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Adaptation vs. Learning ? 

Benelux Meeting on Systems and Control 2022

[Benosman 2016]

Adaptation: change
Learning: gradual change by repetition



Main points of the talk

Part 1: Theory*

- Brief survey of adaptive control: model-based adaptation, data-driven
(classical RL & control theory inspired RL, extremum seeking control), and
learning-based adaptation (hybrid: model-based + data-driven)

- Learning-based adaptive control for nonlinear systems with constant/time-
varying parametric uncertainties (ESC, GP-UCB, ADP, CBF)

- Learning-based feedback gains auto-tuning for nonlinear systems affine in
the control (ESC)

- Indirect learning-based adaptive control for linear systems under constraints
(MPC framework) (ESC)

- Learning-based adaptive PDEs stable model reduction and estimation (ESC,
RL)

Part 2: Examples

- Mechatronics applications: Electromagnetic brakes, servo motors
- Fluid dynamics applications: Airflow modeling and estimation
- Robotics applications

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive 
dynamic programming, CBF: Control barrier function, MPC: Model predictive control. RL: Reinforcement learning,
PDE: Partial diff. equations.
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Adaptation in Control
Figure/classification from:  M. Benosman, 2018,  ‘’Model-based vs. Data-Driven Adaptive Control: An Overview", International Journal 
of Adaptive Control and Signal Processing, 32(5), pp. 753-776.
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(Fully) Model-based Adaptation

v Model of the system, e.g., law of physics or Input/Output models
v Controller and filter are based on the model of the system

- Linear model (direct vs. indirect adaptation), e.g., Ioannou et al. 2012, Landau et
al. 2011, 2017, Goodwin et al. 1984, 2014, Narendra et al. 1989, Tsakalis et al.
93, Sastry 2011, Tao 2003, Mosca 95

- Nonlinear model (direct vs. indirect adaptation), e.g., Krstic et al. 95, Slotine et
al. 91, Spooner 2002, Astolfi et al. 2008, Fradkov et al. 99, Astolfi 2015, Guay et
al. 2015, Taylor et al. 2020

- Infinite dimension and delays, e.g., Wen et al. 89, Smyshlyaev et al. 2010

- Constrained model (MPC type), e.g., Mosca 95, Guay et al. 2015

- Stochastic model, e.g., Sragovich 2006

- Multi-agent model, e.g., Lewis et al. 2014
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Figure 1.6 Indirect adaptive control.

P (µ§) to provide direct estimates µc(t) of µ§c at each time t by processing the
plant input u and output y. The estimate µc(t) is then used to update the
controller parameter vector µc without intermediate calculations. The choice
of the class of control laws C(µc) and parameter estimators generating µc(t)
for which C(µc(t)) meets the performance requirements for the plant model
P (µ§) is the fundamental problem in direct adaptive control. The properties
of the plant model P (µ§) are crucial in obtaining the parameterized plant
model Pc(µ§c ) that is convenient for on-line estimation. As a result, direct
adaptive control is restricted to a certain class of plant models. As we will
show in Chapter 6, a class of plant models that is suitable for direct adaptive
control consists of all SISO LTI plant models that are minimum-phase, i.e.,
their zeros are located in Re [s] < 0. The block diagram of direct adaptive
control is shown in Figure 1.7.

The principle behind the design of direct and indirect adaptive control
shown in Figures 1.6 and 1.7 is conceptually simple. The design of C(µc)
treats the estimates µc(t) (in the case of direct adaptive control) or the
estimates µ(t) (in the case of indirect adaptive control) as if they were the
true parameters. This design approach is called certainty equivalence and can
be used to generate a wide class of adaptive control schemes by combining
diÆerent on-line parameter estimators with diÆerent control laws.

