 10 candidate high-frequency patches

for each patch of the low-resolution image. We use compatibility relationships

between neighboring candidates in Bayesian belief propagation to select the

most probable candidate high-frequency interpretation at each image patch.

The resulting estimates of the high-frequency image are good. The algorithm

maintains sharp edges, and makes visually plausible guesses in regions of texture.
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Abstract | We address the super-resolution prob-

lem: how to estimate missing high spatial frequency

components of a static image. From a training set of

full- and low- resolution images, we build a database

of patches of corrsponding high- and low-frequency

image information. Given a new low-resolution im-

age to enhance, we select from the training data a

set of 10 candidate high-frequency patches for each

patch of the low-resolution image. We use compati-

bility relationships between neighboring candidates in

Bayesian belief propagation to select the most proba-

ble candidate high-frequency interpretation at each

image patch. The resulting estimates of the high-

frequency image are good. The algorithm maintains

sharp edges, and makes visually plausible guesses in

regions of texture.

I. Introduction

One goal of computer vision is to infer the underlying

\scene" which renders to the observed \image". The scene

might be a description of lighting, shape and reectance. The

image might be a line drawing or a photograph or a video

sequence. One can also treat a signal processing problem in

this estimation theory framework: what are the missing high

frequency details (scene) implied by a given low-resolution pic-

ture (image)?

It is typically too complex to estimate the scene correspond-

ing to an entire image all at once. A common approach is to

form interpretations of local image regions, and then propa-

gate those interpretations across space (eg, [25, 1]).

We follow that approach in a probabilistic framework. We

store a large training set of candidate local interpretations for

patches of image data. We also determine the compatibility

between neighboring scene interpretations, forming a Markov

network model of the image and the underlying scene (Fig. 1).

Given new image data, we �nd an approximation to the most

probable scene interpretation using Bayesian belief propaga-

tion [20, 26].

We call this approach to vision problems VISTA, Vision

by Image-Scene TrAining. Journal [9] and conference reports

[7, 8] supplement this workshop manuscript. Here, we focus

on one application, that of estimating high resolution detail

from low resolution images.

II. Super-resolution

For the super-resolution problem, the input image is a low-

resolution image. The scene to be estimated is the high reso-

lution version of the same image. (Note this is di�erent than

1Present address: MIT Media Lab, 20 Ames St., Cambridge,
MA 02139

another problem sometimes called super-resolution, that of

estimating a single high resolution image from multiple low-

resolution ones). A good solution to the super-resolution prob-

lem would allow pixel-based images to be handled in an al-

most resolution-independent manner. Applications could in-

clude enlargment of digital or �lm photographs, upconversion

of video from NTSC format to HDTV, or image compression.

At �rst, the task may seem impossible|the high resolution

data is missing. However, we can visually identify edges in the

low-resolution image that we know should remain sharp at

the next resolution level. Furthermore, the successes of recent

texture synthesis methods [14, 6, 29, 24], gives us hope that

we might handle textured areas well, too.

Others [23] have used a Bayesian method for super-

resolution, making-up the prior probability. In contrast,

the VISTA approach learns the relationship between sharp

and blurred images from training examples, and, we believe,

achieves better results. Among non-Bayesian methods for

super-resolution, fractal image representation [22] (Fig. 8c) in

e�ect gathers training data from only one image, which may

not be adequate. Selecting the nearest neighbor from training

data [21] (Fig. 6a) omits important spatial consistency con-

straints.

In our approach, training data provides candidate high-

resolution explanations for the low-resolution image data.

Modelling the image as a Markov network, Bayesian belief

propagation quickly �nds estimates for the most probable cor-

responding high-resolution explanation.

III. Belief Propagation

For given image data, y, we seek to estimate the underlying

scene, x (we omit the vector symbols for notational simplicity).

We �rst calculate the posterior probability, P (xjy) = cP (x; y)

(for this analysis, we ignore the normalization, c = 1

P (y)
, a

constant over x). Under two common loss functions [2], the

best scene estimate, x̂, is the mean (minimum mean squared

error, MMSE) or the mode (maximum a posteriori, MAP) of

the posterior probability.

Fig. 1: Markov network for vision problems. Observations, y, have

underlying scene explanations, x. Lines in the graph indicate sta-

tistical dependencies between nodes.



For networks without loops, the Markov assumption leads

to simple \message-passing" rules for computing the MAP

and MMSE estimates [20, 27, 16]. To derive these rules, we

�rst write the MAP and MMSE estimates for xj at node j by

marginalizing (MMSE) or taking the maximum (MAP) over

the other variables in the posterior probability:

x̂jMMSE =

Z
xj

xjdxj

Z
all xi, i 6= j

P (x; y)dx (1)

x̂jMAP =
argmax

[xj ]

max

[ all xi, i 6= j ]
P (x; y): (2)

For a Markov random �eld, the joint probability over the

scenes x and images y can be written as [3, 13, 12]:

P (x; y) =
Y

neighboring i;j

	(xi; xj)
Y
k

�(xk; yk); (3)

where we have introduced pairwise compatibility functions, 	

and �, described below. The factorized structure of Eq. (3)

allows the marginalization and maximization operators of

Eqs. (1) and (2) to pass through compatibility function factors

with unrelated arguments.

