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Abstract

We propose a new objective function for superpixel seg-
mentation. This objective function consists of two compo-
nents: entropy rate of a random walk on a graph and a
balancing term. The entropy rate favors formation of com-
pact and homogeneous clusters, while the balancing func-
tion encourages clusters with similar sizes. We present a
novel graph construction for images and show that this
construction induces a matroid— a combinatorial structure
that generalizes the concept of linear independence in vec-
tor spaces. The segmentation is then given by the graph
topology that maximizes the objective function under the
matroid constraint. By exploiting submodular and mono-
tonic properties of the objective function, we develop an ef-
ficient greedy algorithm. Furthermore, we prove an approx-
imation bound of 1

2 for the optimality of the solution. Exten-
sive experiments on the Berkeley segmentation benchmark
show that the proposed algorithm outperforms the state of
the art in all the standard evaluation metrics.

1. Introduction

Superpixel segmentation is an important module for
many computer vision applications such as object recogni-
tion [15], image segmentation [20, 8], and single view 3D
reconstruction [7, 19]. A superpixel is commonly defined
as a perceptually uniform region in the image.

The major advantage of using superpixels is computa-
tional efficiency. A superpixel representation greatly re-
duces the number of image primitives compared to the pixel
representation. For instance, in an L-label labeling prob-
lem, the solution space for a pixel representation is Ln

where n is the number of pixels— typically 106; in con-
trast, the solution space for a superpixel representation is
Lm where m is the number of superpixels— typically 102

(<< 106). Moreover, superpixel segmentation provides the
spatial support for computing region based features.

The desired properties of superpixel segmentation de-
pends on the application of interest. Here we list some gen-
eral properties required by various vision applications:

• Every superpixel should overlap with only one object.

• The set of superpixel boundaries should be a superset
of object boundaries.

• The mapping from pixels to superpixels should not re-
duce the achievable performance of the intended appli-
cation.

• The above properties should be obtained with as few
superpixels as possible.

In this paper, we study the superpixel segmentation as
a clustering problem. In order to satisfy the above require-
ments, we present a new clustering objective function which
consists of two terms: (1) the entropy rate of a random
walk on a graph; (2) a balancing term on the cluster dis-
tribution. The entropy rate favors compact and homoge-
neous clusters— encouraging division of images on percep-
tual boundaries and favoring superpixels overlapping with
only a single object; whereas the balancing term encour-
ages clusters with similar sizes— reducing the number of
unbalanced superpixels.

Our clustering formulation leads to an efficient algorithm
with a provable bound on the optimality of the solution.
We show that our objective function is a monotonically in-
creasing submodular function. Submodularity is the dis-
crete analogue of convexity in continuous domains. Know-
ing whether a function is submodular enables us to better
understand the underlying optimization problem. In gen-
eral, maximization of submodular functions leads to NP-
hard problems, for which the global optimum is difficult
to obtain. Nevertheless, by using a greedy algorithm and
exploiting the matroid structure present in our formulation,
we obtain a bound of 1

2 on the optimality of the solution.
Recently, maximization of submodular functions has been
used in sensor placement [6] and outbreak detection [9]
problems.

1.1. Related Work

Graph-based image segmentation work of Felzenszwalb
and Huttenlocher (FH) [4], mean shift [2], and water-
shed [23] are three of the most popular superpixel segmen-
tation algorithms. FH and watershed are extremely fast;
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mean shift is robust to local variations. However, they pro-
duce superpixels with irregular sizes and shapes which tend
to straddle multiple objects as pointed out in [10, 22].

Ren and Malik [20] propose using Normalized Cut
(NCut) [21] for superpixel segmentation. NCut has the nice
property of producing superpixels with similar sizes and
compact shapes which is preferred for some vision algo-
rithms [20, 15]. One drawback of NCut is its computational
requirement— it takes several minutes for segmenting an
image of moderate (481x321) size. Levinshtein et al. [10]
propose TurboPixel as an efficient alternative to achieve a
similar regularity. TurboPixel is based on evolving bound-
ary curves from seeds uniformly placed in the image. Re-
cently Veksler et al. [22] formulate superpixel segmenta-
tion as a GraphCut [1] problem. The regularity is enforced
through a dense patch assignment technique for allowable
pixel labels.

