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• Machine learning for optical communications
– Research trend
– Optics applications
– Nonlinearity compensation

• Deep neural network (DNN) for shaped DP-QAM
– From maximum-likelihood to machine learning
– Multi-label binary cross-entropy loss
– Architecture comparison

• Multiplier-less DNN
– Additive powers-of-two quantization achieving floating-point performance
– Multiply-accumulate to shift-accumulate

• Sparse DNN
– Lottery-ticket hypothesis (LTH) pruning
– 99% reduction of arithmetic operations

• Summary

Outline
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• K-means
• Gaussian mixture model (GMM)
• Principal component analysis (PCA)
• Independent component analysis (ICA)
• Support vector machine (SVM)
• Self-organizing map (SOM)
• Hidden Markov model (HMM)
• Artificial neural networks (ANN)
• Deep learning (DL)
• …

Machine Learning (ML)
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• Denoising, segmentation, classification, translation, dialog, recognition, decomposition, 
generation, super-resolution, …

ML Success in Audio & Visual Signal Processing

Sept 14, 2021: Koike-Akino et al. Zero-Multipler Sparse DNN Equalizer 4



© MERL

• For some applications, …

ML Surpassed Human-Level Performance
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• New Moore’s Law rediscovered here: 
Number of articles grows exponentially, nearly tripling every year

ML Meets Optical Communications
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Google Scholar

1.3x

Deep Learning

Machine Learning
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Already approx. 1000 related articles annually:
• Modulation classification
• Link quality monitoring
• Resource allocation
• Signal detection
• End-to-end design
• Nonlinear compensation
• Photonic circuit design
• Optical neural processor

Deep Learning Applications for Optics
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• Fiber channels are governed by nonlinear physics in nature
– Self-phase modulation, cross-phase modulation, four-wave mixing, etc.

• Spectral efficiency can be improved by nonlinearity compensation
– Complicated model-based approaches are required to capture real physics

• Terabit-class massive data within a second can be obtained 
– Deep learning: New data-driven approach. Suited for massive parallel computing

Why ML for Nonlinearity Compensation?

Sept 14, 2021: Koike-Akino et al. Zero-Multipler Sparse DNN Equalizer 8

[Essiambre et al, OFC2009 OThL1]

!"# $#%&'(#)

$#%*+,-.

/!"01!"

1!,+"

Nonlinear Schrodinger Equation:

Nonlinear propagation
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• Nonlinear impairments may be compensated by nonlinear equalization:
– Decision feedback equalizer (DFE)
– Maximum-likelihood sequence equalizer (MLSE)
– Volterra equalizer
– Digital back-propagation (DBP)
– Turbo equalizer (TEQ)
– Deep neural networks (DNN)

Nonlinear Equalization
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Volterra series expansion

Volterra [Peddanarappagari ‘97]

Digital back-propagation [Li et al ‘08, Ip-Kahn ‘08]

TEQ [Haunstein ‘04, Djordjevic ‘07]

DNN [Sidelnikov ‘18, Koike-Akino ’18, Kamalov ‘18]
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• Nonlinear equalization based on maximum-likelihood (ML)
– Log-likelihood maximization, depending on nonlinear channel statistics

• Cross-entropy minimization based on machine learning (ML)
– Learning nonlinear channel statistics given massive data
– Lower bound maximization of GMI (generalized mutual information)
– Analogy to SSFM: sequence of linear transform and nonlinear operation

ML2ML: Maximum-Likelihood to Machine Learning Paradigm Shift
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Binary cross entropy (BCE) corresponds to GMI

Maximum-Likelihood (ML)

How to determine?
Model based?
Model mismatch?