Consider the example network of three nodes, x1, x2, and

x3, connected in a chain, with a corresponding yi node at-

tached to each xi node. We have

x
1MAP = argmaxx1maxx2maxx3

P (x1; x2; x3; y1; y2; y3) (4)

= argmaxx1maxx2maxx3

�(x1; y1)�(x2; y2)�(x3; y3)	(x1; x2)	(x2; x3)(5)

= argmaxx1�(x1; y1)

maxx2	(x1; x2)�(x2; y2)

maxx3�(x3; y3)	(x2; x3): (6)

Each line of Eq. (6) is a local computation involving only

one node and its neighbors. The analogous expressions for

x
2MAP and x

3MAP use the same local calculations. Iterating

those calculations lets each node j compute x
jMAP from the

messages passed between nodes.

This works for any network without loops; Eqs. (2) and (1)

can be computed by iterating the following steps [20, 27, 16].

The MAP estimate at node j is

x̂jMAP =
argmax

[xj ]
�(xj ; yj)

Y
k

Lkj ; (7)

where k runs over all scene node neighbors of node j. We

calculate Lkj from:

Lkj =
max

[xk]
	(xk; xj)�(xk; yk)

Y
l6=j

~Llkdxk; (8)

where ~Llk is Llk from the previous iteration. The initial ~Llk's

are 1. After at most one iteration of Eq. (8) per scene node

variable, Eq. (7) gives the desired optimal estimate, x̂jMAP .

The MMSE estimate, Eq. (2), has analogous formulae, with

the maxxk of Eq. (8) replaced by
R
xk
, and argmaxxj of Eq. (7)

replaced by
R
xj

xj . For linear topologies, these propagation

rules are equivalent to standard Bayesian inference methods,

such as the Kalman �lter and the forward-backward algorithm

for Hidden Markov Models [20, 18, 26, 16, 11].

For a network with loops, the factorization of Eqs. (1) and

(2) into local calculations doesn't hold. Finding the posterior

probability distribution for a Markov network with loops is

computationally expensive and researchers have proposed a

variety of approximations [13, 12, 16]. Strong empirical re-

sults in \Turbo codes" [17, 19] and recent theoretical work

[27, 28] provide support for a very simple approximation: ap-

plying the propagation rules derived above even in the net-

work with loops. Table 1 summarizes the results from [28, 10]:

(1) for Gaussian processes, the MMSE propagation scheme

will converge only to the true posterior means. (2) Even for

non-Gaussian processes, if the MAP propagation scheme con-

verges, it �nds at least a local maximum of the true posterior

probability. Furthermore, this condition of local optimality

for the converged solution of the MAP algorithm is a strong

one. For every subset of nodes of the network which form a

tree, if the remaining network nodes are constrained to their

converged values, the values of the sub-tree's nodes found by

the MAP algorithm are the global maximum over that tree's

nodes [28]. These experimental and theoretical results moti-

vate and justify applying the belief propagation rules even in

a Markov network with loops.

IV. Implementation

By blurring and downsampling sharp images, we construct

a training set of sharp and blurred image pairs. We linearly in-

terpolate each blurred image back up to the original sampling

resolution, to form an input image. The scene to be estimated

is the high frequency detail missing from the blurred image,

Fig. 4a, b.

A key to good performance with real images is to reduce

the modelling burden, which we do in two ways. (1) We be-

lieve the lowest frequencies of the blurred image don't predict

the high frequencies of the scene, and we don't want to have

to learn the image/scene relationship for all possible values of

the low frequencies. So we bandpass �lter the blurred image.

(2) We believe that the relationship between the highest and

lower frequencies in an image is the same for di�erent image

contrasts, just multiplicatively scaled in image intensity. We

don't want to have to memorize that relationship for all possi-

ble values of local contrast, so we normalize both the bandpass

and highpassed images by the local contrast [15] of the band-

passed image, Fig. 4c, d. We undo this normalization after

estimating the scene.

We extracted center-aligned 7x7 and 3x3 pixel patches,

Fig. 5, from the training images and scenes. Applying Prin-

cipal Components Analysis (PCA) [4] to the training set, we

summarized each 3-color patch of image or scene by a 9-d vec-

tor. We collected approximately 40,000 image/scene pair sam-

ples for the training data. For e�ciency, we pruned frequently

occurring image/scene pairs from the training set, based on a

squared error similarity criterion. Figure 5 shows some typical

training samples.