These methods produce nice image tessellations as
shown in [20, 10, 22]. Nevertheless, they tend to sacrifice
fine image details for their preference for smooth bound-
aries. This is reflected in the low boundary recall as reported
in [10, 22]. In contrast, our balancing objective, which regu-
larizes the cluster sizes, avoids the over-smoothing problem
and hence preserves object boundaries.

Moore et al. [14, 13] propose an alternative approach for
obtaining superpixels aligned with a grid. In [14], a greedy
algorithm is used to sequentially cut images along some ver-
tical and horizontal strips; whereas in [13], the problem is
solved with a GraphCut algorithm.

1.2. Contribution

The main contributions of the paper are listed below:

• We pose the superpixel segmentation problem as a
maximization problem on a graph and present a novel
objective function on the graph topology. This func-
tion consists of an entropy rate and a balancing
term for obtaining superpixels with commonly desired
properties.

• We prove that the entropy rate and the balancing func-
tions are monotonically increasing and submodular.

• By embedding our problem in a matroid structure
and using the properties of the objective function, we
present an efficient greedy algorithm with an approxi-
mation bound of 1

2 .

• Our algorithm significantly outperforms the state of
the art with respect to the standard metrics on the
Berkeley segmentation benchmark— a reduced under-
segmentation error up to 50%, a reduced boundary
miss rate up to 40%, and a tighter achievable segmen-
tation accuracy bound. In addition, the presented algo-
rithm is highly efficient— takes about 2.5 seconds to
segment an image of size 481x321.

The paper is organized as follows. We review the nota-
tions and background materials in Section 2. The problem
formulation and the optimization scheme are given in Sec-
tions 3 and 4 respectively. We present the experiment re-
sults in Section 5 and conclude the paper in Section 6. The
details of the proofs are given in [11].

2. Preliminaries

Graph representation: We use G = (V,E) to denote
an undirected graph where V is the vertex set and E is the
edge set. The vertices and edges are denoted by vi and ei,j
respectively. The similarity between vertices is given by the
weight functionw : E → R

+∪{0}. In an undirected graph,
the edge weights are symmetric, that is wi,j = wj,i.

Graph partition: A graph partition S refers to a di-
vision of the vertex set V into disjoint subsets S =
{S1, S2, ..., SK} such that Si ∩ Sj = Ø for i �= j and⋃

i Si = V . We pose the graph partition problem as a sub-
set selection problem. Our goal is to select a subset of edges
A ∈ E such that the resulting graph (V,A) consists of K
connected components/subgraphs.

Entropy: The uncertainty of a random variable is mea-
sured by entropy H . Entropy of a discrete random variable
X with a probability mass function pX is defined by

H(X) = −
∑
x∈X

pX(x) log pX(x) (1)

where X is the support of the random variable X . The
conditional entropy H(X |Y ) quantifies the remaining un-
certainty of a random variable X given that the value of a
correlated random variable Y is known. It is defined as

H(X |Y ) =
∑
y∈Y

pY (y)H(X |Y = y)

= −
∑
y∈Y

pY (y)
∑
x∈X

pX|Y (x|y) log pX|Y (x|y)
(2)

where Y is the support of Y and pX|Y is the conditional
probability mass function.

Entropy rate: The entropy rate quantifies the uncer-
tainty of a stochastic process XXX = {Xt|t ∈ T } where T
is some index set. For a discrete random process, the en-
tropy rate is defined as an asymptotic measure

H(XXX) = lim
t→∞H(Xt|Xt−1, Xt−2, ..., X1), (3)

which measures the remaining uncertainty of the random
process after observing the past trajectory. For a station-
ary stochastic process, the limit in (3) always exists. In the
case of a stationary 1st-order Markov process, the entropy
rate has a simple form H(XXX) = limt→∞ H(Xt|Xt−1) =
limt→∞ H(X2|X1) = H(X2|X1). The first equality is due
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to the 1st-order Markov property whereas the second equal-
ity is a consequence of stationarity. For more details, one
can refer to [3, pp.77].

