Statistical Visual Computing Lab **UC** San Diego

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Introduction

- Anomaly detection (AD) aims to identify defective images and localize the defects.
- Fig. 1 shows that AD models should be able to detect defects over many image classes
 - (1) without relying on hard-coded class names that can be uninformative.
 - (2) learn without anomaly supervision.
 - (3) robust to the long-tailed distributions of real-world applications.
- To address these challenges, we formulate the problem of long-tailed AD by introducing several datasets split with different levels of class imbalance.
- A novel method, LTAD, is proposed to detect defects from multiple and long-tailed classes, without relying on dataset class names.

Fig 1. Challenges of long-tailed AD include (Left) designing a single model to detect anomalies over multiple image classes, (Middle) uninformative class names, and (Right) long-tailed data distributions.

Dataset Split & Preliminary Study

- To study how long-tailed distribution affect the performance, we first proposed several new long-tail dataset splits, as shown in left of Fig. 2
 - Imbalance type (e.g. exponential decay and step decay)
 - Class imbalance factor $\beta = \frac{\max\{N_c\}}{\min\{N_c\}}$, where N_c is the sample number of class c

Fig 2. Image classes (x-axis) are sorted by popularity. (Left) Dataset distribution of MVTec [1] vs. long-tailed version. (Right) AD performance of UniAD [2] on the two datasets.

- (top of Fig. 3).
- category c.

- from phase 1).

- hyperparameter λ .

Long-Tailed Anomaly Detection with Learnable Class Names Chih-Hui Ho¹, Kuan-Chuan Peng², Nuno Vasconcelos¹ ¹University of California San Diego , ² Mitsubishi Electric Research Laboratories (MERL)

Proposed Method

Training

• The proposed training pipeline, LTAD, contains 2 phases - Phase 1: Learn to synthesize feature for tail classes

- Phase 2: Train to predict the anomaly map using the real/synthesized feature • For implementation, we use the pretrained visual-language model ALIGN [3], which contains a text encoder and an image encoder that align the image and text to the same feature space.

Phase 1: Class sensitive data augmentation

• Goal : Learn to synthesize feature for tail classes.

• With ALIGN, we proposed a text conditional VAE for synthesizing features

• Since the class name is unknown, a pseudo class name s_c is learned for each

• MSE loss minimizes reconstruction difference of encoder/decoder feature. • KL divergence loss regularizes the latent distribution.

Phase 2: Anomaly Detection

Goal: Train to predict the anomaly map using the real/synthesized feature. • Phase 2 takes normal feature p_i^n as input (i.e. Real feature or synthesized feature

Since only normal patch feature p_i^n is available during training, noise is added to the normal feature to create abnormal feature p_i^a

Phase 2 contains 2 submodules, including the semantic AD (SAD) module (top of Fig. 3 phase 2) and the reconstruction module (RM) (bottom of Fig. 3 phase 2). Reconstruction module (RM)

- Maps the input feature to normal feature and the MSE loss is used to minimize $||p_i^n - RM(p_i^a)||_2^2$ during training.

• Semantic AD (SAD) module

- Maps a patch feature p_i to text space and the projected feature is denoted as $\hat{p_i}$. - The learned pseudo-class name s_c is concatenated with normal prompt v^n

(e.g. a normal s_c) and abnormal prompt v^a (e.g. a broken s_c). - The text encoder T outputs the normal text feature $t_{n,c} = T([v^n; s_c])$ and the

abnormal text feature $t_{a,c} = T([v^a; s_c])$.

- The semantic anomaly score of a patch p_i is $S_{sem}(p_i) = \frac{\exp(p_i \cdot t_{a,c})}{\exp(\widehat{p_i} \cdot t_{n,c}) + \exp(\widehat{p_i} \cdot t_{a,c})}$

- Ground truth is 1 when $p_i = p_i^a$ and vice versa.

- Binary cross entropy (BCE) loss is applied on each patch for training.

Inference

• During testing, RM anomaly score of a patch p_i is $S_{rec}(p_i) = ||p_i - RM(p_i)||_2^2$. - When p_i is normal, $S_{RM}(p_i)$ is small

- When p_i is abnormal, $S_{RM}(p_i)$ is large

• The SAD anomaly score and RM anomaly score are fused with a dataset specific

Fig 4. Inference stage of the proposed LTAD.

