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Abstract. We describe a learning-based method for low-level vision problems{
estimating scenes from images. We generate a synthetic world of scenes and their
corresponding rendered images, modeling their relationships with a Markov network.
Bayesian belief propagation allows us to e�ciently �nd a local maximum of the
posterior probability for the scene, given an image. We call this approach VISTA{
Vision by Image/Scene TrAining.

We apply VISTA to the \super-resolution" problem (estimating high frequency
details from a low-resolution image), showing good results. To illustrate the potential
breadth of the technique, we also apply it in two other problem domains, both
simpli�ed. We learn to distinguish shading from reectance variations in a single
image under particular lighting conditions. For the motion estimation problem in
a \blobs world", we show �gure/ground discrimination, solution of the aperture
problem, and �lling-in arising from application of the same probabilistic machinery.

Keywords: vision and learning, belief propagation, low-level vision, super-resolution,
shading and reectance, motion estimation

Abstract

1. Introduction

We seek machinery for learning low-level vision problems, such as mo-
tion analysis, inferring shape and reectance from a photograph, or
extrapolating image detail. For these problems, given image data, we
want to estimate an underlying scene. The scene quantities to be es-
timated might be projected object velocities, surface shapes and re-
ectance patterns, or missing high frequency details. These estimates
are important for various tasks in image analysis, database search, and
robotics.

Low-level vision problems are typically under-constrained, so Bayesian
(Berger, 1985; Knill and Richards, 1996; Szeliski, 1989) and regulariza-
tion techniques (Poggio et al., 1985) are fundamental. There has been
much work and progress (for example, (Knill and Richards, 1996; Landy
and Movshon, 1991; Horn, 1986)), but di�culties remain in working
with complex, real images. Typically, prior probabilities or constraints
are hypothesized, rather than learned.
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2 William T. Freeman

A recent research theme has been to study the statistics of natural
images. Researchers have related those statistics to properties of the
human visual system (Olshausen and Field, 1996; Bell and Sejnowski,
1997; Simoncelli, 1997), or have used statistical characterizations of
images to analyse and synthesize realistic textures (Heeger and Bergen,
1995; DeBonet and Viola, 1998; Zhu and Mumford, 1997; Simoncelli,
1997). These methods may help us understand the early stages of rep-
resentation and processing, but unfortunately, they don't address how
a visual system might interpret images, i.e., estimate the underlying
scene.

We want to combine the two research themes of scene estimation and
statistical learning.We study the statistical properties of a synthetically
generated world of images labelled with their underlying scenes, to learn
how to infer scenes from images. Our prior probabilities and rendering
models can then be rich ones, learned from the training data.

Several researchers have applied related learning approaches to low-
level vision problems, but restricted themselves to linear models (Ker-
sten et al., 1987; Hurlbert and Poggio, 1988), too weak for many ap-
plications. Our approach is similar in spirit to relaxation labelling
(Rosenfeld et al., 1976; Kittler and Illingworth, 1985), but our Bayesian
propagation algorithm is more e�cient and we use training data to
derive propagation parameters.

We interpret images by modeling the relationship between local re-
gions of images and scenes, and between neighboring local scene regions.
The former allows initial scene estimates; the later allows the estimates
to propagate. We train from image/scene pairs and apply the Bayesian
machinery of graphical models (Pearl, 1988; Binford et al., 1988; Jor-
dan, 1998). We were inuenced by the work of Weiss (Weiss, 1997), who
pointed out the speed advantage of Bayesian methods over conventional
relaxation methods for propagating local measurement information. For
a related approach, but with heuristically derived propagation rules, see
(Saund, 1999).

We call our approach VISTA, Vision by Image/Scene TrAining. It
is a general machinery that may apply to various vision problems.
We illustrate it for estimating missing image details, disambiguating
shading from reectance e�ects, and estimating motion.

2. Markov network

For given image data, y, we seek to estimate the underlying scene, x (we
omit the vector symbols for notational simplicity).We �rst calculate the
posterior probability, P (xjy) = cP (x; y) (the normalization, c = 1

P (y)
,
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Vision by Image/Scene Training 3

Figure 1. Example low-level vision problems. For given \image" information, we
want to estimate an underlying \scene" that created it (idealized scene estimates
shown).

is a constant over x). Under two common loss functions (Berger, 1985),
the best scene estimate, x̂, is the mean (minimum mean squared error,
MMSE) or the mode (maximum a posteriori, MAP) of the posterior
probability.

In general, x̂ can be di�cult to compute without approximations
(Knill and Richards, 1996). We make the Markov assumption: we divide
both the image and scene into patches, and assign one node of a Markov
network (Geman and Geman, 1984; Pearl, 1988; Jordan, 1998) to each
patch. We draw the network as nodes connected by lines, which indicate
statistical dependencies. Given the variables at intervening nodes, two
nodes of a Markov network are statistically independent. We connect
each scene patch both to its corresponding image patch and to its
spatial neighbors, Fig. 2. For some problems where long-range interac-
tions are important, we add layers of image and scene patches at other
spatial scales, connecting scene patches to image patches at the same
scale, and to scene patches at neighboring scales and positions. (Unlike
(Luettgen et al., 1994), this is not a tree because of the connections
between spatial neighbors).

The Markov network topology of Fig. 2 implies that knowing the
scene at position j: (1) provides all the information about the rendered
image there, because xj has the only link to yj, and (2) gives informa-
tion about nearby scenes values, by the links from xj to nearby scene
neighbors. We will call problems with these properties low-level vision
problems.
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4 William T. Freeman

Solving a Markov network involves a learning phase, where the pa-
rameters of the network connections are learned from training data,
and an inference phase, when the scene corresponding to particular
image data is estimated.

Figure 2. Markov network for vision problems. Each node in the network describes
a local patch of image or scene. Observations, y, have underlying scene explanations,
x. Lines in the graph indicate statistical dependencies between nodes.

Figure 3. Example Markov network without any loops, used for belief propagation
example described in text. The compatibility functions � and 	 are de�ned below.

For a Markov random �eld, the joint probability over the scenes
x and images y can be written as (Besag, 1974; Geman and Geman,
1984; Geiger and Girosi, 1991):

P (x1; x2; : : : ; xN ; y1; y2; : : : ; yN ) =
Y
(i;j)

	(xi; xj)
Y
k

�(xk; yk); (1)

where we have introduced pairwise compatibility functions, 	 and �,
which are learned from the training data. (i; j) indicates neighboring
nodes i, j and N is the number of image and scene nodes.

We can write the MAP and MMSE estimates for x̂j by marginalizing
(MMSE) or taking the maximum (MAP) over the other variables in
the posterior probability. For discrete variables, the marginalization
involves summations over the discrete values of the scene variables at
each node, indicated by the summations below:

x̂jMMSE
=
X
xj

xj

X
all xi, i 6= j

P (x1; x2; : : : ; xN ; y1; y2; : : : ; yN ) (2)

x̂jMAP
=

argmax
[xj]

max
[ all xi, i 6= j ]

P (x1; x2; : : : ; xN ; y1; y2; : : : ; yN ):(3)
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Vision by Image/Scene Training 5

For networks larger than toy examples, Eqs. (2) and (3) are infeasible
to evaluate directly because of the high dimensionality of the scene
variables over which P (x1; x2; : : : ; xN ; y1; y2; : : : ; yN ) must be summed
or maximized. When the networks form chains or trees, however, we
can evaluate the equations.