Figure from Ioannou P., Sun J., 2012

Classical Adaptive Control



Data-Driven Adaptation

v Reinforcement Learning(RL): Stochastic Markov Decision Process (MDP)
v RL: Control policies are designed from interaction with a simulator and/or

with the real environment
v (Approximate) Dynamic programming, (Approximate solutions) Bellman

optimality equation

- Classical (CS) RL:
- Model-based data generation (simulator-based/enhanced learning),

e.g., Werbos 92, Bertsekas 96, Powell 2007, Busoniu 2010, Levine et
al. 20, As et al., 2022

- Model-free (real environment-based learning), e.g., Sutton et al. 98,
Levine et al. 20

- Multi-agent models, e.g., Oliehoek et al. 2016

- Control theory-‘inspired’ RL:
- Lyapunov-based RL, e.g., Perkins et al. 2002, Chow et al. 2018, Chow

et al. 2019, Russel et al. 2021

Figure courtesy of Jemmy Queeney@Boston University 



Data-Driven Adaptation

v Extremum seeking control (ESC)
v Data-driven optimization with estimation of the (higher order) derivatives of

the cost function, i.e.. ‘zero-order’ optimization
- Deterministic, e.g., Leblanc 1922, Krstic et al. 2000, Ariyur et al. 03, Zhang

et al. 12, Scheinker et al. 16, Feiling et al. 21, Dürr et al. 13, Nešic et al. 13,
Tan et al. 2013, Guay et al. 15, Guay et al. 20, Benosman et al. 21a, Poveda
et al. 21

- Stochastic, e.g., Liu et al. 12, Manzie et al. 09, Radenkovic et al. 16

- Infinite dimension, e.g., Oliveira et al. 20, Oliveira et al. 21, Feiling et al. 18

- Hybrid, e.g., Poveda et al. 17, Poveda 2018

- Multi-agent, e.g., Poveda 2018, Poveda 21a, Poveda 21b
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Data-Driven Adaptation

v Iterative Learning Control (ILC), e.g., Owens 2015

v Genetic algorithms, e.g., Dracopoulos 2013

v DNN/ DNN- RL, e.g., Arulkumaran et al. 2017, Levin 2013, Wang et al. 2016



Learning-based Adaptation

v Learning-based (hybrid: model-based control + data-driven adaptation)

Data-driven 
learning

Computer 
science

Model-based
control 

Control 
theory

Learning-based adaptive control

Merging model-based control and 
data-driven learning algorithms



Learning-based Adaptation

v Learning-based (hybrid: model-based control + data-driven adaptation)

ID-based (indirect adaptation):

- ESC *-based, e.g., Benosman 2016
- GP-based, e.g., Benosman et al. (2017a,2017b, 2018, 2019),

Berkenkamp et al. 2017, Chakrabarty et al. 2021
- NN-based, e.g., Lewis et al. 99, Spooner et al. 02, Wang et al. 2010
- Learning-(ID) MPC, e.g., Benosman et al. 2014, Subbaraman et al.

2016, Limon et al. 2017, Hewing et al. 2020
- Control barrier functions (CBFs)-based, e.g., Lopez et al. 2020, Emam

et al. 2021

‘Not’ ID–based (direct adaptation):

- ‘Deterministic’ RL: ADP, e.g., Vrabie et al. 2013, Lewis et al., 2013,
Faust et al. 2014, Dalal et al. 2018, Marvi et al. 20, Vamvoudakis et al.
2021, CBFs-based learning, e.g., Cheng et al. 2019

- Feedback controller tuning, e.g., Gain tuning, e.g., Hjalmarsson 02,
Benosman 2016, Duivenvoorden et al. 2017, Benosman et al. 21b,
MPC hyper-parameters tuning, e.g., Hewing et al. 2020

* ESC: Extremum seeking control, GP: Gaussian process, ADP: Adaptive dynamic programming, MPC: Model 
predictive control.
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learning adaptive controller. Section IV is dedicated to an
application example, and the paper ends with a Conclusion
in Section V.

2. PRELIMINARIES

Throughout the paper we will use ∥.∥ to denote the Eu-
clidean norm; i.e., for x ∈ Rn we have ∥x∥ =

√
xT x. We

will use the notation |.| for the absolute value of a scalar
variable, and ˙(.) for the short notation of time derivative.
We denote by Ck functions that are k times differentiable.
A continuous function α : [0, a) → [0,∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. A
continuous function β : [0, a) × [0,∞) → [0,∞) is said
to belong to class KL if, for each fixed s, the mapping
β(r, s) belongs to class K with respect to r and, for each
fixed r, the mapping β(r, s) is decreasing with respect to
s and β(r, s) → 0 as s → ∞.
Let us now introduce some useful definitions.