Experiment

Confi	g. ′	Task	Cut & Paste	MKD	DRAEM	RegAl	D UniA	D Ano	malyGP	Γ LTAD V	w/o SAD	LTAD
exp10	0	Det.	75.89	78.92	79.57	82.43	87.7	0	87.44	88	<u>8.74</u>	88.86
	-	Seg.	N/A	85.95	85.17	95.20	93.9	5	89.68	94	.00	<u>94.46</u>
<i>exp</i> 200	•	Det.	75.07	79.93	78.82	N/A	<u>86.2</u>	<u>.1</u>	85.80	86	5.94	86.05
	U	Seg.	N/A	86.01	82.95	N/A	93.2	6	90.15	<u>93</u>	8.40	94.18
step100)))	Det.	76.57	79.61	69.82	81.54	83.3	7	85.95	87	<u>7.05</u>	87.36
	JU	Seg.	N/A	85.90	79.65	95.10	91.4	7 3	89.28	93	3.13	<u>93.83</u>
step200)0	Det.	76.53	79.31	71.64	N/A	81.3	2	82.47	85	5.33	85.60
		Seg.	N/A	86.03	76.79	N/A	89.2	9	89.45	<u>91</u>	.78	92.12
Table 1. Quantitative result on MVTec [1] dataset.												
Config.	Task	RegAD	UniAD Ano	malyGPT	TAD w/o SAD	LTAD	Config. Ta	sk RegAD	UniAD	AnomalyGPT	LTAD w/o SA	AD LTAD

Config.	Task	RegAD	UniAD	AnomalyGPT	LTAD w/o SAD	LTAD	Config.	Task	RegAD	UniAD	AnomalyGPT	LTAD w/o SAD	LTAD
<i>exp</i> 100	Det. Seg.	71.36 94.40	77.31 95.03	70.34 80.32	<u>79.27</u> <u>95.07</u>	80.00 95.56	<i>exp</i> 100	Det. Seg.	84.86 90.29	84.34 90.13	85.31 77.20	<u>93.35</u> <u>96.93</u>	94.40 97.30
<i>exp</i> 200	Det. Seg.	72.10 94.69	76.87 <u>94.80</u>	69.78 79.48	<u>78.55</u> 94.51	80.21 95.36	<i>exp</i> 200	Det. Seg.	84.86 90.29	83.56 89.73	83.29 77.16	<u>92.83</u> <u>96.16</u>	94.29 97.19
<i>exp</i> 500	Det. Seg.	N/A N/A	73.67 <u>94.35</u>	68.18 78.83	<u>77.25</u> 94.04	78.53 94.66	<i>exp</i> 500	Det. Seg.	84.86 90.29	81.35 88.63	83.47 76.87	<u>92.08</u> <u>95.99</u>	93.54 97.01
step100	Det. Seg.	71.80 94.99	78.83 96.04	71.98 82.30	<u>82.80</u> 96.16	84.80 96.57	step100	Det. Seg.	84.86 90.28	81.11 89.11	86.48 78.76	<u>91.94</u> <u>96.38</u>	93.97 97.07
step200	Det. Seg.	71.65 94.52	77.64 95.66	69.78 81.97	<u>83.79</u> <u>95.89</u>	84.03 96.27	step200	Det. Seg.	84.86 90.29	80.33 89.07	84.73 78.29	<u>91.78</u> <u>96.04</u>	93.79 96.84
step500	Det. Seg.	N/A N/A	71.84 95.03	62.88 81.48	<u>82.42</u> <u>95.50</u>	83.33 96.41	step500	Det. Seg.	84.86 90.29	80.04 88.53	85.08 78.75	<u>91.82</u> <u>95.64</u>	92.78 96.65

Table 3. Quantitative result on DAGM [5] dataset.

n	n	gmentatio	Seg	Detection			use text	assign $s_{c=i}$	
	Low	High	All	Low	High	All	encoder T	to class i	
a a normal	65.18	62.09	63.74	65.49	81.06	72.76	\checkmark	X	
a good	68.85	70.95	69.83	56.69	63.34	59.79	×	\checkmark	
a flawless	88.07	95.13	91.36	72.84	97.02	84.12	\checkmark	\checkmark	

Table 4. Importance of pseudo class name s_c on MVTec-*step*100.

Table 5. Ablation on different normal/abnormal text prompts (*i.e.*, v^a and v^n) on MVTec *step*100.

Acknowledgement

CH and KCP were supported by Mitsubishi Electric Research Laboratories. CH and NV were partially funded by NSF awards IIS-2303153 and gift from Qualcomm.

References

[1] Bergmann et. al, MVTec AD — A comprehensive real-world dataset for unsupervised anomaly detection. CVPR 2019 [2] You et. al. A unified model for multi-class anomaly detection. NeurIPS 2022. [3] Jia et. al, Scaling up visual and vision-language representation learning with noisy text supervision. ICML, 2021 [4] Zou et al. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. ECCV 2022 [5] Wieler et al., Weakly supervised learning for industrial optical inspection, 2007.

Fig 5. Quantitative result of the proposed LTAD and the baseline.

v^a										
a broken	a damaged	an abnormal	a defective							
84.12 / 91.36	82.95 / 91.70	82.20/91.33	83.66 / 91.87							
83.71 / 91.39	82.74 / 91.21	83.47 / 91.23	82.94 / 91.26							
75.68 / 90.75	82.14 / 91.22	81.03 / 91.15	82.09 / 91.23							
65.63 / 87.61	79.09 / 91.00	76.13 / 90.24	83.89 / 91.42							