2.1. Inference in networks without loops

For networks without loops, the Markov assumption leads to simple
\message-passing" rules for computing the MAP and MMSE estimates
during inference (Pearl, 1988; Weiss, 1998; Jordan, 1998). The factor-
ized structure of Eq. (1) allows the marginalization and maximization
operators of Eqs. (2) and (3) to pass through 	 and � factors with un-
related arguments. For example, for the network in Fig. 3, substituting
Eq. (1) for P (x; y) into Eq. (3) for x̂jMAP

at node 1 gives

x̂1MAP = argmaxx1maxx2maxx3

P (x1; x2; x3; y1; y2; y3) (4)

= argmaxx1maxx2maxx3

�(x1; y1)�(x2; y2)�(x3; y3)	(x1; x2)	(x2; x3) (5)

= argmaxx1�(x1; y1)

maxx2	(x1; x2)�(x2; y2)

maxx3	(x2; x3)�(x3; y3): (6)

Each line of Eq. (6) is a local computation involving only one node
and its neighbors. The analogous expressions for x2MAP and x3MAP
also use local calculations. Passing local \messages" between neigh-
bors, as described below, gives an e�cient way to compute the MAP
estimates.

Assuming a network without loops, Eqs. (3) and (2) can be com-
puted by iterating the following steps (Pearl, 1988; Weiss, 1998; Jordan,
1998). The MAP estimate at node j is

x̂jMAP
=

argmax
[xj]

�(xj; yj)
Y
k

M
k
j ; (7)

where k runs over all scene node neighbors of node j, and Mk
j is the

message from node k to node j. We calculate Mk
j from:

M
k
j =

max
[xk]

	(xj; xk)�(xk; yk)
Y
l 6=j

~M l
k; (8)

where ~Mk
j is Mk

j from the previous iteration. The initial ~Mk
j 's are set

to column vectors of 1's, of the dimensionality of the variable xj .
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6 William T. Freeman

To illustrate how these equations are used, we show how Eq. (7)
reduces to Eq. (6) for the example of Fig. 3. First, a note about the
compatibility matrices, 	 and �. For a given observed image-patch, yk,
the image-scene compatibility function, �(xk; yk), is a column vector,
indexed by the di�erent possible states of xk, the scene at node k. The
scene-scene compatibility function, 	(xi; xj), will be a matrix with the
di�erent possible states of xi and xj , the scenes at nodes i and j,
indexing the rows and columns. Because the initial messages are 1's, at
the �rst iteration, all the messages in the network are:

M
2
1 =

max
[x2]

	(x1; x2)�(x2; y2) (9)

M
3
2 =

max
[x3]

	(x2; x3)�(x3; y3) (10)

M
1
2 =

max
[x1]

	(x2; x1)�(x1; y1) (11)

M
2
3 =

max
[x2]

	(x3; x2)�(x2; y2): (12)

The second iteration uses the messages above as the ~M variables in
Eq. (8):

M
2
1 =

max
[x2]

	(x1; x2)�(x2; y2) ~M
3
2 (13)

M
3
2 =

max
[x3]

	(x2; x3)�(x3; y3) (14)

M
2
3 =

max
[x2]

	(x3; x2)�(x2; y2) ~M
1
2 (15)

M
1
2 =

max
[x1]

	(x2; x1)�(x1; y1): (16)

Substituting M3
2 of Eq. (10) for ~M3

2 in Eq. (13) gives

M
2
1 =

max
[x2]

	(x1; x2)�(x2; y2)
max
[x3]

	(x2; x3)�(x3; y3): (17)

For this example, the messages don't change in subsequent iterations.
We substitute the �nal messages into Eq. (7) to compute the MAP
estimates, for example,

x̂1MAP =
argmax
[x1]

�(x1; y1)M
2
1 : (18)
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Vision by Image/Scene Training 7

Substituting Eq. (17), the converged message value for M2
1 , in Eq. (18)

above gives precisely Eq. (6) for x1MAP. The exact MAP estimates for
x2 and x3 are found analogously.

It can be shown (Pearl, 1988; Weiss, 1998; Jordan, 1998) that after
at most one global iteration of Eq. (8) for each node in the network,
Eq. (7) gives the desired optimal estimate, x̂jMAP

, at each node j.
The MMSE estimate, Eq. (3), has analogous formulae, with the

maxxk of Eq. (8) replaced by
P

xk
, and argmaxxj of Eq. (7) replaced byP

xj
xj . For Markov networks without loops, these propagation rules

are equivalent to standard Bayesian inference methods, such as the
Kalman �lter and the forward-backward algorithm for Hidden Markov
Models (Pearl, 1988; Luettgen et al., 1994; Weiss, 1997; Smyth et al.,
1997; Frey, 1998; Jordan, 1998).

A second factorization of the joint probability can also be used
instead of Eq. (1), although it is only valid for chains or trees, while
Eq. (1) is valid for general Markov networks. This is a the chain rule fac-
torization of the joint probability, similar to (Pearl, 1988). For Figure 3,
using the Markov properties, we can write

P (x1; y1; x2; y2; x3; y3) = P (x1)P (y1jx1)P (x2jx1)P (y2jx2)P (x3jx2)P (y3jx3):
(19)

Following the same reasoning as in Eqs. (6) and (4), this factorization
leads to the following update and estimation rules:

M
k
j = maxxkP (xkjxj)P (ykjxk)

Y
l 6=j

~M l
k; (20)

xjMAP
= argmaxxjP (xj)P (yj jxj)

Y
k

M
k
j : (21)

where k runs over all scene node neighbors of node j. While the ex-
pression for the joint probability does not generalize to a network with
loops, we nonetheless found good results for some problems using these
update rules (for Section 5 and much of Section 3).

2.2. Networks with loops

For a network with loops, Eqs. (2) and (3) do not factor into lo-
cal calculations as in Eq. (6). Finding exact MAP or MMSE values
for a Markov network with loops can be computationally prohibitive.
Researchers have proposed a variety of approximations (Geman and
Geman, 1984; Geiger and Girosi, 1991; Jordan, 1998). Strong empirical
results in \Turbo codes" (Kschischang and Frey, 1998; McEliece et al.,
1998) and recent theoretical work (Weiss, 1998; Weiss and Freeman,

ijcv99rev2.tex; 16/07/2000; 23:01; p.7



8 William T. Freeman

1999; Yedidia et al., 2000) provide support for a very simple approx-
imation: applying the propagation rules of Eqs. (8) and (7) even in

the network with loops. Table 1 summarizes results from (Weiss and
Freeman, 1999): (1) for Gaussian processes, the MMSE propagation
scheme can converge only to the true posterior means. (2) Even for non-
Gaussian processes, if the MAP propagation scheme converges, it �nds
at least a local maximum of the true posterior probability. Furthermore,
this condition of local optimality for the converged solution of the MAP
algorithm is a strong one. For every subset of nodes of the network
which form a tree, if the remaining network nodes are constrained to
their converged values, the values of the sub-tree's nodes found by the
MAP algorithm are the global maximum over that tree's nodes (Weiss
and Freeman, 2000). (Yedidia et al., 2000) show that the MMSE belief
propagation equations are equivalent to the stationarity conditions for
the Bethe approximation to the \free energy" of the network. These
experimental and theoretical results motivate applying the belief prop-
agation rules of Eqs. (8) and (7) even in a Markov network with loops.
(There is not the corresponding theoretical justi�cation for applying
Eqs. (20) and (21) in a network with loops; we rely on experiment).

