
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Designing Building Processes in Software
Construction Kits

Carol Strohecker, Adrienne H. Slaughter

TR2000-03 December 2000

Abstract

We have developed a genre of software construction kits and a framework for developing them,
which is both conceptual and structural. The kits are highly graphical and highly interactive.
They are characterized by two main processes: playersb́uilding of objects from graphical ele-
ments, and the softwareś activation of the constructions. The existing kits demonstrate a range
of interaction designs for creating constructions, and trial users of our framework have intro-
duced further approaches. We review these results and identify considerations for articulation of
optimal construction techniques.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2000
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MITSUBISHI ELECTRIC RESEARCH LABORATORY

Designing Building Processes
in Software Construction Kits

Carol Strohecker

Adrienne H. Slaughter

TR2000-03 April 2000

Abstract

We have developed a genre of software construction kits and a framework for developing them,

which is both conceptual and structural. The kits are highly graphical and highly interactive.

They are characterized by two main processes: players’ building of objects from graphical

elements, and the software’s activation of the constructions. The existing kits demonstrate a

range of interaction designs for creating constructions, and trial users of our framework have

introduced further approaches. We review these results and identify considerations for

articulation of optimal construction techniques.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or

in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or

partial copies include the following: a notice that such copying is by permission of MERL - A Mitsubishi Electric Research

Laboratory, of Cambridge, Massachusetts; an acknowledgment of the authors and individual contributions to the work; and

all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a

license with payment of fee to MERL - A Mitsubishi Electric Research Laboratory. All rights reserved.

Copyright © Mitsubishi Electric Research Laboratory, 2000

201 Broadway, Cambridge, Massachusetts 02139

Designing Building Processes
in Software Construction Kits

Carol Strohecker
Adrienne H. Slaughter

Mitsubishi Electric Research Laboratory (MERL)

201 Broadway, Cambridge, MA 02139 USA

+1 617 621 7517, +1 617 621 7594

stro@merl.com, slaughter@merl.com

ABSTRACT
We have developed a genre of software construction kits

and a framework for developing them, which is both

conceptual and structural. The kits are highly graphical and

highly interactive. They are characterized by two main

processes: players’ building of objects from graphical

elements, and the software’s activation of the constructions.

The existing kits demonstrate a range of interaction designs

for creating constructions, and trial users of our framework

have introduced further approaches. We review these results

and identify considerations for articulation of optimal

construction techniques.

Keywords
construction kits, Java framework, learning, interaction

design, activity design

INTRODUCTION
We are developing a series of software kits based on the

notion of “microworlds” [7] and the theory of

“constructionism,” which holds that people construct rather

than acquire knowledge, inventing ideas for themselves

based on actions in the world [4, 5]. Because actions are so

important in knowledge construction, the nature of

particular activities becomes especially interesting, and

activity design has become a specialization in learning

research [3]. Many of these designs find broader application

in real-world domains such as toys, puzzles, and software

[e.g., 8].

Considerations in activity design and interaction design are

guiding development of our software construction kits.

They form a genre in which users (variously called

“learners” or “players”) build and activate graphical objects

[17]. Dinosaur skeletons balance as they walk and run [10,

11, 12]; maps transform into street-level views [12, 13, 14,

15, 16]; colorful tiles spread into geometric patterns [2];

animistic creatures simulate the push-pulls of social

dynamics [1, 2]; and dancers’ breathing rates form a cycle

for a shared dance [17].

These kits focus on subject domains as varied as geometry,

symmetry, physical forces, mechanical structures,

time/space relationships, and system dynamics; yet they

incorporate common strategies in activity design and

interaction design. We are currently formulating

generalizations of the strategies and programming

constructs to support production of further instances of the

genre. Our Java framework, called the “Kit4Kits,” is both

conceptual and structural [17].

In our kit designs, and through work with people

employing the Kit4Kits to implement their own kit

designs, we have discovered interesting variations and

outstanding problems pertaining to a key facet of interaction

design for the genre. Primarily, the kits support players’

constructions of graphical objects, which upon activation

become animate in some way. Players effect the

constructions through direct manipulation of graphical

elements, but the manner of access and assembly of the

elements varies from kit to kit.

