

2021 IEEE International Symposium on Information Theory 12-20 July 2021 • Melbourne, Victoria, Australia

Protograph-Based Design for QC Polar Codes

Toshiaki Koike-Akino

Ye Wang

July 2021

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL) Cambridge, Massachusetts, USA <u>http://www.merl.com</u>

• Summary

- Background of polar codes
- Novel protograph polar codes
 - Short-cycle mitigation
 - Frozen-bit location design
 - Fully parallel, high-gain, and low-complexity
- Irregular QC polar codes

- 5G/6G wireless envisions wide-range applications with the Internet of everything (IoE)
 - Environment and energy monitoring
 - Industrial factory and manufacturing networks
 - Building and infrastructure management
 - Medical and healthcare
 - Extended reality (XR)
- IoE communications
 - Stringent requirement in reliability, power consumption and latency

- Networking over massively large number of servers
- Key demand:
 - Low power
 - Low cost
 - Low latency
 - High density
 - High speed

- Hard-decision: Reed-Solomon, BCH, ...
- Soft-decision: Turbo, Low-density parity-check (LDPC), ..., Polar codes

- Capacity-achieving code in arbitrary memoryless channels [Arikan TIT2009]
- Structured encoding and decoding; Cooley-Tukey-like butterfly architecture
- Flexible in code rates with frozen-bit selection
- 5G new radio standard

- Polar kernel polarizes messages into `bad' and `good' sub-channels
- Proportion of good sub-channels approaches channel capacity

- Log-linear decoding complexity: N log₂(N)
- Capacity achieving in long codes
- Significantly improved by successive cancellation list (SCL) decoding [Tal-Vardy TIT2015]

MITSUBISHI ELECTRIC Changes for the Better

- Polar codes can outperform state-of-the-art LDPC codes for *shorter block* and *lower complexity* regimes
 - Polar codes are suited for short-packet IoE applications

- Polar SCL decoding requires log-linear complexity: L N log₂(N)/2
- LDPC BP decoding has **linear** complexity: $2 I d_v N$

- Protograph: Compact Tanner graph with a degenerated set of nodes [Thorpe IPN2003]
 - Degree distribution can be determined
 - Edge connection is represented
- Example: quasi-cyclic (QC) LDPC codes with cyclic-shift permutation
- Parity-check matrix (PCM) is derived by graph lifting procedure with replicate & permutate

• Graph lifting: Replicate & permute

Protograph

- Protograph LDPC codes: PCM is modified by replacing
 - 1 with *Q*-by-*Q* permutation matrix
 - 0 with Q-by-Q zeros matrix
- QC LDPC codes: Cyclic-shift permutation
 - Girth <= 12 [Fossorier TIT2004]
 - Girth > 12 [Kim TIT2007]

"Girth" of a code is the length of the shortest cycle in the code graph

- We propose to introduce protograph concept in polar codes
 - We apply graph lifting to every polarization unit: *proto-polarization*
- Generator matrix (not PCM) is replaced as *Q*-by-*Q* permutation matrices:

$$m{G}^{\otimes 2} = egin{bmatrix} 1 & 1 & 1 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{bmatrix} egin{matrix} ec{\mathbf{P}}_{1,1} & m{P}_{1,2} & m{P}_{1,3} & m{P}_{1,4} \ m{0} & m{P}_{2,2} & m{0} & m{P}_{2,4} \ m{0} & m{0} & m{P}_{3,3} & m{P}_{3,4} \ m{0} & m{0} & m{O} & m{P}_{4,4} \end{bmatrix}$$

• QC polar codes with cyclic permutation

QC shift-value base matrix

[139	252	234	156	157	142	50	68	
134	25	178	20	254	101	146	212	
79	192	144	129	204	71	237	252	
37	235	140	72	255	137	203	133	

- Graph lifting to every polarization stage: proto-polarization
 - Replicate
 - Permute
 - Q-bit parallel processing