Table I. Summary of results from (Weiss and Freeman, 1999) regarding belief propagation after convergence.

Belief propagation Network topology

algorithm no loops arbitrary topology

MMSE rules MMSE, correct posterior marginal probs. For Gaussians, correct means, wrong covs.

MAP rules MAP Local max. of posterior, even for non-Gaussians.

2.3. Representation

We need to chose a representation for the image and scene variables.
The images and scenes are arrays of vector valued pixels, indicating,
for example, color image intensities or surface height and reectance
information. We divide these into patches. For both compression and
generalization, we use principle components analysis (PCA) to �nd
a set of lower dimensional basis functions for the patches of image
and scene pixels. We measure distances in this representation using a
Euclidean norm, unless otherwise stated.

We also need to pick a form for the compatibility functions �(xj; yj)
and 	(xj; xk) in Eqs. (7) and (8), as well as the messages, Mk

j . One
could represent those functions as Gaussian mixtures (Freeman and

ijcv99rev2.tex; 16/07/2000; 23:01; p.8



Vision by Image/Scene Training 9

Pasztor, 1999) over the joint spaces xj�yj and xj�xk; however multi-
plications of the Gaussian mixtures is cumbersome, requiring repeated
pruning to restore the product Gaussian mixtures to a manageable
number of Gaussians.

We prefer a discrete representation. The most straight-forward ap-
proach would be to evenly sample all possible states of each image
and scene variable at each patch. Unfortunately, for reasonably sized
patches, the scene and image variables need to be of a high enough
dimensionality that an evenly-spaced discrete sampling of the entire
high dimensional space is not feasible.

To address that, we evaluate �(xj ; yj) and 	(xj; xk) only at a re-
stricted set of discrete points, a subset of our training set. (For other
sample-based representations see (Isard and Blake, 1996; DeBonet and
Viola, 1998)). Our �nal MAP (or MMSE) estimates will be maxima
over (or weights on) a subset of training samples. In all our examples,
we used the MAP estimate. The estimated scene at each patch was
always some example from the training set.

At each node we collect a set of 10 or 20 \scene candidates" from the
training data which have image data closely matching the observation,
or local evidence, at that node. (We think of these as a \line-up of
suspects", in a police line-up.) We will evaluate probabilities only at
those scene values. This simpli�cation focuses the computational e�ort
on only those scenes which render to the observed image data. The
propagation algorithms, Eq. (7) and (8) or Eq. (21) and (20), be-
come matrix operations involving relatively small vectors and matrices.
Figure 4 shows symbolically the image data and scene candidates.

Figure 4. Showing the problem to be solved by Bayesian belief propagation. We
break the observed image data into patches (top row). For each image patch, we
gather a collection of candidate scene patches from the training database. Each
scene can explain the observed image patch, some better than others. Neighboring
image patches have their own sets of scene candidates (in each column). We must
�nd at each location the scene candidate which both explains the local image data
well, and is compatible with the best scene candidates at the neighboring locations.
Bayesian belief propagation gives an approximate solution to this problem.

ijcv99rev2.tex; 16/07/2000; 23:01; p.9



10 William T. Freeman

2.4. Learning the compatibility functions

We want to learn from our training data the compatibility functions re-
lating neighboring nodes of the Markov network. We have explored two
di�erent approaches which give comparable results for our problems.

The �rst method uses the message-passing rules of Eqs. (21) and
(20), based on the joint probability factorization which is not valid for
a network with loops. So in using these update rules, we are e�ectively
ignoring the presence of loops in both the learning and inference. From
the training data, we �t mixtures of Gaussians to the joint probabilities
P (yj; xj) and P (xk; xj), for neighboring nodes j and k. We evaluate

P (xl
k
jxmj ) =

P (xl
k
;xm
j
)

P (xm
j
)

at each of the scene candidates xl
k
(indexed by

l) at node k and at each candidates xmj (indexed by m) at node j,
giving a matrix of rows indexed by l and columns indexed by m. For
a given image observation yk at patch k, P (ykjx

l
k
) becomes a column

vector indexed by each scene candidate, l. We used these quantites in
Eqs. (20) and (21) for the results shown in Sections 3 and 5, except for
Fig. 14, 15, and 16.

More properly, rather then using the conditional probabilities of
Eqs. (21) and (20), Iterated Proportional Fitting (e.g., (Smyth et al.,
1997)) should be used to iteratively modify the compatibility functions
of Eq. (1) and Eqs. (7) and (8) until the empirically measured marginal
statistics agree with those predicted by the model, Eq. (1). However, for
the problems presented here, we found good results using the method
described above.

The second method we used relied on the proper probability fac-
torization for networks with loops, Eq. (1), but used a simple way to
�nd the compatibility functions. We spaced the scene patches so that
they overlap and used the scene patches themselves to estimate the
compatibilities 	(xj; xk) between neighbors. Let k and j be two neigh-
boring scene patches. Let dl

jk
be a vector of the pixels of the lth possible

candidate for scene patch xk which lie in the overlap region with patch
j. Likewise, let dmkj be the values of the pixels (in correspondence with

those of dljk) of the mth candidate for patch xj which overlap patch

k. We say that scene candidates xlk (candidate l at node k) and xmj
are compatible with each other if the pixels in their regions of overlap
agree. We assume that the image and scene training samples di�er from
the \ideal" training samples by Gaussian noise of covariance �i and �s,
respectively. Those covariance values are parameters of the algorithm.
We then de�ne the compatibility matrix between scene nodes k and j

as

	(xlk; x
m
j ) = exp�jdl

jk
�dm

kj
j2=2�2

s (22)
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Vision by Image/Scene Training 11

The rows and columns of the compatibility matrix 	(xlk; x
m
j ) are in-

dexed by l and m, the scene candidates at each node, at nodes j and
k.

Note, this form for the compatibility matrix between scene nodes is
not a constraint on the spatial smoothness of the scene patches; those
can be as rough as the PCA representation of each patch can describe.
It is a \uniqueness" constraint, requiring that the pixels in the region
of overlap between patches have only one value.

We say that a scene candidate xl
k
is compatible with an observed

image patch yo if the image patch, yl
k
, associated with the scene can-

didate xl
k
in the training database matches yo. It won't exactly match,

so again we assume \noisy" training data and de�ne the compatibility

�(xlk; yk) = exp�jyl
k
�yoj

2=2�2
i : (23)

We set �i to allow roughly 10 samples at each node to be within two
standard deviations of the observed image patches, and set �s to allow
roughly 5 or 10 matrix transitions to be appreciably di�erent than zero.
This sample-based method was used for the results of Section 4, and
for Fig. 15, 14, and 16.