Here we review varying construction processes for our

existing prototypes, report on additional construction

techniques developed by trial users of the Kit4Kits, and

identify considerations for articulation of optimal

construction techniques.

EXISTING PROTOTYPES
Bones
In the Bones kit, the player creates skeletons by dragging

individual bones into the work area and arranging them

into the form of a dinosaur. The player can then click a

button to animate the construction.

In the first version of the prototype [10, 11], clicking any of

the movement buttons (“stroll,” “hurry,” or “dash”)

triggered several calculations:

• the program compared upper and lower portions of the

composition and made guesses about which bones

constituted the skeleton’s legs;

• the program compared the combined mass values of the

bones in the upper portion of the construction to those

in the lower portion, and if the upper portion was too

heavy the skeleton collapsed;

• the program calculated the location of the skeleton’s

overall center of mass and illustrated it with a line

projecting downward. If the line fell within a polygon

connecting the points of contact with the “ground”, the

creature was deemed balanced and it proceeded to

move, its legs swinging according to a gait pattern

appropriate to the speed and the number of legs. If the

line fell outside of base polygon, the skeleton

collapsed.

Unfortunately the Bones algorithm could not always decide

correctly which pieces constituted the legs, so some

peculiar animations resulted. We made a revision in the

current version of the prototype [12], such that designating

the legs is part of the construction process. This ensures

that the algorithm has the proper number and locations of

legs, but shifts a burden to the player, whose freeform

construction process is now encumbered by the

specification process prior to seeing the animation.
1

The trade-off benefit is that any of the bones can be used

anywhere in the skeleton. For example, the fanciful creature

at the right, above, is composed of just three kinds of

bones: skull, pelvis, and digit. (Skulls form the “thighs,”

digits form the “ribs,” and so on.) Players can invent

whimsical creatures or match creations to textbook

illustrations of dinosaurs: the set of bones is based on parts

found in reference books on paleontology. This flexibility

would be lost if we pre-designated a part strictly as a head

bone, a pelvis, vertebra, or etc., though such designations

could simplify the construction process.

WayMaker
In the WayMaker kit we use similar designations but also

allow further specification of elements. The player arranges

representations of districts, edges, paths, landmarks, and

nodes into the form of a map, and the software generates

street-level views along pathways through the mapped

domain while maintaining the relative placements of the

elements [12, 13, 14, 15, 16]. The elements are represented

abstractly: landmarks are triangles, paths are dotted lines,

1
 We also extended the center-of-mass calculation and the

set of gait patterns, so that creatures’ legs now swing

according to a pattern appropriate to the speed, the

number of legs, and frontward or backward location of the

center of mass. There is also a cursory representation of

dynamic balance for the faster speeds. In a future version

we hope to include articulated legs and perhaps spines,

necks, etc., which would improve the animations but

may further complicate the construction process.

and so on. The player can substitute more detailed

representations: triangles can become towers, bridges,

houses, etc.; lines can take on the look of textured terrain,

etc.

This construction approach poses benefits for both the

player and the algorithm: the player enjoys freeform

placement of the elements in shaping a map, and the pre-

designation of elements into structural types simplifies the

algorithm’s handling of the elements as it transforms the

construction. Furthermore, the extra step of specifying

representations does not seem to be a burden for players:

most prefer seeing a picture of a tower to an abstract symbol

like a triangle, and choosing the specification is part of the

fun of using the software.

Other kits constrain the construction process within a grid-

like structure.

PatternMagix
In PatternMagix a four-part, square grid encourages

exploration of geometric symmetries, as players reflect tiles

around the x- and y-axes and rotate tiles within a quadrant

[2].

AnimMagix
In AnimMagix a tripartite column guides assembly of

animistic creatures’ perceptual, social, and mobile

behaviors [1, 2]. Sliders enable further adjustments, such as

to the degree of a behavior.

The manner of construction is familiar from toys, books,

and other media.
2
 It constrains the construction process but

has the advantages of providing pre-established

designations for the algorithm and helping to clarify how

the player should go about making a construction.

2
 Left: Animal Twister, Club Earth, Cumberland, RI.

Middle: J. Riddell, Hit or Myth: More Animal Lore and
Disorder, Harper and Rowe, NY, 1949. Right: K.