- Graph lifting can eliminate short cycles in polar code graphs
 - Conventional polar codes (Q=1) suffer from cycle-4 loops
 - Hence, belief-propagation (BP) decoding does not work well for standard polar codes
 - Girth maximization method [Wang TIT2013]
 - QC polar codes are viable breakthrough to resolve long-standing issue of loopy polar graphs

• Girth maximizing shift values can improve performance by **0.9dB**

• Higher lifting factor improve BER significantly; 2.4dB gain, while keeping same complexity

MITSUBISHI Changes for the Better Changes for the Better

• QC polar codes can outperform long standard polar codes despite shallow polarization

- Bhattacharyya parameter [Arikan TIT2009]
- Density evolution [Mori-Tanaka COMML2009]
- Quantized density evolution [Tal-Vardy TIT2013]
- Gaussian approximation [Trifonov TCOM2012]
- Beta expansion [He GLOBECOM2017]

- Genetic algorithm [Elkelesh TCOM2019]
- Deep learning [Ebada Allerton2019]
- Extrinsic information transfer (EXIT) [KoikeAkino ICC2017]
- Protograph EXIT analysis

- Protograph-based extrinsic information transfer (P-EXIT) [Liva GLOBECOM2007]
 - Tracking mutual information updates at all edges
 - Account for edge connection
 - More accurate than EXIT chart
- Extended to Nonbinary P-EXIT [Dolecek TIT2013]

$$\mathbf{B}_1 = \begin{bmatrix} 2 & 1 & 2 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{B}_2 = \begin{bmatrix} 2 & 2 & 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Same degree distribution for LDPC codes ...

but \mathbf{B}_1 is better than \mathbf{B}_2

B₁: $\epsilon^* = 0.4531$ **B**₂: $\epsilon^* = 0.0192$

P-EXIT (but conventional EXIT) can analyze accurate threshold

We extend a greedy design method using EXIT analysis [KoikeAkino GLOBECOM 2017]
– Joint design of frozen-bit locations and inactive polarization units

- We proposed to *inactivate* polarization units in an irregular fashion [KoikeAkino ECOC2017]
- We could *reduce*
 - the computational complexity for both encoding and decoding; 30%-80%
 - the decoding latency of SCL; 25%-95%
 - the bit error rate (BER); a marginal gain

- Better BER and lower complexity [KoikeAkino ECOC17]
- Pruning proto-polarization can potentially remove *short cycles*

Cycle mitigation by pruning

- Irregular QC polar codes outperform standard polar codes even with 64% pruning
 - Irregular codes can be better than regular one; e.g., 6-stage polar with up-to 7% pruning

- The **girth** of polar codes can be increased significantly.
- The **BP** decoding can compete with SCL decoding.
- Multiple short polar encoders and decoders are implemented in a fully **parallel** fashion with no additional complexity besides circulant message exchanges.
- It realizes a **low computational** complexity equivalent to *Q*-fold shorter polar codes.
- **Shallow** polarization offers comparable performance to deeper polarization.
- Code design is simpler using shallower polarization.
- There is a higher flexibility in codeword lengths of non-powers-of-two, i.e., N = 2ⁿ Q.
- Irregular polarization is straightforward to apply with the shift value matrix design.
- Well-established techniques such as **P-EXIT** from LDPC codes are applicable.
- It opened a new research field of polar-type generalized lowdensity generator matrix (G-LDGM) codes.

- We proposed a novel family of polar codes; protograph-based QC polar codes
 - Short cycles in factor graphs can be eliminated
 - P-EXIT, used for QC LDPC codes, is applicable for frozen-bit location design
 - Fully parallel encoding and decoding are possible
 - BP decoding can compete with SCL decoding
 - Shallow-stage polarization can compete with deep-stage polarization
 - Irregular QC polar codes can reduce complexity and BER
- We envision further extensions and investigations of polar-type G-LDGM codes
 - Protograph polar codes opened many fascinating topics bridging LDPC and polar codes
- Questions?
 - koike@merl.com

26

MITSUBISHI ELECTRIC Changes for the Better

Do not redistribute pictures/images without permission of original owners