Random walks on graphs: Let XXX = {Xt|t ∈ T,Xt ∈
V } be a random walk on the graph G = (V,E) with a
nonnegative similarity measure w. We use a random walk
model described in [3, pp.78]— the transition probability
is defined as pi,j = Pr(Xt+1 = vj |Xt = vi) = wi,j/wi

where wi =
∑

k:ei,k∈E wi,k is the sum of incident weights
of the vertex vi, and the stationary distribution is given by

μμμ = (μ1, μ2, ..., μ|V |)T = (
w1

wT
,
w2

wT
, ...,

w|V |
wT

)T (4)

where wT =
∑|V |

i=1 wi is the normalization constant. For
a disconnected graph, the stationary distribution is not
unique. However, μμμ in (4) is always a stationary distribu-
tion. It can be easily verified through μμμ = PTμμμ where
P = [p]i,j is the transition matrix. The entropy rate of the
random walk can be computed by applying (2)

H(XXX) = H(X2|X1) =
∑
i

μiH(X2|X1 = vi)

= −
∑
i

μi

∑
j

pi,j log pi,j = −
∑
i

wi

wT

∑
j

wi,j

wi
log

wi,j

wi

= −
∑
i

∑
j

wi,j

wT
log

wi,j

wT
+
∑
i

wi

wT
log

wi

wT
(5)

Submodularity: Let E be a finite set. A set function
F : 2E → R is submodular if

F (A∪{a1})−F (A) ≥ F (A∪{a1, a2})−F (A∪{a2}) (6)

for all A ⊆ E, a1, a2 ∈ E and a1, a2 /∈ A. This property is
also referred as the diminishing return property, which says
that the impact of a module is less if used in a later stage.

Monotonically increasing set function: A set function
F is monotonically increasing if F (A1) ≤ F (A2) for all
A1 ⊆ A2.

Matroid: A matroid is an ordered pair M = (E, I)
consisting of a finite set E and a collection I of subsets of
E satisfying the following three conditions: (1) Ø ∈ I, (2)
If I ∈ I and I ′ ⊆ I , then I ′ ∈ I, and (3) If I1 and I2 are in
I and |I1| < |I2|, then there is an element e of I2 − I1 such
that I1 ∪ e ∈ I. Note that there are several other definitions
for matroids which are equivalent. For more details, one
can refer to [18, pp.7∼15].

3. Problem Formulation

We consider clustering as a graph partitioning problem.
To partition the image into K superpixels, we search for a
graph topology that has K connected subgraphs and maxi-
mizes the proposed objective function.

wi,i wj,j

ei,j selected ei,j unselected

wi,i ← wi,i+wi,j wj,j ← wj,j+wi,j

wi,j wi,j←0

Figure 1. Illustration of the graph construction. If an edge ei,j is
unselected in cluster formation, its weight is redistributed to the
loops of the two vertices.

(a) Entropy Rate = 0.81 (b) Entropy Rate = 0.43
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Figure 2. We show the role of entropy rate in obtaining compact
and homogeneous clustering. We use a Gaussian kernel to convert
the distances, the numbers next to the edges, to similarities. Each
of these clustering outputs contains six different clusters shown as
connected components. As described in Section 3, every vertex
has a loop which is not shown. The entropy rate of the compact
cluster in (a) has a higher objective value than that of the less com-
pact one in (b). The entropy rate of the homogeneous cluster in (c)
has a higher objective value than that of the less homogeneous one
in (d).

3.1. Graph Construction

We map an image to a graph G = (V,E) with vertices
denoting the pixels and the edge weights denoting the pair-
wise similarities given in the form of a similarity matrix.
Our goal is to select a subset of edges A ⊆ E such that the
resulting graph, G = (V,A), contains exactly K connected
subgraphs. In addition, we also assume that every vertex of
the graph has a self loop, although they are not necessary
for the graph partition problem. When an edge is not in-
cluded in A, we increase the edge weight of the self loop of
the associated vertices in such a way that the total incident
weight for each vertex remains constant (See Figure 1).