Definition. 1 [Local Integral Input-to-State Stability Ito
and Jiang [2009]]
Consider the system

ẋ = f(t, x, u) (1)
where x ∈ D ⊆ Rn such that 0 ∈ D, and f : [0,∞) ×
D × Du → Rn is piecewise continuous in t and locally
Lipschitz in x and u, uniformly in t. The inputs are
assumed to be measurable and locally bounded functions
u : R≥0 → Du ⊆ Rm. Given any control u ∈ Du and any
ξ ∈ D0 ⊆ D, there is a unique maximal solution of the
initial value problem ẋ = f(t, x, u), x(t0) = ξ. Without
loss of generality, assume t0 = 0. The unique solution is
defined on some maximal open interval, and it is denoted
by x(·, ξ, u). System (1) is locally integral input-to-state
stable (LiISS) if there exist functions α, γ ∈ K and β ∈ KL
such that, for all ξ ∈ D0 and all u ∈ Du, the solution
x(t, ξ, u) is defined for all t ≥ 0 and

α(∥x(t, ξ, u)∥) ≤ β(∥ξ∥, t) +
∫ t

0
γ(∥u(s)∥)ds (2)

for all t ≥ 0. Equivalently, system (1) is LiISS if and only
if there exist functions β ∈ KL and γ1, γ2 ∈ K such that

∥x(t, ξ, u)∥ ≤ β(∥ξ∥, t) + γ1

(∫ t

0
γ2(∥u(s)∥)ds

)
(3)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du. Note that if
system (1) is LiISS, then the 0-input system is locally
uniformly asymptotically stable (0-LUAS), that is, the
unforced system

ẋ = f(t, x, 0) (4)
is LUAS (Sontag and Wang [1996]).

Definition. 2 [ϵ- Semi-global practical uniform ultimate
boundedness with ultimate bound δ ((ϵ − δ)-SPUUB)
Scheinker [2013]]
Consider the system

ẋ = f ϵ(t, x) (5)
with φϵ(t, t0, x0) being the solution of (5) starting from
the initial condition x(t0) = x0. Then, the origin of (5) is
said to be (ϵ, δ)-SPUUB if it satisfies the following three
conditions:
1-(ϵ, δ)-Uniform Stability: For every c2 ∈]δ,∞[, there exists
c1 ∈]0,∞[ and ϵ̂ ∈]0,∞[ such that for all t0 ∈ R and for
all x0 ∈ Rn with ||x0|| < c1 and for all ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[

2-(ϵ, δ)-Uniform ultimate boundedness: For every c1 ∈
]0,∞[ there exists c2 ∈]δ,∞[ and ϵ̂ ∈]0,∞[ such that for
all t0 ∈ R and for all x0 ∈ Rn with ||x0|| < c1 and for all
ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[
3-(ϵ, δ)-Global uniform attractivity: For all c1, c2 ∈ (δ,∞)
there exists T ∈]0,∞[ and ϵ̂ ∈]0,∞[ such that for all t0 ∈ R
and for all x0 ∈ Rn with ||x0|| < c1 and for all ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0 + T,∞[

3. LEARNING-BASED ADAPTIVE CONTROLLER

Consider the system (1), with parametric uncertainties
∆ ∈ Rp

ẋ = f(t, x,∆, u) (6)
We associate with (6), the output vector

y = h(x) (7)
where h : Rn → Rh.
The control objective here is for y to asymptotically track
a desired smooth vector time-dependent trajectory yref :
[0,∞) → Rh.
Let us now define the output tracking error vector as
ey(t) = y(t) − yref (t).
We then assume the following
Assumption 1. There exists a robust control feedback
uiss(t, x, ∆̂) : R×Rn × Rp → Rm, with ∆̂(t) being the
dynamic estimate of the uncertain vector ∆, such that,
the closed-loop error dynamics

ėy = f(t, ey, e∆) (8)
is iISS from the input vector e∆ = ∆ − ∆̂(t) to the state
vector ey.
Remark 2. Assumption 1 might seem too general, how-
ever, several control approaches can be used to design
a controller uiss rendering an uncertain system iISS, for
instance backstepping control approach has been shown
to achieve such a property for parametric strict-feedback
systems, e.g. Krstic et al. [1995]. This is a preliminary
report, and we do not pretend here to present a detailed
solution for all the cases. A more detailed study of how to
achieve Assumption 1 for specific classes of systems and
how to use it in the context of ES learning-based adaptive
control, will be presented in our future reports.