It could be the case that two particular scene patches would never
be next to each other, even though their pixel values agreed perfectly in
their region of common support. The Gaussian mixture method would
assign a low compatibility to those two scene patches abutting, while
the sample-based method would assign them a high compatibility. How-
ever, the sample-based method is easier to work with and assumes the
proper form for the posterior probability of a Markov network, Eq. (1).

Once we have speci�ed the representation and the compatibility
functions, we are ready to apply VISTA to vision problems.

3. Super-resolution

For the super-resolution problem, the input image is a low-resolution
image. The scene to be estimated is the high resolution version of
the same image. (Note this is di�erent than another problem some-
times called super-resolution, that of estimating a single high resolution
image from multiple low-resolution ones). A good solution to the super-
resolution problem would allow pixel-based images to be handled in
an almost resolution-independent manner. Applications could include
enlargment of digital or �lm photographs, upconversion of video from
NTSC format to HDTV, or image compression.

At �rst, the task may seem impossible|the high resolution data is
missing. However, we can visually identify edges in the low-resolution
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12 William T. Freeman

Figure 5. The compatibility between candidate scene explanations at neighboring
nodes is determined by their values in their region of overlap. Let dlkj be the pixels
of the lth scene candidate of patch j in the overlap region between patches j and
k, and let dmjk be the (corresponding) pixels of the mth scene candidate belonging
to patch k, next to patch j. Then the elements of the compatibility matrix between
scene nodes j and k, �(xlj ; x

m

k ) (a matrix indexed by l and m), are Gaussians in
jdlkj � dmkj j.

image that we know should remain sharp at the next resolution level.
Furthermore, the successes of recent texture synthesis methods (Heeger
and Bergen, 1995; DeBonet and Viola, 1998; Zhu and Mumford, 1997;
Simoncelli, 1997), gives us hope to handle textured areas well, too.

Others (Schultz and Stevenson, 1994) have used a Bayesian method
for super-resolution, hypothesizing the prior probability. In contrast,
the VISTA approach learns the relationship between sharp and blurred
images from training examples, and achieves better results. Among non-
Bayesian methods for super-resolution, the fractal image representation
used in compression (Polvere, 1998) (Fig. 13c) allows zooming, although
its image generation model will not hold for all images. 1 Selecting the
nearest neighbor from training data (Pentland and Horowitz, 1993)
(Fig. 9a) ignores important spatial consistency constraints.

Figure 6. Example images from a training set of 80 images from two Corel database
categories: African grazing animals, and urban skylines. Sharp and blurred versions
of these images were the training set for the test image of Figs. 9 and 10.

1 However, a nice Photoshop plug-in which uses an undisclosed technique for
super-resolution, perhaps fractal-based, is available from http://www.altamira-
group.com/html/buyit/order.html.

ijcv99rev2.tex; 16/07/2000; 23:01; p.12



Vision by Image/Scene Training 13

(a) input (b) desired output

(c) input image (d) scene to be estimated

Figure 7. We want to estimate (b) from (a). The original image, (b) is blurred,
subsampled, then interpolated back up to the original sampling rate to form (a). All
images shown are at 170x102 resolution. The missing high frequency detail, (b) minus
(a), is the \scene" to be estimated, (d) (this is the �rst level of a Laplacian pyramid
(Burt and Adelson, 1983)). Two image processing steps are taken for e�ciency:
the low frequencies of (a) are removed to form the input bandpassed \image". We
contrast normalize the image and scene by the local contrast of the input bandpassed
image, yielding (c) and (d).

We apply VISTA to this problem as follows. By blurring and down-
sampling sharp images, we construct a training set of sharp and blurred

Figure 8. Some training data samples for super-resolution problem. The large
squares are the image data (mid-frequency data). The small squares below them
are the corresponding scene data (high-frequency data).
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14 William T. Freeman

(a) Nearest neighbor (b) belief prop., iter. 0

(c) belief prop., iter. 1 (d) belief prop., iter. 3

Figure 9. (a) Nearest neighbor solution. The choppiness indicates that many feasible
high resolution scenes correspond to a given low resolution image patch. (b), (c),
(d): iterations 0, 1, and 3 of Bayesian belief propagation. The initial guess is not the
same as the nearest neighbor solution because of mixture model �tting to P (yjx).
Underlying the most probable guess shown are 9 other scene candidates at each
node. 3 iterations of Bayesian belief propagation yields a probable guess for the
high resolution scene, consistent with the observed low resolution data, and spatially
consistent across scene nodes.

image pairs. We linearly interpolate each blurred image back up to the
original sampling resolution, to form an input image. The scene to be
estimated is the high frequency detail removed by that process from
the original sharp image, Fig. 7a, b.

We employ two pre-processing steps in order to increase the e�-
ciency of the training set. Each step exploits an assumption about the
nature of images. First, we assume that images are Markov over scale
(Luettgen et al., 1994) in a bandpass image representation, such as a
Laplacian pyramid image decomposition (Burt and Adelson, 1983). Let
H be the high-frequency pixel values, andM be the values of the next-
highest spatial frequency band, which we will call the mid-frequency
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Vision by Image/Scene Training 15

band, and L be the pixel values of all lower spatial frequencies in the
image. We assume that highest resolution frequency band is condition-
ally independent of the lower frequency bands, given the second highest
resolution frequency band:

P (HjM;L) = P (HjM): (24)

Based on this assumption, to predict the highest frequency band, we
will only examine the mid-frequency band, M , not all lower frequency
bands of the image. This greatly reduces the variability we have to
store in our training data, collapsing the training data for all possible
low-frequency values into one value, dependent only on the mid-band
image.

Second, we assume that the statistical relationships between image
bands are independent of image contrast, apart from a multiplicative
scaling. By taking the absolute value of the mid-frequency band, and
blurring it, we form a \local contrast" image, which we use to normalize
both the mid- and high-frequency bands. We make the training set
from the contrast normalized mid- and high-frequency bands, shown
in Fig. 7c, d. This saves having to replicate the training set over all
possible values of image contrast, and is a very simpli�ed model of the
contrast normalization which may take place in the mammalian visual
system (Carandini and Heeger, 1994). We undo this normalization after
estimating the scene. The functional forms of the �lters used and the
contrast normalization are given in the Appendix.

We break the image and scene into local patches. The choice of patch
size is a compromise between two extremes. If the image patch size is
too small, then each local image patch would give very little informa-
tion for estimating the underlying scene variable. The Markov network
model of patches only connected to their nearest neighbors would break
down. However, the training database would be easy to store. On the
other hand, a large patch size would disambiguate the underlying scene
variables, but it would be prohibitive to learn the relationship between
local image and scene patches. That storage requirement grows ex-
ponentially with the dimensionality of the image and scene patches.
As a compromise, we seek an image and scene patch size which is big
enough to give some useful information about the underlying scene, yet
is small enough to allow learning the relationship between image and
scene. We then rely on belief propagation to propagate local evidence
across space.