3.2. Entropy Rate

We use the entropy rate of the random walk on the con-
structed graph as a criterion to obtain compact and homo-
geneous clusters. The proposed construction leaves the
stationary distribution of the random walk (4) unchanged
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(a) Balancing Function = -1.00 (b) Balancing Function = -1.19

Figure 3. We show the role of the balancing function in obtain-
ing clusters of similar sizes. The connected components show the
different clusters. The balancing function has a higher objective
value for the balanced clustering in (a) compared to the less bal-
anced one in (b).

where the set functions for the transition probabilities pi,j :
2E → R are given below:

pi,j(A) =

⎧⎪⎨
⎪⎩

wi,j

wi
if i �= j and ei,j ∈ A,

0 if i �= j and ei,j /∈ A,

1−
∑

j:ei,j∈A wi,j

wi
if i = j.

(7)
Consequently, the entropy rate of the random walk on G =
(V,A) can be written as a set function:

H(A) = −
∑
i

μi

∑
j

pi,j(A) log(pi,j(A)) (8)

Although inclusion of any edge in set A increases the en-
tropy rate, the increase is larger when selecting edges that
form compact and homogeneous clusters, as shown in Fig-
ure 2.

We establish the following result on the entropy rate of
the random walk model.

Proposition 1 The entropy rate of the random walk on the
graph H : 2E → R is a monotonically increasing submod-
ular function under the proposed graph construction.

It is easy to see that the entropy rate is monotonically in-
creasing, since the inclusion of any edge increases the un-
certainty of a jump of the random walk. The diminishing
return property comes from the fact that the increase in un-
certainty from selecting an edge is less in a later stage be-
cause it is shared with more edges.

3.3. Balancing Function

We utilize a balancing function that encourages clus-
ters with similar sizes. Let A be the selected edge set,
NA is the number of connected components in the graph,
and ZA be the distribution of the cluster membership. For
instance, let the graph partitioning for the edge set A be
SA = {S1, S2, ..., SNA}. Then the distribution of ZA is
equal to

pZA(i) =
|Si|
|V | , i = {1, ..., NA}, (9)

and the balancing term is given by

B(A) ≡ H(ZA)−NA = −
∑
i

pZA(i) log(pZA(i))−NA.

(10)
The entropy H(ZA) favors clusters with similar sizes;
whereas NA favors fewer number of clusters. In Figure 3
we show an example of this preference where a more bal-
anced partitioning is preferred for a fixed number of clus-
ters.

Similar to the entropy rate, the balancing function is
also a monotonically increasing and submodular function
as shown in the following proposition:

Proposition 2 The balancing function B : 2E → R is a
monotonically increasing submodular function under the
proposed graph construction.

The objective function combines the entropy rate and the
balancing function and therefore favors compact, homoge-
neous, and balanced clusters. The clustering is achieved via
optimizing the objective function with respect to the edge
set:

max
A

H(A) + λB(A)
subject to A ⊆ E and NA ≥ K,

(11)

where λ ≥ 0 is the weight of the balancing term. Linear
combination with nonnegative coefficients preserves sub-
modularity and monotonicity [16], therefore the objective
function is also submodular and monotonically increasing.
The additional constraint on the number of connected sub-
graphs enforces exactly K clusters since the objective func-
tion is monotonically increasing.

4. Optimization
In this section, we present a greedy optimization scheme

for the proposed objective function and analyze its optimal-
ity and complexity.

4.1. Greedy Heuristic

One standard approach for maximizing a submodular
function is through a greedy algorithm [16]. The algo-
rithm starts with an empty set (a fully disconnected graph,
A = Ø) and sequentially adds edges to the set. At each
iteration, it adds the edge that yields the largest gain. The
iterations are stopped when the number of connected sub-
graphs reaches a preset number, NA = K .

In order to achieve additional speedup, we put an ad-
ditional constraint on the edge set A such that it can not
include cycles. This constraint immediately ignores addi-
tional edges within a connected subgraph and reduces the
number of evaluations in the greedy search. Notice that
these edges do not change the partitioning of the graph.
Although this constraint leads to a smaller solution space
(only tree-structure subgraphs are allowed) compared to the

2100



original problem, in practice the clustering results are very
similar.