Let us define now the following cost function
Q(∆̂, t) = F (ey(∆̂), t) (9)

where F : Rh × R+ → R+, F (0, t) = 0, F (ey, t) > 0 for
ey ≠ 0. We need the following assumptions on Q.
Assumption 3. The cost function Q has a local minimum
at ∆̂∗ = ∆.
Assumption 4. |∂Q(∆̂,t)

∂t | < ρQ, ∀t ∈ R+, ∀∆̂ ∈ Rp.
Remark 5. Assumption 3 simply means that we can con-
sider that Q has at least a local minimum at the true values
of the uncertain parameters.

We can now present the following Lemma.
Lemma 6. Consider the system (6), (7), with the cost
function (9), then under Assumptions 1, 3 and 4 , the
controller uiss, where ∆̂ is estimated with the multi-
parameter extremum seeking algorithm
˙̂∆i = a

√
(ωi)cos(ωit) − k

√
ωisin(ωit)Q(∆̂), i ∈ {1, ..., p}

(10)
with a > 0, k > 0, ωi ≠ ωj , i, j, k ∈ {1, ..., p}, and
ωi > ω∗, ∀i ∈ {1, ..., p}, with ω∗ large enough, ensures
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learning adaptive controller. Section IV is dedicated to an
application example, and the paper ends with a Conclusion
in Section V.

2. PRELIMINARIES

Throughout the paper we will use ∥.∥ to denote the Eu-
clidean norm; i.e., for x ∈ Rn we have ∥x∥ =

√
xT x. We

will use the notation |.| for the absolute value of a scalar
variable, and ˙(.) for the short notation of time derivative.
We denote by Ck functions that are k times differentiable.
A continuous function α : [0, a) → [0,∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. A
continuous function β : [0, a) × [0,∞) → [0,∞) is said
to belong to class KL if, for each fixed s, the mapping
β(r, s) belongs to class K with respect to r and, for each
fixed r, the mapping β(r, s) is decreasing with respect to
s and β(r, s) → 0 as s → ∞.
Let us now introduce some useful definitions.

Definition. 1 [Local Integral Input-to-State Stability Ito
and Jiang [2009]]
Consider the system

ẋ = f(t, x, u) (1)
where x ∈ D ⊆ Rn such that 0 ∈ D, and f : [0,∞) ×
D × Du → Rn is piecewise continuous in t and locally
Lipschitz in x and u, uniformly in t. The inputs are
assumed to be measurable and locally bounded functions
u : R≥0 → Du ⊆ Rm. Given any control u ∈ Du and any
ξ ∈ D0 ⊆ D, there is a unique maximal solution of the
initial value problem ẋ = f(t, x, u), x(t0) = ξ. Without
loss of generality, assume t0 = 0. The unique solution is
defined on some maximal open interval, and it is denoted
by x(·, ξ, u). System (1) is locally integral input-to-state
stable (LiISS) if there exist functions α, γ ∈ K and β ∈ KL
such that, for all ξ ∈ D0 and all u ∈ Du, the solution
x(t, ξ, u) is defined for all t ≥ 0 and

α(∥x(t, ξ, u)∥) ≤ β(∥ξ∥, t) +
∫ t

0
γ(∥u(s)∥)ds (2)

for all t ≥ 0. Equivalently, system (1) is LiISS if and only
if there exist functions β ∈ KL and γ1, γ2 ∈ K such that

∥x(t, ξ, u)∥ ≤ β(∥ξ∥, t) + γ1

(∫ t

0
γ2(∥u(s)∥)ds

)
(3)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du. Note that if
system (1) is LiISS, then the 0-input system is locally
uniformly asymptotically stable (0-LUAS), that is, the
unforced system

ẋ = f(t, x, 0) (4)
is LUAS (Sontag and Wang [1996]).