We �rst describe our results using the gaussian mixtures method,
employing Eqs. (20) and (21). We used 7x7 and 3x3 pixel patches,
Fig. 8, from the training images and scenes, respectively. These were
center-aligned, so that the image patch centered at pixels (i; j) covered
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16 William T. Freeman

all pixels (i � 3; j � 3) and the corresponding scene patch covered all
pixels (i � 1; j � 1). Applying Principal Components Analysis (PCA)
(Bishop, 1995) to the training set, we summarized each 3-color patch of
image or scene by a 9-d vector. From 40,000 image/scene pair samples,
we �t 15 cluster Gaussian mixtures to the observed joint probabilities
P (xk; xj) of neighboring scene patches k; j, assuming spatial translation
invariance. One Gaussian mixture described the joint statistics of hori-
zontal neighbors, and one described the statistics of vertical neighbors.
We also �t Gaussian mixtures to the prior probability of a scene patch,
P (xj), and the joint probability of image-scene pairs, P (yk; xk), again
assuming spatial translation invariance.

Given a new image, not in the training set, from which to infer the
high frequency scene, we found the 10 training samples closest to the
image data at each node (patch). The 10 corresponding scenes are the
candidates for that node.

From the �t densities, we could evaluate the conditional probabilities
used in the message update equation, Eq. (20): P (xkjxj) and P (ykjxk).
We evaluated these conditional probabilities at the 10 candidate scene
points at each node and at all possible combination of scene candidates
(10x10) between neighboring nodes. For storage e�ciency, we pruned
frequently occurring image/scene pairs from the training set, based on
a squared error similarity criterion. We propagated the probabilities by
Eq. (20), and read-out the maximum probability solution by Eq. (21).
We found experimentally that the reconstructed image retained more
visually pleasing high frequency structure when we used a \maximum
likelihood" readout of the estimated scene from Eq. (21), setting the
prior probability term P (xj) to one.

To process Fig. 10a, we used a training set of 80 images from two
Corel database categories: African grazing animals, and urban skylines.
For reference, Fig. 9a shows the nearest neighbor solution, at each node
using the scene corresponding to the closest image sample in the train-
ing set. Many di�erent scene patches can explain each image patch, and
the nearest neighbor solution is very choppy. Figures 9b, c, d show the
�rst 3 iterations of MAP belief propagation. The spatial consistency
imposed by the belief propagation �nds plausible and consistent high
frequencies for the tiger image from the candidate scenes.

Figure 10 shows the result of applying this super-resolution method
recursively to zoom two octaves. The algorithm keeps edges sharp and
invents plausible textures. Standard cubic spline interpolation, blurrier,
is shown for comparison.

Figure 11 explores the algorithm behavior under di�erent training
sets. Each training set corresponds to a di�erent set of prior assump-
tions about typical images. Figure 11 (a) is the actual high resolution
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Vision by Image/Scene Training 17

image (192x232). (b) is the 48x58 resolution input image. (c) is the
result of cubic spline interpolation to 192x232 resolution. The edges are
blurred. (d) is an example image of a training set composed entirely of
random noise images. (g) is the result of using that training set with the
Markov network super-resolution algorithm. The algorithm successfully
learns that the high resolution images relate to lower resolution ones
by adding random noise. Edges are not maintained as sharp because
the training set has no sharp edges in it. (e) is a sample from a training
set composed of vertically oriented, multi-colored rectangles. Again,
the super-resolution algorithm correctly models the structure of the
visual world it was trained on, and the high-resolution image (h) shows
vertically oriented rectangles everywhere. (f) is an example image from
a training set of generic images, none of any teapots. Figure 12 (b)
shows other examples from that training set. The extrapolated image,
(i), maintains sharp edges and makes plausible guesses in the texture
regions. The estimated images properly reect the structure of the
training worlds for noise, rectangles, and generic images.

Figure 13 depicts in close-up the interpolation for image (a) using
two other training sets, shown in Fig. 12. Figure 13 (d) was recursively
zoomed up two octaves using the Markov network super-resolution
algorithm with an ideal training set of images taken at the same place
and same time (but not of the same subject). Figure 13 (e) used a
generic training set of images. Both estimates look more similar to the
true high resolution result (f) than either cubic spline interpolation (b)
or zooming by a fractal image compression algorithm (c). Edges are
again kept sharp, while plausible texture is synthesized in the hair.

We also applied the method of Eqs. (8) and (7) to the super-resolution
problem. This patch-overlap method to �nd the compatibility functions
between nodes was faster to process, and typically gave fewer artifacts.
Figures 14, 15, and 16 were made using this sample-based method.
Scene patches were 3x3 pixels, with a 1 pixel overlap between patches.
This results in each scene pixel being described by two di�erent scene
patches. To output the �nal image, we averaged the scene results from
each pixel where it was described by more than one patch. This method
gives results with a silghtly di�erent visual character than the Gaussian
mixture method. It has fewer artifacts at edges (note the girl's nose),
but is also smoother in regions of image texture.

As Figure 11 shows, the training set inuences the super-resolution
output. On the assumption that the image is similar to itself over
di�erent spatial scales, it is reasonable to try using the image itself,
at a lower-resolution, as the training set for zooming up to a higher
resolution. Figure 15 shows that that training set gives reasonable
results for our common test image. We built a training set from all 90
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18 William T. Freeman

degree rotations and transpositions of the image from which the 70x70
test image was cropped (top). After zooming up to 280x280 resolution
by the patch-overlap version of the Markov network super-resolution
algorithm, the results are comparable with the super-resolution results
from other training sets.

Figure 16 shows a patch of texture, zoomed up two and four oc-
taves up to 400% and 1600% magni�cation. (We used the patch over-
lap method to compute the compatibilities for belief propagation by
Eqs. (8) and (7). For comparison, zooming by pixel replication and
cubic spline interpolation are shown as well. The algorithm \makes-
up" detail which, while almost certainly not correct, is plausible and
visually pleasing.

As emphasized by other authors (e.g., (Field, 1994)), the visual
world has much more structure than would images of random collec-
tions of pixel values. The results of this section show that we can exploit
this structure to estimate missing resolution detail.
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(a) 85 x 51 input

(b) cubic spline

(c) belief propagation

Figure 10. (a) 85 x 51 resolution input. (b) cubic spline interpolation in Adobe
Photoshop to 340x204. (c) belief propagation in Markov network zoom to 340x204,
recursively zooming up by one octave twice.
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(a) Actual (b) Input (c) Cubic spline

(d) noise (e) rectangles (f) generic

(g) Train: noise (h) Train: rects (i) Train: generic

Figure 11. E�ect of di�erent training sets on super-resolution outputs. (a), at
192x232 resolution, was blurred, and subsampled by 4 in each dimension to yield
the low-resolution input, (b), at 48x58 resolution. Cubic spline interpolation to full
resolution in Adobe Photoshop loses the sharp edges, (c). We recursively zoomed (b)
up two factors of two using the Markov network trained on 10 images from 3 di�erent
\worlds": (d) random noise, (e) colored rectangles, and (f) a generic collection of
photographs. The estimated high resolution images, (g), (h), and (i), respectively,
reect the statistics of each training world.
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Vision by Image/Scene Training 21

images from \picnic" training set

images from \generic" training set

Figure 12. Sample images from the 10 images in each of the \picnic" and \generic"
training sets. Sharp and blurred versions of these images were used to create the
training data for Fig. 13d and e. The generic training set was also used for Figs. 14
and 16.
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(a) Input (magni�ed x4) (b) Cubic spline (c) Fractal

