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• Application in Elevator Scheduling 
[ECC’22]

o Simulated a down-peak scenario for a 
6-floor building

o MERL-DD - a Transformer based 
scheduler

o Elevate [ELEVATE] -DD – Elevate’s 
built-in myopic scheduler

[ECC’22] Jing Zhang, Athanasios Tsiligkaridis, Hiroshi Taguchi, Arvind Raghunathan, and Daniel Nikovski. "Transformer Networks for Predictive Group 
Elevator Control." In 2022 European Control Conference (ECC), pp. 1429-1435. IEEE, 2022.

[ELEVATE] https://peters-research.com/index.php/elevate/.

Motivation
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Motivation (Cont’d)

[TNSRE] F. Koochaki and L. Najafizadeh, A data-driven framework for intention prediction via eye movement with applications to assistive systems, in IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, 29, 2021: 974–984.

• Let’s revisit the destination prediction problem: If 
we had collected some eye movement data (refer 
to [TNSRE]), isn’t the intention prediction problem a 
variation of the destination prediction problem? 

• Note that, essentially, the eye movement data are 
3D trajectories, and the labels (intended tasks) are 
simply the “destinations”. 

• “Trajectories” could be very general, depending on 
what data we are interested in and what sensors 
we use to collect them. 
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Motivation (Cont’d)

• Our previous work [ECC’22] can address destination prediction problem, but we introduced a 
discretization procedure on the spatial data and considered lots of extra candidate destination labels, 
which would cause VRAM issues when #of cells gets large. 

• Can we directly deal with continuous trajectories data?
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Problem Formulation

• Formulate destination prediction as a multivariate time series classification (MTSC) 
problem.

• Consider a multivariate time series (MTS) 𝑋 = [x1, … , x𝑡] ∈ ℝ𝑚×𝑡, where x𝑗 =

[𝑥1,𝑗 , … , 𝑥𝑚,𝑗] ∈ ℝ𝑚, 𝑗 = 1, … , 𝑡. 

o Here, 𝑚 represents the number of variables and 𝑡 is the length of the time series. 

o Each MTS is assigned a class label 𝑦 from the label set 𝛥. 

o A collection of 𝑛 such MTS is represented as 𝒳 = [X1, … , X𝑛] ∈ ℝ𝑛×𝑚×𝑡 and their 
corresponding labels are 𝑦 = [𝑦1, … , 𝑦𝑛] ∈ 𝛥𝑛. 

o The task of MTSC is to train a classifier 𝑓: 𝑋 ↦ 𝑦 that predicts the class label for a 
given, previously unseen MTS.
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The Proposed Model

• To capture step-wise dependencies across time stamps of 
the MTS, the feature vectors x𝑗 are linearly projected onto a 

𝑑-dimensional vector space, where 𝑑 is the model 
dimension: u𝑗 = W𝑠x𝑗 + b𝑠, where W𝑠 ∈ ℝ𝑑×𝑚, b𝑠 ∈ ℝ𝑑 

are learnable parameters. 

• To capture channel-wise dependencies across variables 
(dimensions) of the MTS, we transpose X and write it as 
X𝜏 = [෤x1, … , ෤x𝑚] ∈ ℝ𝑡×𝑚, where ෤x𝑖 = [𝑥𝑖,1, … , 𝑥𝑖,𝑡] ∈ ℝ𝑡, 
𝑖 = 1, … ,𝑚. Similarly, the univariate time series ෤x𝑖 are 
linearly projected onto the same 𝑑-dimensional vector 
space: v𝑖 = W𝑐෤x𝑖 + b𝑐 , where W𝑐 ∈ ℝ𝑑×𝑡, b𝑐 ∈ ℝ𝑑 are 
learnable parameters.

• Next, since the transformer is a feed-forward architecture 
that is insensitive to the ordering of input, in order to make 
it aware of the sequential nature of the time series and also 

the variables, we add positional encodings W𝑝𝑜𝑠𝑠 ∈ ℝ𝑑×𝑡 

and W𝑝𝑜𝑠𝑐 ∈ ℝ𝑑×𝑚 to the input vectors 𝑈 = [u1, … , u𝑡] ∈

ℝ𝑑×𝑡 and 𝑉 = [v1, … , v𝑚] ∈ ℝ𝑑×𝑚, respectively: 𝑈′ = 𝑈 +
W𝑝𝑜𝑠𝑠, 𝑉′ = 𝑉 +W𝑝𝑜𝑠𝑐 , which become the final input 

vectors to the two-tower Transformer encoders, 
respectively.
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Numerical Experiments – Data Generation

• The layout of a floor in a simulated building [ECC’22]. 
• The bold black bars depict the walls or office desks, the green 

rectangles with slashes depict origins/destinations, and the light 
gray space represents corridors and other walkable areas. 

• 5, 10: open offices
• 6: a lab
• 7: a restroom
• 9: a kitchen
• 13: an elevator
• others: offices with a door
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Numerical Experiments – Data Generation (Cont’d)

• To generate raw trajectories data sets for training/testing, we use the prior probabilities 
specified in Table 1, and end up with 236 complete trajectories for each data set. 

• The number of variables in each trajectory (represented as a multivariate time series) is 2, 
corresponding to horizontal and vertical coordinates, respectively. 

• The maximum length of the trajectories in the raw training (resp., testing) data set is 83 (resp., 
82), and the minimum length of the trajectories in the raw training (resp., testing) data set is 20 
(resp., 18). 



© MERL

Numerical Experiments – Data Preprocessing

• For MTSC experiments, we extract partial trajectories from the raw data sets.

• Note that our actual goal is predicting a destination for a given partial trajectory. For each and every 
partial trajectory, its ground truth label (0 through 15) is the converted final point of the corresponding 
entire trajectory. 

• We also pad zeros to the end of each partial trajectory to force its length be 100.
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Numerical Experiments – Data Preprocessing (Cont’d)

• Partial trajectories start with their actual origin or any intermediate point along the route to their respective 
destination. 

• For the training data set, partial trajectories with all reasonably possible lengths (e.g., ≥ 5) are included. 

• The testing data contains only a selected proportion of the partial trajectories whose length is reasonable 
(e.g., ≥ 5) and equals the length of their respective entire trajectory multiplied by a factor 𝜃 on some interval 
(e.g., 𝜃 ∈ [0.5,0.6)).
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Experimental Results – Confusion Matrix 
• The confusion matrix obtained from 3T-Net with 𝜃 ∈ [0.5,0.6).

• Overall accuracy: 0.91; capable of dealing with unbalanced class labels

• Omitted the zero (0) values which indicate a true label would never be predicted as a certain label; e.g., 
the true label 15 would never be predicted as 0.
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Experimental Results – Accuracy
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