-
CI0066: Internship - IoT Network Anomaly Detection
MERL is seeking a highly motivated and qualified intern to conduct research on IoT network anomaly detection and analysis. The candidate is expected to develop innovative anomaly detection technologies that can proactively detect and analyze network failure in large-scale IOT networks. The candidate should have knowledge of LLM/ML and anomaly detection. Knowledge of network log analysis and network protocol a plus. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. Start date for this internship is flexible and the duration is 3 months.
The responsibilities of this intern position include (i) research on anomaly detection in large-scale IoT networks; (ii) develop proactive network anomaly detection and analysis technologies; (iii) simulate and analyze the performance of developed technology.
- Research Areas: Communications, Artificial Intelligence, Data Analytics, Signal Processing
- Host: Jianlin Guo
- Apply Now
-
EA0070: Internship - Multi-modal sensor fusion
MERL is looking for a self-motivated intern to work on multi-modal sensor fusion for health condition monitoring and predictive maintenance of motor drive systems. The ideal candidate would be a Ph.D. candidate in electrical engineering or computer science with solid research background in signal processing and machine learning. Experience in motor drive system is a plus. The intern is expected to collaborate with MERL researchers to collect data, explore multi-modal data relationship, and prepare manuscripts for publications. The total duration is anticipated to be 3 months and the start date is flexible.
Required Specific Experience
- Experience with multi-modal sensor fusion.
- Research Areas: Data Analytics, Electric Systems, Machine Learning, Signal Processing, Artificial Intelligence
- Host: Dehong Liu
- Apply Now