

InSeGAN: A Generative Approach to Segmenting Identical Instances in Depth Images

Anoop Cherian¹

Siddarth Jain¹

Tim K. Marks¹

Alan Sullivan¹

¹Mitsubishi Electric Research Labs (MERL), Cambridge, MA ²Instituto Superior Tecnico, University of Lisbon, Portugal

ICCV Virtual, 2021

Pick an Instance?

Pick an Instance?

TÉCNICO LISBOA

Pick an Instance?

© MERL 3/15/22

Identical Instance Segmentation Problem

Input: depth image

Problem setup:

- A collection of depth images
 - Each with multiple instances of the same rigid object
- Unsupervised: No ground truth instance labels for learning

InSeGAN (Instance Segmentation GAN) Approach: Analysis by Synthesis

Synthesis: GAN learns to produce outputs that look like real depth images.

Analysis: Encoder learns to input a realistic depth image and output instance pose parameters

InSeGAN Generator: Instance Poses to Depth Image

© MERL 3/15/22

InSeGAN Analysis: Depth Image to Instance Poses

- Instance pose encoder *E*
 - takes in a synthesized multiple-instance depth image \hat{x}
 - produces pose vectors \hat{Z} that could have produced \hat{x} .

© MERL 3/15/22

© MERL 3/15/22

At test time:

- Input depth image is passed through the pose encoder to get the latent vectors
- Latent vectors are then decoded and rendered one at a time, each rendering a single instance
- Rendered instances are thresholded and transformed into segment masks

Experiments and Results

New Insta-10 Synthetic Dataset

Object CAD models (unavailable for training) and the depth images for each class

Insta-10 dataset has **10 object classes**, each defined by a 3D object CAD model Each class has **10,000 depth images**

Each image has 5 object instances in varying poses, occlusions, etc.

ICCVOCTOBER 11-17

Real Robotic Data Collection

- We programmed a Fetch robot to shake a box containing 4 wooden blocks. The depth images were captured using a RealSense RGB-D camera.
- The evaluation test images are hand annotated using the LabelMe tool.
- Collected 3,000 depth images. Annotated 62 images for evaluation.

Comparisons to the State of the Art

TÉCNICO LISBOA

ili

Method	Nut	Stop.	Cyl.	Bolt	Cone	Conn.	5-pin	Obj01	Obj14	Obj05	Avg mIoU
Non-Deep Learning Methods											
K-Means	0.64	0.297	0.7	0.18	0.35	0.554	0.628	0.208	0.496	0.59	0.464
Spectral Clustering [31]	0.56	0.36	0.54	0.22	0.41	0.56	0.58	0.25	0.47	0.57	0.452
GrabCut [36]+KMeans	0.572	0.232	0.572	0.472	0.231	0.519	0.497	0.597	0.557	0.605	0.486
GraphCut [3]	0.569	0.1	0.589	0.447	0.12	0.476	0.12	0.597	0.540	0.511	0.373
Deep Learning Methods											
Wu et al. [41]	0.45	0.28	0.57	0.27	0.33	0.38	0.43	0.23	0.44	0.57	0.385
IODINE [9]	0.026	0.059	0.019	0.040	0.089	0.032	0.034	0.058	0.053	0.118	0.053
Slot Attn. [29]	0.375	0.276	0.535	0.43	0.68	0.662	0.628	0.655	0.622	0.481	0.535
InSeGAN (2D)*(ours)	0.215	0.365	0.258	0.524	0.435	0.585	0.628	0.365	0.286	0.532	0.419
InSeGAN (3D) (ours)	0.773	0.301	0.760	0.539	0.47	0.655	0.642	0.686	0.591	0.483	0.590

*InSeGAN2D baseline did not use the 3D template or the pose decoder modules, instead using the noise vector to directly produce a single instance feature vector

MITSUBISHI

ELECTRIC Changes for the Better

TO CONTRIBUTION OCTOBER 11-17

More Results

RGB Image	Depth Image (input) InSeGAN	KMeans	Felzenszwalb et al.
	Method	mIoU	
	KMeans	0.797	
	Spectral Clustering	0.668	
	Graph Segmentation [7]	0.436	
	InSeGAN	0.857	
	Results on Rea	l Data	

Qualitative Segmentation Results

See paper for more results

Top row: Input depth image. **Middle row:** Image rendered by InSeGAN. **Last row:** Segmentations produced by InSeGAN.

Instance Pose Disentanglement

Depth image input

Instance Pose Disentanglement

Depth image input

Rotating a single instance

Instance Pose Disentanglement

Depth image

Rotating all instances Rotating in Rotating all instances Rotating and Rotating all instances Rotating all instanc

Rotating a single instance

Translating a single instance

Thank you!

For questions, please contact us at <u>cherian@merl.com</u>

PyTorch implementation of InSeGAN and the Insta-10 dataset are publicly available at https://www.merl.com/research/