Definition. 2 [ϵ- Semi-global practical uniform ultimate
boundedness with ultimate bound δ ((ϵ − δ)-SPUUB)
Scheinker [2013]]
Consider the system

ẋ = f ϵ(t, x) (5)
with φϵ(t, t0, x0) being the solution of (5) starting from
the initial condition x(t0) = x0. Then, the origin of (5) is
said to be (ϵ, δ)-SPUUB if it satisfies the following three
conditions:
1-(ϵ, δ)-Uniform Stability: For every c2 ∈]δ,∞[, there exists
c1 ∈]0,∞[ and ϵ̂ ∈]0,∞[ such that for all t0 ∈ R and for
all x0 ∈ Rn with ||x0|| < c1 and for all ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[

2-(ϵ, δ)-Uniform ultimate boundedness: For every c1 ∈
]0,∞[ there exists c2 ∈]δ,∞[ and ϵ̂ ∈]0,∞[ such that for
all t0 ∈ R and for all x0 ∈ Rn with ||x0|| < c1 and for all
ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[
3-(ϵ, δ)-Global uniform attractivity: For all c1, c2 ∈ (δ,∞)
there exists T ∈]0,∞[ and ϵ̂ ∈]0,∞[ such that for all t0 ∈ R
and for all x0 ∈ Rn with ||x0|| < c1 and for all ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0 + T,∞[

3. LEARNING-BASED ADAPTIVE CONTROLLER

Consider the system (1), with parametric uncertainties
∆ ∈ Rp

ẋ = f(t, x,∆, u) (6)
We associate with (6), the output vector

y = h(x) (7)
where h : Rn → Rh.
The control objective here is for y to asymptotically track
a desired smooth vector time-dependent trajectory yref :
[0,∞) → Rh.
Let us now define the output tracking error vector as
ey(t) = y(t) − yref (t).
We then assume the following
Assumption 1. There exists a robust control feedback
uiss(t, x, ∆̂) : R×Rn × Rp → Rm, with ∆̂(t) being the
dynamic estimate of the uncertain vector ∆, such that,
the closed-loop error dynamics

ėy = f(t, ey, e∆) (8)
is iISS from the input vector e∆ = ∆ − ∆̂(t) to the state
vector ey.
Remark 2. Assumption 1 might seem too general, how-
ever, several control approaches can be used to design
a controller uiss rendering an uncertain system iISS, for
instance backstepping control approach has been shown
to achieve such a property for parametric strict-feedback
systems, e.g. Krstic et al. [1995]. This is a preliminary
report, and we do not pretend here to present a detailed
solution for all the cases. A more detailed study of how to
achieve Assumption 1 for specific classes of systems and
how to use it in the context of ES learning-based adaptive
control, will be presented in our future reports.

Let us define now the following cost function
Q(∆̂, t) = F (ey(∆̂), t) (9)

where F : Rh × R+ → R+, F (0, t) = 0, F (ey, t) > 0 for
ey ≠ 0. We need the following assumptions on Q.
Assumption 3. The cost function Q has a local minimum
at ∆̂∗ = ∆.
Assumption 4. |∂Q(∆̂,t)

∂t | < ρQ, ∀t ∈ R+, ∀∆̂ ∈ Rp.
Remark 5. Assumption 3 simply means that we can con-
sider that Q has at least a local minimum at the true values
of the uncertain parameters.

We can now present the following Lemma.
Lemma 6. Consider the system (6), (7), with the cost
function (9), then under Assumptions 1, 3 and 4 , the
controller uiss, where ∆̂ is estimated with the multi-
parameter extremum seeking algorithm
˙̂∆i = a

√
(ωi)cos(ωit) − k

√
ωisin(ωit)Q(∆̂), i ∈ {1, ..., p}

(10)
with a > 0, k > 0, ωi ≠ ωj , i, j, k ∈ {1, ..., p}, and
ωi > ω∗, ∀i ∈ {1, ..., p}, with ω∗ large enough, ensures
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Modularity through (ISS) robustness