(d) \Picnic" training set (e) \Generic" training set (f) Actual full-resolution

Figure 13. (a) Low-resolution input image. (b) Cubic spline 400% zoom in Adobe
Photoshop. (c) Zooming luminance by public domain fractal image compression
routine (Polvere, 1998), set for maximum image �delity (chrominance components
were zoomed by cubic spline, to avoid color artifacts). Both (c) and (d) are blurry,
or have serious artifacts. (d) Markov network reconstruction using a training set of
10 images taken at the same picnic, none of this person. This is the best possible
fair training set for this image. (e) Markov network reconstrution using a training
set of generic photographs, none at this picnic or of this person, and fewer than
50% of people. The two Markov network results show good synthesis of hair and
eye details, with few artifacts, but (d) looks slightly better (see brow furrow). Edges
and textures seem sharp and plausible. (f) is the true full-resolution image.
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(a) (b)

Figure 14. Super-resolution results using the patch-overlap method to �nd the scene
patch compatibilities. 280x280 super-resolution result, starting from the 70x70 sized
image of Fig. 13 (a). Image was made using the generic training set (with 99,275
image/scene pair samples), and the overlapped patches method of determining the
scene-scene compatibility functions. (a) After no iterations of belief propagation.
Note the roughness from incompatible neighboring scene candidates. (b) After 10
iterations of belief propagation (although results appeared to converge after 3 or
4 iterations). Texture rendition is slightly worse than results of Gaussian mixture
method, Fig. 13, although there appear to be fewer artifacts. The true high resolution
scene is given in Fig. 13 (f).
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(a)

(b)

Figure 15. Using a lower-resolution version of the image itself as a training set. As
Fig. 11 shows, super-resolution results depend on the training set. It is reasonable to
try using the image itself at low resolution to generate examples of high resolution
detail. (a) We used images of all 90 degree rotations and transpositions of the
uncropped version of Fig. 13 (a), resulting in a training set of 72,200 image/scene
pairs. Starting from Fig. 13 (a), we used VISTA to zoom up two octaves, giving
(b), which compares will with Markov network zooms using other training sets, and
with the true high resolution image, Fig. 13 (f). We used the patch overlap method
to compute the compatibilities for belief propagation by Eqs. (8) and (7).
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 16. Repeated zooms of a 50x50 pixel resolution texture image (a), in 3
di�erent ways. (b) 400% zoom and (e) 1600% zooms, by pixel replication. (c) and (f)
by cubic spline interpolation in Adobe Photoshop. (d) and (g) by the VISTA markov
network belief propagation approach, using the \generic" training set depicted in
Fig. 12 and the patch-overlap method of computing the compatibility matrices
between nodes. The high resolution details added by the algorithm in (d) and (g),
while almost certainly not veridical, are visually plausible.
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4. Shading and reectance estimation

We turn to a second low-level vision application, that of estimating
shading and reectance properties from a single image. Figure 17, left,
illustrates the problem, with an image pair due to (Adelson, 1995). The
top image looks like a raised bump, with the intensity variations due
to shading e�ects. The bottom image looks like two crescents drawn
on a at piece of paper, with the intensity variations due to surface
reectance changes. Yet each image has nearly exactly the same inten-
sities everywhere; one is a sheared version of the other. Clearly a local
look-up of scene structure from image intensities will not allow us to
distinguish the causes of the crescent image or the bump image. Fur-
thermore, while people report consistent interpretations for the crescent
and bump images (data from (Freeman and Viola, 1998)), each image
has multiple feasible scene explanations, shown in the middle and right
of Fig. 17. The shape explanation for the crescents image requires non-
generic alignment of the assumed lighting direction (from the left) with
the inferred shape (Freeman, 1994).

While disambiguating shading from reectance is fundamental to in-
terpreting images by computer, it has received relatively little research
attention. Shape-from-shading algorithms typically assume constant or
known surface albedo markings (Horn and Brooks, 1989). (Sinha and
Adelson, 1993) have addressed this problem, but in a blocks world
with pre-segmented junctions and regions. Generalization to the world
of real images has proved di�cult. A Bayesian approach using pixel-
based image representations was taken by (Freeman and Viola, 1998),
who derived the likelihood of reectance from the prior probability
penalty required of a shape interpretation of the image. Here we take
a more general approach, explicitly solving for the reectance and
shape combination that best explains the image data, using the VISTA
approach.

We focus on a simpli�ed version of the problem: we assume just
one light direction, and one �xed reectance function (Lambertian).
Generalizing to other light directions involves taking a new training
set over a sampling of di�erent light directions. This simpli�ed setting
retains the fundamental ambiguity we focus on: how can we distinguish
shading from paint?

We apply to this problem domain the same procedure we used for
super-resolution. We �rst generate a training set of image and scene
patches. Here the scene consists of two pixel arrays, one describing
the reectance function and one describing the shape by a range map
(where pixel intensities indicate distance from the camera).
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Figure 17. The problem of distinguishing shading from paint. The two images at
the left (from (Adelson, 1995)) are very similar, yet give very di�erent perceptual
interpretations. Adding to the di�culty of the problem, each image can, in principle,
have multiple di�erent feasible interpretations, shown in the middle and right.

Our training set consisted of computer-generated examples of im-
ages such as those in Fig. 18. Randomly placed and oriented ellipses
were used as either reectance images on a at range map, or as range
images with a at reectance map. At a global scale, which is shape and
which is reectance is perceptually obvious from looking at the rendered
images. At a local scale, however, the images are ambiguous; Fig. 20
shows di�erent scene explanations for a given patch of image data. Both
shading and paint scene explanations render to similar image data. We
generated 40 such images and their underlying scene explanations at
256x256 spatial resolution.

Next, given a training image, we broke it into patches, Fig. 19.
Because long range interactions are important for this problem, we
used a multi-scale approach, taking patches at two di�erent spatial
scales, of size 8x8 and 16x16 pixels. The image patches were sampled
with a spatial o�set of 7 and 14 pixels, respectively, ensuring consistent
alignment of patches across scale, and a spatial overlap of patches,
used in computing the compatibility functions for belief propagation
with Eqs. (8) and (7). As in the other problems, each image patch in
the Markov network connects to a node describing the underlying scene
variables. For this multi-scale model, each scene node connects to its
neighbors in both space and in scale.
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rendered image reectance range

(a)

(b)

(c)

(d)

Figure 18. Examples from training set for shading and reectance disambiguation.
Ellipsoids of random orientation, size, and amplitude were added to bitmapped
images. These bitmaps were treated either as reectance images (a and c) or as
range maps (b and d), and were used to generate a total of 40 rendered images,
combined with the shape and reectance explanations which generated them.

4.1. Selecting scene candidates

For each image patch, we must select a set of candidate scene inter-
pretations from the training data. For this problem, we found that the
selection of candidates required special care to ensure obtaining a suf-
�ciently diverse set of candidates. The di�culty in selecting candidates
is to avoid selecting too many similar ones. We want �delity to the
observed image patch, yet at the same time diversity among the scene
explanations. A collection of scene candidates is most useful if at least
one of them is within � distance of the correct answer.