Karakotsios et al., SimLife: The Genetic Playground,
Maxis, Orinda, CA, 1992.

Zyklodeon
We are employing a similar technique for a prototype now

in progress, Zyklodeon, in which players create humanistic

figures and endow them with properties that effect timing

for a shared dance [18]. Dancers comprise six parts: head,

torso, arms, and legs. Changing from a default part to a

more colorful representation is similar to the element

specification process in WayMaker. In Zyklodeon we add a

third tier to the construction process: within the torso are

pop-up, slider-controlled settings with which the player can

adjust a dancer’s breathing rate and other choreographic

parameters.

Thus our existing prototypes exemplify a range of

construction strategies: freeform construction, freeform

construction with a specification phase, and structured

construction with varying levels and manners of further

specification. What remains constant from one prototype to

the next is the importance of the relationship between the

build and activate processes, which typically plays out as

an alternating pattern, usually with greater player control in

the building and greater algorithm control in the activating.

Acknowledgment of this pattern led us to create separate

structures for the two functions within the Kit4Kits. The

Composer and Arena structures identify the nature of the

activity within a specific screen area. Composers typically

handle building elements; Arenas handle constructions and

the associated algorithms that activate them.

DESIGNS BY TRIAL USERS OF THE KIT4KITS
Abacaudio
Alex wanted to make a kit with which players could

explore timing relationships in the context of music-

making. Ball and soundpad elements would be paired such

that a ball falling on a soundpad would make a sound,

which could be specified as a particular tone. Building

consists of adding ball/soundpad elements to the

Composer. Upon activation, each ball strikes its soundpad,

and the Arena displays strike patterns in a graph-like

notation resembling a musical score. The patterns could be

saved for replay.

Most striking about Alex’s design is that, as in Bones, the

build and activate processes share a screen area but

constitute quite distinct activities. Thus our Composer and

Arena construct would be well suited to his design.

WordBuilder
Max and Jan began a kit with which players can build letter

combinations into phonemes, and phonemes into words.

Their design evolved through several arrangements of

screen areas and corresponding work flow:
3

Eventually they settled on an arrangement based on

downward movement as the player progresses through a

process of word building: letters combine to form

phonemes, which become syllables that form words. Letters

must match according to particular sonority rules in order

to form a phoneme [6]. Matches are saved into pockets

ordered according to proper position of the phoneme within

a word: an onset phoneme combines with a vowel to begin

a word, which ends with a coda syllable. Saved words may

or may not yet appear in an English dictionary, but must

follow the onset-vowel-coda pattern.

3
 Graphical letterforms are from [9].

Max and Jan carefully separated the screen areas according

to each of these functions, yet the main areas support both

building and a kind of activating, which takes the form of

checking for proper letter matches and syllable patterns.

Nevertheless Jan implemented both areas by extending our

Composer structure, rather than using the Composer for one

and the Arena for the other. Composers typically handle

operations on elements like the Jan’s validity checking, so

it is curious that this process comes closest to a notion of

activation in WordBuilder.

Bugs
Chris wanted to make a simulation kit that would deal

with notions of ecology. He wanted players to be able to

control aspects of the environment, which resembles an ant

farm, and of creatures that inhabit it, which he called

“bugs.” He separated the two into screen displays that

differed somewhat but also contained constant features.

Interestingly, both modes include both build and activate

processes. In environment mode, the player can add bugs

and food for the bugs while the simulation is running.

This capability differs noticeably from the usual separation

of building and activating within our kit genre.

He wanted the player to be able to specify rules governing

bugs’ properties and behaviors, such as being hungry,

seeking or avoiding food, seeking or avoiding other bugs,

seeking food stores, dying when hungry and not finding

food, and so on.

At first he represented the rule structure as a kind of logical

chart, but through discussion moved to more graphical

representations of the settings.

Interestingly, Chris’s notion of build mode is more like the

specification phase of building in our prototypes. He

implemented this specification functionality by extending

our Composer structure.