* Ito H., and Jiang Z., 2009, Necessary and sufficient small gain conditions for integral input-to-state stable systems: A Lyapunov
perspective,. IEEE Transactions on Automatic Control, vol. 54, no. 10, pp. 2389.2404,

*
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Concept of (dither-based ) Extremum 
Seeking Control (ESC)*

Block diagram of a static extremum seeking 
control algorithm 

Block diagram of a functional extremum seeking 
control algorithm

Advantages: 
§ Model-free (zero-order) optimization
§ Gradient implicit estimate using one measurement

per learning iteration (good for real-time applications)
§ Robustness to noise
§ Robustness to initial conditions
§ Input and state constraints

sin( )tw

Cost function
ˆ( , )Q tq

x!
q

å
+
-

k wcos( )tw

a w

k/s

u Q(t, u)

* Ariyur K.B., Krstic M., 2003, Real Time Optimization by Extremum Seeking Control. New York, NY: John
Wiley & Sons, Inc. (Note: see this link for an ‘easier’ introduction: http://flyingv.ucsd.edu/krstic/talks/talks-
files/extremum-seeking-DISC12.pdf)

.

Analysis*:
§ Averaging theory
§ Singular perturbation theory 

(for dynamic maps) 

static/dynamic stationary map static/dynamic time-varying map

å kai/s sin( )a tw

Cost function

sin( )a tw

ˆ( )Q q

x!x
q Q(u)u

Scheinker A. et al. 16

http://flyingv.ucsd.edu/krstic/talks/talks-files/extremum-seeking-DISC12.pdf
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Basic intuition of ESC 

δy
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å kai/s sin( )a tw

Cost function

sin( )a tw

ˆ( )Q q

x!x
q

y = Q(u)

u
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d

d

δu < 0! ←←δu > 0

←! ←

!←←δu ≈ 0

Negligeable changes in y

d+ u d+ u d+ u

d

δy

HPF

⨂

⨂

⨂
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ESC uncertainties estimator 

Assumed to be well defined, i.e.,
for the same     , we obtain the 
same        

∆̂

Q(∆̂)

If not intrinsically, it can
be forced by an iterative
or batch-to-batch
implementation 
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* M. Benosman, 2014, Learning-based Adaptive Control for Nonlinear Systems, European Control 
Conference. 
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learning adaptive controller. Section IV is dedicated to an
application example, and the paper ends with a Conclusion
in Section V.

2. PRELIMINARIES

Throughout the paper we will use ∥.∥ to denote the Eu-
clidean norm; i.e., for x ∈ Rn we have ∥x∥ =

√
xT x. We

will use the notation |.| for the absolute value of a scalar
variable, and ˙(.) for the short notation of time derivative.
We denote by Ck functions that are k times differentiable.
A continuous function α : [0, a) → [0,∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. A
continuous function β : [0, a) × [0,∞) → [0,∞) is said
to belong to class KL if, for each fixed s, the mapping
β(r, s) belongs to class K with respect to r and, for each
fixed r, the mapping β(r, s) is decreasing with respect to
s and β(r, s) → 0 as s → ∞.
Let us now introduce some useful definitions.

Definition. 1 [Local Integral Input-to-State Stability Ito
and Jiang [2009]]
Consider the system

ẋ = f(t, x, u) (1)
where x ∈ D ⊆ Rn such that 0 ∈ D, and f : [0,∞) ×
D × Du → Rn is piecewise continuous in t and locally
Lipschitz in x and u, uniformly in t. The inputs are
assumed to be measurable and locally bounded functions
u : R≥0 → Du ⊆ Rm. Given any control u ∈ Du and any
ξ ∈ D0 ⊆ D, there is a unique maximal solution of the
initial value problem ẋ = f(t, x, u), x(t0) = ξ. Without
loss of generality, assume t0 = 0. The unique solution is
defined on some maximal open interval, and it is denoted
by x(·, ξ, u). System (1) is locally integral input-to-state
stable (LiISS) if there exist functions α, γ ∈ K and β ∈ KL
such that, for all ξ ∈ D0 and all u ∈ Du, the solution
x(t, ξ, u) is defined for all t ≥ 0 and

α(∥x(t, ξ, u)∥) ≤ β(∥ξ∥, t) +
∫ t

0
γ(∥u(s)∥)ds (2)

for all t ≥ 0. Equivalently, system (1) is LiISS if and only
if there exist functions β ∈ KL and γ1, γ2 ∈ K such that

∥x(t, ξ, u)∥ ≤ β(∥ξ∥, t) + γ1

(∫ t

0
γ2(∥u(s)∥)ds

)
(3)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du. Note that if
system (1) is LiISS, then the 0-input system is locally
uniformly asymptotically stable (0-LUAS), that is, the
unforced system

ẋ = f(t, x, 0) (4)
is LUAS (Sontag and Wang [1996]).