We seek to maximize the probability, P̂ , that at least one candidate
x
j

i
in the collection S is within a threshold distance, � of the true scene
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(a) (b) (c)

(d) (e) (f)

Figure 19. The input images, (a) and (d), are broken into patches at two di�erent
spatial scales, (b) and (e), and (c) and (f). In the Markov network, each image
patch is connected with a node describing the underlying scene variables. Scene
nodes connect to their neighbors in both space and in scale.

value, x̂i, given the local observation, yi, at the ith patch:

P̂ (S) = max
x
j

i
2S

P (jx̂i � x
j

i
j < � j yi): (25)

We use a greedy approach to select the set of candidates, S. Assume
we have already selected some set of candidates, S0, and we want to
decide which new candidate to add to our selected set to maximize
P̂ . There may be a very probable candidate close to one already in
our set. Choosing that candidate would add little to P̂ (S), because its
region of the scene parameter space within distance � would be already
accounted for by the nearby, previously selected candidate.

For a given selection of scene candidates, S0, the utility of an addi-
tional candidate xji is

U(xji ) =

Z
jx0�x

j

i
j<�

P (x0jyi)�(S0; x
0)dx0; (26)

where

�(S0; x
0) =

�
1 if jxj

i
� �xj > �;8�x 2 S0

0 otherwise
(27)

(xji is the jth scene candidate at node i).
Comensurate with our rough initial estimates of the probability

that each scene is the correct one, we use a simple approximate cri-
terion to select the best scene candidate to add to S0. Before any
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belief propagation, our only estimate of P (xji jyi) is the compatibil-

ity function, c�(xji ; yi) (c is a normalization constant). We divide our

estimated probability of each scene patch, c�(xji ; yi), by the number of

selected scene patches within a distance � of this candidate xj
i
. Thus,

we approximate Eq. (27) by

Z
jx0�x

j

i
j<�

P (x0jyi)�(S0; x
0) �

c�(xji ; yi)

N(xki ; S0)
; (28)

where N(xki ; S0) is the number of scene candidates �x in S0 such that

j�x� x
j

i j < �. Then the best scene candidate to add to the set S0 is

x
j

i = max
k

�(xji ; yi)

N(xki ; S0)
; (29)

This procedure produces a diverse set of scene patches which are
all reasonably good explanations of the observed image patch. Fig-
ure 20 (a) shows a set of scene candidates selected only based on
the distance of their rendered images from the observed image patch.
Note there are many similar scene patches. Figure 20 (b) shows the set
selected using the selection criterion described above. This collection
includes a more diverse set of scene explanations, yet each still describes
the input image relatively well.

(a)

(b)

Figure 20. Selection of candidate scenes, without (a) and with (b) the diversity
criterion described in the text. A diverse set of candidate explanations leads to
better image interpretations.
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4.2. Compatibility functions

For this problem, we used the patch overlap method to compute the
compatibility functions, 	 and �. In computing the distance between
the pixels of two scenes, we scaled the reectance distances by 0.5
relative to the shape di�erences, in order to put them on a comen-
surate scale relative to their amplitude ranges. To obtain robustness
to outliers, we used an L1-norm (instead of the L2-norm) for distance
measurements for both images and scenes.

To compute the compatibilities between neighboring patches at dif-
ferent scales, we �rst interpolated the lower-resolution patch by a factor
of 2 in each dimension so that it had the same sampling rate as the
high resolution patch. Letting dl

jk
be the pixels of the lth candidate in

the high resolution patch k, and dm
kj
be the pixels of the mth candidate

in the interpolated low-resolution patch j, we take as the compatibility,

	(xlk; x
m
j ) = exp�jdl

jk
�dm

kj
j2=2�2

s ; (30)

where we scale �s to give the same per pixel variance as for the compat-
ibility function between patches at the same scale. The compatibility
function 	(xl

k
; xmj ) is di�erent between each pair of nodes k and j, and

is indexed by the scene candidate indices at each node, l and m.
A reectance explanation is feasible for any image, yet we want to

allow for a shape explanation, when appropriate. So we add a prior
penalty term to �(xk; yk), penalizing (in the log domain) by the L1-
norm distance of the reectance from a at reectance image. This
discourages every image from being explained as reectance variations
on a at surface.

In our training samples, there were few non-generic samples, by
which we mean ones with signi�cant shape structure made invisible
by coincidental alignment with the assumed light direction. (There are
a few, however, note Fig. 23). Were such samples more prevalant, as
they can be in a much larger training set, we would want to add a term
penalizing those non-generic interpretations, as described in (Freeman,
1994), in order to penalize shape interpretations such as Fig. 17, bottom
right.
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Figure 21. Compatibility function between two nodes (node[3,4], layer 1 to node[2,4],
layer 1). The reectance and shape scene candidates at node [3,4], shown next to the
rows, identify each row. The scene candidates for node [2,4] identify each column.
The compatbility matrix value is depicted by the brightness of each square at each
row and column intersection.
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iteration 0

iteration 1

iteration 2

iteration 3

iteration 4

iteration 5

iteration 6

iteration 40
Figure 22. Iterations of the belief propagation for shading/reectance determination
for bump image. The left-most column shows the image rendered from each of the
selected candidate scenes. Since each scene candidate was selected to explain the
observed image, the left column stays nearly constant over the di�erent choices for
scene explanations. After 5 or 6 iterations, the scene estimate makes only small
changes (compare with iteration 40).

ijcv99rev2.tex; 16/07/2000; 23:01; p.33



34 William T. Freeman

iteration 0

iteration 1

iteration 2

iteration 3

iteration 4

iteration 5

iteration 6

iteration 40
Figure 23. Initial iterations and �nal solution for crescent problem. The recon-
structed shape has a few samples with non-generic shapes relative to the assumed
lighting direction, yielding shape structures invisible to the rendered image. The
initial scene guess, based on local information alone, is similar to that for the bump
image of Fig. 22, but after several iterations of belief propagation, the reectance
explanation becomes more probable.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 24. Several images from a database (Freeman and Viola, 1998) of images
labelled by naive observers as being caused by shading e�ects (a, c) or reectance
e�ects (e, g). The algorithm interpretation agrees with the appearance, and labelling
by the subjects. The rendered images of the scene interpretations are not especially
faithful to the input images, showing that the training data, depicted in Fig. 18, is
not a good match for these images. However, in each case, the scene interpretation
is generally correct.
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5. Motion Estimation

Finally, we apply VISTA to the problem of motion estimation. The
scene data to be estimated are the projected velocities of moving ob-
jects. The image data are two successive image frames. Because we felt
long-range interactions were important, we built Gaussian pyramids
(e.g., (Jahne, 1991)) of both image and scene data, connecting patches
to nearest neighbors in both scale and position.

Luettgen et al. (Luettgen et al., 1994) applied a related message-
passing scheme in a multi-resolution quad-tree network to estimate
motion, using Gaussian probabilities. While the network did not con-
tain loops, the authors observed artifacts along quad-tree boundaries,
which were arti�cial statistical boundaries of the model.