OPTIMAL CONSTRUCTION TECHNIQUES
We need to clarify the notions of building and activation

with respect to their pertinence to elements and/or

constructions. In particular, we need to make more explicit

the notion of element specification as a sub-process within

building. These clarifications should help users of the

Kit4Kits to deal more easily with the existing Composer

and Arena structures. Meanwhile, distinctions between

varying notions of building and activating are informing

our ongoing development of the Kit4Kits.

ACKNOWLEDGMENTS
We owe particular thanks to Edith Ackermann and Aseem

Agarwala, who made key contributions in originating the

Composers and for the Magix kits. They also contributed

significantly in other ways to the designs of these kits.

Several other people have also contributed to design,

development, and use of Magix and the other kits

informing our framework: AARCO medical illustrators,

William Abernathy, Noah Appleton, Maribeth Back,

Barbara Barros, Dan Gilman, Mike Horvath, John Shiple,

Doug Smith, students at Harvard University’s Graduate

School of Design, colleagues at MERL, and anonymous

friends. We thank John Evans, Aradhana Goel, Tim

Gorton, and Milena Vegnaduzzo for participating in trials of

the Kit4Kits. MERL supports the research.

REFERENCES
1. Ackermann, E., and Strohecker, C. Interaction design

for AnimMagix prototype. MERL TR98-13,

Mitsubishi Electric Research Laboratory, Cambridge,

MA, 1998.

2. Ackermann, E., and Strohecker, C. Build, launch,

convene: Sketches for constructive-dialogic play kits.

MERL TR99-30, Mitsubishi Electric Research

Laboratory, Cambridge, MA, 1999.

3. Gruber, H. E., & Vonèche, J. J. (eds.). The Essential
Piaget. Basic Books, New York, 1977.

4. Harel, I., & Papert, S. (eds.). Constructionism. Ablex,

Norwood, NJ, 1991.

5. Kafai , Y., and Resnick, M. (eds.) Constructionism in
Practice: Designing, Thinking, and Learning in a
Digital World. Lawrence Erlbaum, Mahwah, NJ,

1996.

6. Kenstowicz, M. Phonology in Generative Grammar.

Blackwell, Cambridge, MA, 1994.

7. Papert, S. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York, 1980.

8. Papert et al., http://el.www.media.mit.edu/.

9. Rey, H. A. Curious George Learns the Alphabet.

Houghton Mifflin, Boston, 1963, 1991.

10. Strohecker, C. Embedded microworlds for a multiuser

environment. MERL TR95-07, Mitsubishi Electric

Research Laboratory, Cambridge, MA, 1995.

11. Strohecker, C. A model for museum outreach based on

shared interactive spaces. Multimedia Computing and
Museums: Selected Papers from the Third
International Conference on Hypermedia and
Interactivity in Museums, Archives & Museum

Informatics, Pittsburgh, 57-66, 1995.

12. Strohecker, C. Construction kits as learning

environments. Proceedings of IEEE International
Conference on Multimedia Computing and Systems 2,

1030-1031, 1999.

13. Strohecker, C. Toward a developmental image of the

city: Design through visual, spatial, and mathematical

reasoning. Proceedings of Visual and Spatial
Reasoning in Design, University of Sydney and

Massachusetts Institute of Technology, 33-50, 1999.

14. Strohecker, C., and Barros, B. A prototype design tool

for participants in graphical multiuser environments.

CHI’97 Extended Abstracts, 246-247, 1997.

15. Strohecker, C., and Barros, B. Make way for

WayMaker. Presence: Teleoperators and Virtual
Environments 9:1, 97-107, 2000.

16. Strohecker, C., Barros, B., and Slaughter, A. Mapping

psychological and virtual spaces, International Journal
of Design Computing, University of Sydney, 1998.

17. Strohecker, C., and Slaughter, A. Kits for learning and

a kit for kitmaking. Submitted to CHI’00. Also

available as MERL TR2000-02, Mitsubishi Electric

Research Laboratory, Cambridge, MA, 2000.

18. Strohecker, C., Slaughter, A., and Horvath, M.

Mitsubishi Electric Research Laboratory, Cambridge,

MA, forthcoming.

	Title Page
	Title Page
	page 2

	Designing Building Processes in Software Construction Kits
	page 2
	page 3
	page 4
	page 5
	page 6