This cycle-free constraint together with the cluster num-
ber constraint NA ≥ K leads to an independent set defini-
tion which induces a matroid M = (E, I) as presented by
the following proposition:

Proposition 3 Let E be the edge set, and let I be the set of
subsets A ⊆ E which satisfies: (1) A is cycle-free and (2)
A constitutes a graph partition with more than or equal to
K connected components. Then the pair M = (E, I) is a
matroid.

Maximization of a submodular function subject to a ma-
troid constraint has been an active subject in combinatorial
optimization; it is shown in Fisher et al. [5] that the greedy
algorithm gives an 1

2 approximation bound. Following the
same argument, we achieve the same ( 12 approximation)
guarantee on the proposed greedy algorithm. A pseudocode
is given in Algorithm 1.

Data: G = (V,E), w : E → R
+, K, and λ

Result: A
A← Ø, U ← E
repeat

â← argmax F(A ∪ {a}) −F(A)

a ∈ U

if A ∪ {â} ∈ I then
A← A ∪ {â}

end
U ← U − {â}

until U = Ø

Algorithm 1: Pseudocode of the greedy algorithm. The
objective function is defined as F ≡ H+ λB.

4.2. Efficient Implementation

In each iteration, the greedy algorithm selects the edge
that yields the largest gain in the objective function subject
to the matroid constraint. A naive implementation of the
algorithm, as given in Algorithm 1, loops O(|E|) times to
add a new edge into A. At each loop, it scans through the
edge list to locate the edge with the largest gain; therefore
the complexity of the algorithm is O(|E|2)1. Since we map
an image into a grid graph (8-connected), the complexity of
the algorithm is O(|V |2). By exploiting the submodularity
of the objective function, we can achieve a more efficient
implementation which is called lazy greedy [9].

Initially, we compute the gain of adding each edge to A
and construct a max heap structure. At each iteration, the
edge with the maximum gain is popped from the heap and

1Note that an edge gain can be computed in constant time.

included to A. The inclusion of this edge affect the gains
of some of the remaining edges in the heap; therefore, the
heap needs to be updated. However, the submodular prop-
erty allows an efficient update of the heap structure. The
key observation is that, throughout the algorithm, the gain
for each edge can never increase— the diminishing return
property. Therefore, it is sufficient to keep a heap struc-
ture where the gain of the top element is updated but not
necessarily the others. Since the top element of the heap
is updated and the values for the other elements can only
decrease, the top element is the maximum value.

Although the worst case complexity of the lazy greedy
algorithm is O(|V |2 log |V |), in practice the algorithm runs
much faster than the naive implementation. On average,
very few updates are performed on the heap at each iter-
ation, and hence the complexity of the algorithm approx-
imates O(|V | log |V |). In our experiments, it provides a
speedup by a factor of 200–300 for image size 481x321 and
on average requires 2.5 seconds.

5. Experiments
We conducted the experiments on the Berkeley segmen-

tation benchmark [12]. The benchmark contains 300 im-
ages with human-labeled ground truth segmentations.

Superpixel segmentation has a different goal than object
segmentation, therefore the performance metrics are also
different. We use three standard metrics which were com-
monly used for evaluating the quality of superpixels: un-
dersegmentation error [10, 22], boundary recall [20] and
achievable segmentation accuracy [17]. For the sake of
completeness we first describe these metrics. We use G =
{G1, G2, ..., GnG} to represent a ground truth segmentation
with nG segments and |Gi| denotes the segment size.

• Undersegmentation error (UE) measures fraction of
pixel leak across ground truth boundaries. It evaluates
the quality of segmentation based on the requirement
that a superpixel should overlap with only one object.
We utilize the undersegmentation error metric used in
Veksler et al. [22],

UEG(S) =
∑

i

∑
k:Sk∩Gi �=Ø |Sk −Gi|∑

i |Gi| . (12)

For each ground truth segment Gi we find the over-
lapping superpixels Sk’s and compute the size of the
pixel leaks |Sk − Gi|’s. We then sum the pixel leaks
over all the segments and normalize it by the image
size

∑
i |Gi|.