Given a new image, not in the training set, from which

to infer the high frequency scene, we found the 10 training

samples closest to the image data at each node (patch). The

10 corresponding scenes are the candidates for that node. We

evaluated 	(xj; xk) at 100 values (10 xj by 10 xk points) to

form a compatibility matrix for messages from neighbor nodes

j to k. [9] describes the method used to calculate 	(xi; xj) and

�(xk; yk) for the processed images shown here; Fig. 3 shows

a preferred, simpler approach. Given 	(xi; xj) and �(xk; yk),



Belief propagation Network topology

algorithm no loops arbitrary topology

MMSE rules MMSE, correct posterior marginal probs. For Gaussians, correct means, wrong covs.

MAP rules MAP Strong local max. of posterior, even for non-Gaussians.

Tab. 1: Summary of results from [28] regarding belief propagation after convergence.

we propagated the probabilities by Eq. (8), and read-out the

maximum probability solution by Eq. (7).

To process Fig. 7a, we used a training set of 80 images from

two Corel database categories: African grazing animals, and

urban skylines. For reference, Fig. 6a shows the nearest neigh-

bor solution, at each node using the scene corresponding to

the closest image sample in the training set. Many di�erent

scene patches can explain each image patch, and the near-

est neighbor solution is very choppy. Figures 6b, c, d show

the �rst 3 iterations of MAP belief propagation. The spatial

consistency imposed by the belief propagation �nds plausible

and consistent high frequencies for the tiger image from the

candidate scenes.

Figure 7 shows the result of applying this super-resolution

method recursively to zoom two octaves. The algorithm keeps

edges sharp and invents plausible textures. Standard cubic

spline interpolation, blurrier, is shown for comparison. Fig-

ure 8 shows other results of the algorithm, using di�erent

training sets.

Fig. 2: Showing sampled version of the problem to be solved. From

the training database, we gather a collection of candidate scene

patches. Each candidate scene can explain the observed image data,

possibly some better than others. Neighboring image patches have

their own sets of scene candidates. The compatibilities between the

candidates of neighboring scenes drives the optimal image interpre-

tation.

Fig. 3: Preferred method to compute compatibility function,

	(xk; xj). Where neighboring patches overlap (grey region), we

require that pixels in each patch have the same value, imposing

in 	(xk; xj) a mean zero Gaussian probability penalty for those

pixel di�erences. This is not a smoothness constraint per se; the

patch pixel values can be very \rough", provided they agree with

the values of the neighboring patch in the overlap region.

V. Summary

We treat the image processing problem of resolution enhance-

ment in the framework of low-level computer vision problems.

Training data provides multiple candidate high resolution ex-

planations at each local region of the image. Bayesian belief

propagation selects a spatially consistent set of those candi-

date high frequency explanations. The result is a plausible

high resolution extension of the original image.
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(a) Nearest neighbor (b) belief prop., iter. 0

(c) belief prop., iter. 1 (d) belief prop., iter. 3

Fig. 6: (a) Nearest neighbor solution. The choppiness indicates that many feasible high resolution scenes correspond to a given low

resolution image patch. (b), (c), (d): iterations 0, 1, and 3 of Bayesian belief propagation. The initial guess is not the same as the nearest

neighbor solution because of mixture model �tting to P (yjx). Underlying the most probable guess shown are 9 other scene candidates at

each node. 3 iterations of Bayesian belief propagation yields a probable guess for the high resolution scene, consistent with the observed

low resolution data, and spatially consistent across scene nodes.

(a) 85 x 51 input (b) cubic spline

(c) belief propagation

Fig. 7: (a) 85 x 51 resolution input. (b) cubic spline interpolation in Adobe Photoshop to 340x204. (c) belief propagation zoom to

340x204, zooming up one octave twice.



(a) Input (magni�ed x4) (b) Cubic spline (c) Fractal

(d) \Picnic" training set (e) \Generic" training set (f) Actual full-resolution

Fig. 8: (a) Low-resolution input image. (b) Cubic spline 400% zoom in Adobe Photoshop. (c) Zooming luminance by public domain

fractal image compression routine [22], set for maximum image �delity (chrominance components were zoomed by cubic spline, to avoid

color artifacts). Both (c) and (d) are blurry, or have serious artifacts. (d) Markov network reconstruction using a training set of 10 images

taken at the same picnic, none of this person. This is the best possible fair training set for this image. (e) Markov network reconstrution

using a training set of generic photographs, none at this picnic or of this person, and fewer than 50% of people. The two Markov network

results show good synthesis of hair and eye details, with few artifacts, but (d) looks slightly better (see brow furrow). Edges and textures

seem sharp and plausible. (f) is the true full-resolution image.