Post-Linear Equalization Distortion (16 spans)
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• DNN nonlinear equalizer with NBCE/BCE

Non-Binary vs. Binary Cross-Entropy
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• Nonbinary cross-entropy does not work for high-order QAM

DNN Equalizer Performance
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DP-4QAM DP-64QAM
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• We learn nonlinear statistics over 500,000 symbols on system model:
– Dispersion unmanaged standard single-mode fiber (SSMF) 80km x N spans

§ 17ps/nm/km, 1.2/W/km, 0.2dB/km
– Erbium-doped fiber amplifier (EDFA) 5dB noise figure
– 11-channel DP-QAM at 34GBd, root-raised cosine role-off 2%
– 61-tap least-squares linear equalizer (LE) prior to DNN nonlinear compensation
– Probabilistic amplitude shaping (PAS) with Maxwell-Boltzmann distribution 

System Model
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• Unshaped/shaped DP-QAM

Nonlinear Distortion
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• Residual Multi-Layer Perceptron (ResMLP)
• Residual Convolutional Neural Network (ResCNN)
• Bidirectional Long Short-Term Memory (BiLSTM)
• Transformer, U-net, …

DNN Architectures
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DNN Architecture Comparison (DP-256QAM)
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29%

Shaping

MLP
CNN

LSTM

MLP: 6-layer 100-node
CNN: 4-layer kernel-3
LSTM: 2-layer 100-mem
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• DNN employs affine transforms requiring multiply-accumulate operations:
• DeepShift [Elhoushi 2019]: Multiplier-less affine transforms with signed power-of-two (PoT) 

weights, realizing shift-accumulate
• We improve it with additive PoT (APoT) for reducing the quantization error

Towards Multiplier-Less DNN
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(a) FP: Multiply & Add (b) PoT: Shift & Add (c) APoT: Dual Shift & Add

y = Wx+ b
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• Update with quantization: straight-through rounding in the loop of stochastic gradient
– Finding best signs and integer shifts for affine transforms in training loop

• QAT overcomes quantization errors due to static/dynamic quantization

Quantization-Aware Training (QAT)
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(a) Quantized DNN

Forward Backward

UpdateAPoT Quantize

(c) Quantization-Aware Training 

Forward:  

Backward:  

Forward Backward

UpdateAPoT Quantize

(b) Static Quantization
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Multiplier-Free DNN Performance
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• LTH pruning [Frankle 2018]: Sparse DNN can outperform dense DNN with trained mask 
and rewinding weights

Sparse DNN with Lottery-Ticket Hypothesis (LTH)
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Lower complexity and better performance



© MERL

Progressive LTH Distillation: Incremental Sparsity
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Sparse DNN Performance (Shaped DP-64QAM, 22 Spans)
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• We showed some perspectives of deep learning techniques for nonlinear optical fiber 
communications

– Nonlinear fiber distortion may call for nonlinear signal processing
– Data-driven approach can be a viable alternative to model-based approaches as 

massive data are available in high-speed optical transmission
• We proposed multiplier-less sparse DNN equalizer for low-power real-time operations

– Compared different DNN architectures for PAS systems
– Zero-multiplier APoT QAT achieves slight improvement over floating-point weights
– 99% weights can be eliminated by progressive LTH pruning

• There are a great amount of open research fields to apply deep learning techniques to 
optical communications because of the nature of nonlinear physics

Summary
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Backups
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• Multi-class single-label cross-entropy: for non-binary coding
– Conversion is slow since 2n training is required per single word event
– For high-order dual-polarization (DP)-QAM, it does not work well

• Two-class multi-label cross-entropy: for binary coding 
– Multiple sigmoid cross entropy corresponds to bit-wise LLR (log-likelihood 

ratio)
– DNN output can be directly fed back to soft-decision FEC decoder
– Scalable to any high-order DP-QAM

Cross-Entropy Loss Function: Nonbinary to Binary
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10242 classes!

DP-4QAM DP-1024QAM

42 classes

20 binary classes
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• Proposed DNN uses n-label sigmoid cross-entropy for n-bit modulation

Multi-Label DNN Architecture
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Single Label DNN (Nonbinary) Multi-Label DNN (Binary)
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• Binary cross-entropy (BCE) performs better

Multi-Label DNN vs Single-Label DNN (DP-64QAM)
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LE

Single-Label DNN

Multi-Label DNN

No extra computation
for LLR generation
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DNN-TEQ Performance Evaluations (DP-64QAM)
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