Definition. 2 [ϵ- Semi-global practical uniform ultimate
boundedness with ultimate bound δ ((ϵ − δ)-SPUUB)
Scheinker [2013]]
Consider the system

ẋ = f ϵ(t, x) (5)
with φϵ(t, t0, x0) being the solution of (5) starting from
the initial condition x(t0) = x0. Then, the origin of (5) is
said to be (ϵ, δ)-SPUUB if it satisfies the following three
conditions:
1-(ϵ, δ)-Uniform Stability: For every c2 ∈]δ,∞[, there exists
c1 ∈]0,∞[ and ϵ̂ ∈]0,∞[ such that for all t0 ∈ R and for
all x0 ∈ Rn with ||x0|| < c1 and for all ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[

2-(ϵ, δ)-Uniform ultimate boundedness: For every c1 ∈
]0,∞[ there exists c2 ∈]δ,∞[ and ϵ̂ ∈]0,∞[ such that for
all t0 ∈ R and for all x0 ∈ Rn with ||x0|| < c1 and for all
ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[
3-(ϵ, δ)-Global uniform attractivity: For all c1, c2 ∈ (δ,∞)
there exists T ∈]0,∞[ and ϵ̂ ∈]0,∞[ such that for all t0 ∈ R
and for all x0 ∈ Rn with ||x0|| < c1 and for all ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0 + T,∞[

3. LEARNING-BASED ADAPTIVE CONTROLLER

Consider the system (1), with parametric uncertainties
∆ ∈ Rp

ẋ = f(t, x,∆, u) (6)
We associate with (6), the output vector

y = h(x) (7)
where h : Rn → Rh.
The control objective here is for y to asymptotically track
a desired smooth vector time-dependent trajectory yref :
[0,∞) → Rh.
Let us now define the output tracking error vector as
ey(t) = y(t) − yref (t).
We then assume the following
Assumption 1. There exists a robust control feedback
uiss(t, x, ∆̂) : R×Rn × Rp → Rm, with ∆̂(t) being the
dynamic estimate of the uncertain vector ∆, such that,
the closed-loop error dynamics

ėy = f(t, ey, e∆) (8)
is iISS from the input vector e∆ = ∆ − ∆̂(t) to the state
vector ey.
Remark 2. Assumption 1 might seem too general, how-
ever, several control approaches can be used to design
a controller uiss rendering an uncertain system iISS, for
instance backstepping control approach has been shown
to achieve such a property for parametric strict-feedback
systems, e.g. Krstic et al. [1995]. This is a preliminary
report, and we do not pretend here to present a detailed
solution for all the cases. A more detailed study of how to
achieve Assumption 1 for specific classes of systems and
how to use it in the context of ES learning-based adaptive
control, will be presented in our future reports.

Let us define now the following cost function
Q(∆̂, t) = F (ey(∆̂), t) (9)

where F : Rh × R+ → R+, F (0, t) = 0, F (ey, t) > 0 for
ey ≠ 0. We need the following assumptions on Q.
Assumption 3. The cost function Q has a local minimum
at ∆̂∗ = ∆.
Assumption 4. |∂Q(∆̂,t)

∂t | < ρQ, ∀t ∈ R+, ∀∆̂ ∈ Rp.
Remark 5. Assumption 3 simply means that we can con-
sider that Q has at least a local minimum at the true values
of the uncertain parameters.