• Boundary recall (BR) measures the percentage of the
natural boundaries recovered by the superpixel bound-
aries. We compute BR using

BRG(S) =
∑

p∈δG I(minq∈δS‖p− q‖ < ε)

|δG| , (13)

2101



200 250 300 350 400 450 500 550
0

0.2

0.4

0.6

0.8

1

U
nd

er
se

gm
en

ta
tio

n 
er

ro
r

Num. of superpixels per image

 

 

GraphCut (ConstInt)
GraphCut (Compact)
NCut
FH
Turbo
Proposed

200 300 400 500 600
0.6

0.65

0.7

0.75

0.8

0.85

0.9

B
ou

nd
ar

y 
re

ca
ll

Num. of superpixels per image

 

 

GraphCut (ConstInt)
GraphCut (Compact)
NCut
FH
Turbo
Proposed

100 200 300 400 500
0.9

0.92

0.94

0.96

0.98

1

A
ch

ie
va

bl
e 

se
gm

en
ta

tio
n 

ac
cu

ra
cy

Num. of superpixels per image

 

 

GraphCut (ConstInt)
GraphCut (Compact)
FH
Turbo
Proposed

(a) (b) (c)
Figure 4. Performance metrics: (a) undersegmentation error curves (b) boundary recall curves (c) achievable segmentation accuracy curves.
The proposed algorithm performs significantly better than the state of the art in all the metrics at all the superpixel counts.

Figure 5. Superpixel segmentation examples. The images contain 100 superpixels. The ground truth segments are color-coded and blended
on the images. The superpixels (boundaries shown in white) respect object boundaries and tend to divide an image into similar-sized
regions.

which is the ratio of ground truth boundaries that have
a nearest superpixel boundary within an ε-pixel dis-
tance. We use δS and δG to denote the union sets of
superpixel boundaries and ground truth boundaries re-
spectively. The indicator function I checks if the near-
est pixel is within ε distance. In our experiments we
set ε = 2.

• Achievable segmentation accuracy (ASA) is a per-
formance upperbound measure. It gives the highest ac-
curacy achievable for object segmentation that utilizes
superpixels as units. To compute ASA we label each
superpixel with the label of the ground truth segment
that has the largest overlap. The fraction of correctly
labeled pixels is the achievable accuracy,

ASAG(S) =
∑

k maxi |Sk ∩Gi|∑
i |Gi| . (14)

These performance metrics are plotted against the number
of superpixels in an image. Algorithms producing better
performances with a smaller number of superpixels is more
preferable.

We use a Gaussian kernel to convert pixel differences

to similarities exp(− d(vi,vj)
2

2σ2 ) where d(vi, vj) is defined as
the intensity difference multiplied by the spatial distance.
We also present a method to automatically adjust the bal-
ancing parameter λ. Given an initial user-specified value
λ′, the final balancing parameter λ is adjusted based on:
(1) the number of superpixels K and (2) a data dependent
dynamic parameter β which is computed from the input im-
age. The cluster number K is introduced for emphasizing
more on the balancing term when large numbers of super-
pixels are required. The data dependent term is given by the
ratio of the maximal entropy rate increase and the maximal
balancing term increase upon including a single edge into

the graph β =
maxei,j

H(ei,j)−H(Ø)

maxei,j
B(ei,j)−B(Ø) and compensates for

the magnitude difference between the two terms in the ob-
jective function. The final balancing parameter is given by
λ = βKλ′. Throughout the experiments we use λ′ = 0.5
and Gaussian kernel bandwidth σ = 5.0 and generate the
results. Later in the section we analyze the effect of these
parameters on the results.

In the first experiment, we compare our results with
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FH [4], GraphCut superpixel [22], Turbopixels [10] and
NCut superpixel [20] methods using the three evaluation
metrics. The results were obtained by averaging over all
the 300 gray images in the dataset.