For the motion estimation problem, to accurately match the two
frames of input images at a patch, the training data needs to contain
essentially all possible local image patches cross all possible image mo-
tions, which can be a prohibitively large set. In other work (Freeman
and Haddon, 2000), we have applied the belief propagation method to
estimate the motion of real images, but used a brightness constancy
assumption to generate candidate scene interpretations for each image
patch. Here, we enumerate all possible observed input images, but we
restrict ourselves to a synthetic world of moving constant intensity
blobs, of random intensities and shapes, in order to use the same
learning machinery for this problem as we did for the previous two.

We wrote a tree-structured vector quantizer, to code 4 by 4 pixel
by 2 frame blocks of image data for each pyramid level into one of 300
codes for each level, and likewise for scene patches.

During training, we presented approximately 200,000 examples of
irregularly shaped moving blobs of a contrast with the background
randomized to one of 4 values. For this vector quantized representation,
we used co-occurance histograms to measure the joint probabilities of
neighboring scene vectors and of image/scene pairs. From those joint
probabilities, we calculated the conditional probabilities used in the
message passing and belief update rules of Eqs. (21) and (20), see
(Freeman and Pasztor, 1999).

Figure 27 shows six iterations of the inference algorithm as it con-
verges to a good estimate for the underlying scene velocities. For this
problem with this training data, the machinery leads to �gure/ground
segmentation, aperture problem constraint propagation, and �lling-in
(see caption). The resulting inferred velocities are correct within the
accuracy of the vector quantized representation.
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Figure 25. Multi-scale representation used for motion analysis problem.

Figure 26. Motion estimation problem. First of two frames of image data (in gaus-
sian pyramid), and corresponding frames of velocity data. The left side shows just
one of two image frames. The right side shows (red, darker) motion vectors from
the second time frame obscuring (blue, lighter) motion vectors from the �rst. The
scene representation contains both frames. Each large grid square is one node of the
Markov network.

6. Discussion

A limitation of the VISTA approach is that one must �nd a set of
candidate scene patches for any given input image patch. In the imple-
mentations of this paper (cf. (Freeman and Haddon, 2000)), we relied
on a training set which enumerated a coarse sampling of all possible
input patch values.

We illustrated two approaches that allow this enumeration to be suc-
cessful. One is to allow only a restricted class of input images. The mov-
ing blobs were such a restricted visual world. The shading/reectance
images were also restricted, in that they did not include occluding edges
and other features. The second approach is to pre-process the input
images to remove extraneous complexity. This was the approach we
used for the super-resolution problem. The image patches were both
band-pass �ltered and contrast normalized, which allowed adequate
�tting of the natural images with reasonably sized training sets.
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Figure 27. The most probable scene code for Fig. 26b at �rst 6 iterations of Bayesian
belief propagation. (a) Note initial motion estimates occur only at edges. Due to
the \aperture problem", initial estimates do not agree. (b) Filling-in of motion
estimate occurs. Cues for �gure/ground determination may include edge curvature,
and information from lower resolution levels. Both are included implicitly in the
learned probabilities. (c) Figure/ground still undetermined in this region of low
edge curvature. (d) Velocities have �lled-in, but do not yet all agree. (e) Velocities
have �lled-in, and agree with each other and with the correct velocity direction,
shown in Fig. 26.

7. Summary

We described an approach we call VISTA{Vision by Image/Scene TrAin-
ing. One speci�es prior probabilities on scenes by generating typical
examples, creating a synthetic world of scenes and rendered images.
We break the images and scenes into a Markov network, and learn
the parameters of the network from the training data. To �nd the best
scene explanation given new image data, we apply belief propagation in
the Markov network even though it has loops, an approach supported
by experimental and theoretical studies.

We used very similar machinery for the three problems we discussed.
The training data for each particular vision problem yielded di�erent
algorithm behavior. Figure 28 shows a comparison of the information
propagation between motion estimation and super-resolution. For the
motion problem, �lling-in propagated interpretations perpendicularly
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Figure 28. Comparison of algorithm behaviors across problems. For the motion
estimation problem, the belief propagation algorithm properly learns to \�ll-in"
motion information, propagating perpendicularly to the image contour. For the
super-resolution problem (example image from (Freeman and Pasztor, 1999)) prop-
agation can occur along the direction of an image contour, as a hypothesized image
contour is extended along its direction (see horizontal line at left, extending to the
right). This di�erent behavior occurs using the same probabilistic machinery for the
two di�erent problems.

to image contours; for the super-resolution problem, the information
propagated along the center contour of the image shown. In each case,
the propagation was appropriate to the problem at hand.

The intuitions of this paper{propagate local estimates to �nd a
best, global solution{have a long tradition in computational vision
and have been implemented in many ways (Barrow and Tenenbaum,
1981; Rosenfeld et al., 1976; Horn, 1986; Poggio et al., 1985). The power
of the VISTA approach lies in the large training database, allowing rich
prior probabilities, the selection of scene candidates, which focuses the
computation on scenes that render to the image, and the Bayesian belief
propagation, which allows e�cient inference.

Applied to super-resolution, VISTA gives results that we believe
are the state of the art. Applied to shape-from-shading the algorithm
shows an ability to distinguish shading from paint for some simple
images. Applied to motion estimation, the same method resolves the
aperture problem and appropriately �lls-in motion over a �gure. The
technique shows the bene�ts of applying machine learning methods and
large databases to problems of visual interpretation.
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Appendix

A. Filters used for super-resolution.

A.1. Pre-filter before subsampling, to create training

data

0.25 0.5 0.25

applied separably in each dimension.

A.2. Contrast normalization

Below are the values of the upper-left 7x7 quadrant of the 15x15 �lter used in

contrast normalization. The square of the mid-band image is blurred by this

low-pass �lter. After taking the square root, a small constant, 0.01, is added

to avoid division by zero later. During contrast normalization, the mid- and

high-frequency bands are divided by this blurred energy image.

0 0.0000 0.0004 0.0012 0.0024 0.0031 0.0032

0.0000 0.0004 0.0015 0.0036 0.0057 0.0068 0.0071

0.0004 0.0015 0.0037 0.0065 0.0086 0.0095 0.0097

0.0012 0.0036 0.0065 0.0088 0.0099 0.0103 0.0103

0.0024 0.0057 0.0086 0.0099 0.0103 0.0103 0.0103

0.0031 0.0068 0.0095 0.0103 0.0103 0.0103 0.0103

0.0032 0.0071 0.0097 0.0103 0.0103 0.0103 0.0103

A.3. Mid-band filter

We do all the processing at the sampling rate of the high resolution band

pixels to be estimated. We �rst double the pixel resolution in each dimension,

bilinearly interpolating between samples. This is e�ectively a low-pass �lter.

Then we remove the low-frequencies from the interpolated image, taking

advantage of the assumption of Eq. (24), that the lowest image frequencies do

not help predict the highest image frequencies, given the mid-band frequencies.

This low-pass �lter, L, is applied in the frequency domain. It is rotationally

symmetric, with a value in radial spatial frequency, r

L(r) =
1� exp(�r2=0:02)

1 + exp(�(r � 0:25)=0:075)
; (31)

where r ranges from 0 to �

2
at the largest distance from the origin in the

baseband.
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