Figure 4(a) shows the undersegmentation error curves.
The curves for the other methods are duplicated from the
original paper [22]. The proposed algorithm outperforms
the state of the art at all the superpixel counts where the er-
ror rate is reduced by more than 50%. It achieves an under-
segmentation error of 0.13 with 350 superpixels while the
same performance is achieved with 550 superpixels using
GraphCut superpixel segmentation [22]. With 550 super-
pixels, our undersegmentation error is 0.06.

In Figure 4(b), we plot the boundary recall curves.
Again, the curves for the other methods are duplicated from
the original paper [22]. The proposed algorithm reduces
the missed boundaries by more than 30% compared to the
state of the art at all the superpixel counts. The recall rates
of the presented algorithm are 82% and 92% with 200 and
600 superpixels respectively. The recall rates with the same
superpixel counts are 76 and 86 percents with FH.

In Figure 4(c), we plot the achievable segmentation accu-
racy curves. In this experiment we generated the curves for
the other methods using the original implementations. The
proposed algorithm yields a better achievable segmentation
upperbound at all the superpixel counts—particularly for
smaller number of superpixels. The ASA is 95% with 100
superpixels where the same accuracy can only be achieved
with 200 superpixels for the other algorithms.

In the second experiment, we evaluate the segmentation
results visually. Several examples are shown in Figure 5
where the images are partitioned into 100 superpixels. For
better visualization, the ground truth segments are color-
coded and blended on the images, and the superpixel bound-
aries recovered by the algorithm are superimposed in white
color. It is difficult to notice pixel leaks and the superpixels
tend to divide an image into similar-sized regions which are
important for region based feature descriptors.

In Figure 6, we show an example of superpixel hierar-
chy. The proposed algorithm starts with each pixel as a sep-
arate cluster and gradually combines clusters to construct
larger superpixels. This agglomerative nature generates a
superpixel hierarchy during segmentation. The hierarchy is
useful for many vision applications such as interactive edit-
ing or algorithms that utilize information from multiple su-
perpixel segmentations. One such example is presented in
Kohli et al. [8].

In the third experiment, we analyze the effects of the bal-
ancing term, λ′, and the kernel bandwidth, σ, parameters
on the quality of segmentation. We observe that competi-
tive segmentation results are achieved with a wide range of
parameter selection.

In Figure 7, we plot the performance curves with dif-

Figure 6. Superpixel hierarchy. The proposed algorithm generates
a superpixel hierarchy during segmentation. The figure shows the
segmentations with 40, 4, and 2 superpixels, their corresponding
levels in the hierarchy, and the merging from the lower level su-
perpixels to the higher level superpixels.

ferent λ′ values for a fixed σ = 5.0. We observed that
smaller λ′ results in better boundary recall rates especially
for smaller superpixel counts, while the results are largely
invariant to this parameter for larger superpixel counts.
We further observed that better performances on underseg-
mentation error and achievable segmentation accuracy are
achieved with a larger λ′. In general, there is a tradeoff
among different metrics based on the λ′ parameter, and em-
pirically we found that λ′ = 0.5 yields a good compromise
among these metrics.

In Figure 8, we plot the performance curves with dif-
ferent σ values for a fixed λ′ = 0.5. We observed that a
large range of σ values results in comparable performances,
namely from 0.5 to 5. The superpixels are largely insensi-
tive to the selection of the σ parameter.

The proposed algorithm is among the fastest superpixel
segmentation algorithms and takes an average of 2.5 sec-
onds to segment an image on the Berkeley benchmark
(481×321 pixels) on an Intel Core 2 Duo E8400 processor.
Compared to the state of the art methods, it is faster than the
Graphcut superpixel [22] (6.4 seconds), turbopixel [10]( 15
seconds), and NCut (5 minutes), whereas it is slower than
FH [4](0.5 seconds).

6. Conclusion

We formulated the superpixel segmentation problem as
an optimization problem on graph topology. We proposed a
novel objective function based on the entropy rate of a ran-
dom walk on the graph. We derived an efficient algorithm
with a bound on the optimality of the solution. In future, we
plan to investigate the applicability of the proposed formu-
lation for general clustering problems.
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Figure 7. Effect of the balancing preference on the performance metrics.
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Figure 8. Effect of the kernel bandwidth on the performance metrics.
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