We can now present the following Lemma.
Lemma 6. Consider the system (6), (7), with the cost
function (9), then under Assumptions 1, 3 and 4 , the
controller uiss, where ∆̂ is estimated with the multi-
parameter extremum seeking algorithm
˙̂∆i = a

√
(ωi)cos(ωit) − k

√
ωisin(ωit)Q(∆̂), i ∈ {1, ..., p}

(10)
with a > 0, k > 0, ωi ≠ ωj , i, j, k ∈ {1, ..., p}, and
ωi > ω∗, ∀i ∈ {1, ..., p}, with ω∗ large enough, ensures
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learning adaptive controller. Section IV is dedicated to an
application example, and the paper ends with a Conclusion
in Section V.

2. PRELIMINARIES

Throughout the paper we will use ∥.∥ to denote the Eu-
clidean norm; i.e., for x ∈ Rn we have ∥x∥ =

√
xT x. We

will use the notation |.| for the absolute value of a scalar
variable, and ˙(.) for the short notation of time derivative.
We denote by Ck functions that are k times differentiable.
A continuous function α : [0, a) → [0,∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. A
continuous function β : [0, a) × [0,∞) → [0,∞) is said
to belong to class KL if, for each fixed s, the mapping
β(r, s) belongs to class K with respect to r and, for each
fixed r, the mapping β(r, s) is decreasing with respect to
s and β(r, s) → 0 as s → ∞.
Let us now introduce some useful definitions.

Definition. 1 [Local Integral Input-to-State Stability Ito
and Jiang [2009]]
Consider the system

ẋ = f(t, x, u) (1)
where x ∈ D ⊆ Rn such that 0 ∈ D, and f : [0,∞) ×
D × Du → Rn is piecewise continuous in t and locally
Lipschitz in x and u, uniformly in t. The inputs are
assumed to be measurable and locally bounded functions
u : R≥0 → Du ⊆ Rm. Given any control u ∈ Du and any
ξ ∈ D0 ⊆ D, there is a unique maximal solution of the
initial value problem ẋ = f(t, x, u), x(t0) = ξ. Without
loss of generality, assume t0 = 0. The unique solution is
defined on some maximal open interval, and it is denoted
by x(·, ξ, u). System (1) is locally integral input-to-state
stable (LiISS) if there exist functions α, γ ∈ K and β ∈ KL
such that, for all ξ ∈ D0 and all u ∈ Du, the solution
x(t, ξ, u) is defined for all t ≥ 0 and

α(∥x(t, ξ, u)∥) ≤ β(∥ξ∥, t) +
∫ t

0
γ(∥u(s)∥)ds (2)

for all t ≥ 0. Equivalently, system (1) is LiISS if and only
if there exist functions β ∈ KL and γ1, γ2 ∈ K such that

∥x(t, ξ, u)∥ ≤ β(∥ξ∥, t) + γ1

(∫ t

0
γ2(∥u(s)∥)ds

)
(3)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du. Note that if
system (1) is LiISS, then the 0-input system is locally
uniformly asymptotically stable (0-LUAS), that is, the
unforced system

ẋ = f(t, x, 0) (4)
is LUAS (Sontag and Wang [1996]).

Definition. 2 [ϵ- Semi-global practical uniform ultimate
boundedness with ultimate bound δ ((ϵ − δ)-SPUUB)
Scheinker [2013]]
Consider the system

ẋ = f ϵ(t, x) (5)
with φϵ(t, t0, x0) being the solution of (5) starting from
the initial condition x(t0) = x0. Then, the origin of (5) is
said to be (ϵ, δ)-SPUUB if it satisfies the following three
conditions:
1-(ϵ, δ)-Uniform Stability: For every c2 ∈]δ,∞[, there exists
c1 ∈]0,∞[ and ϵ̂ ∈]0,∞[ such that for all t0 ∈ R and for
all x0 ∈ Rn with ||x0|| < c1 and for all ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[

2-(ϵ, δ)-Uniform ultimate boundedness: For every c1 ∈
]0,∞[ there exists c2 ∈]δ,∞[ and ϵ̂ ∈]0,∞[ such that for
all t0 ∈ R and for all x0 ∈ Rn with ||x0|| < c1 and for all
ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[
3-(ϵ, δ)-Global uniform attractivity: For all c1, c2 ∈ (δ,∞)
there exists T ∈]0,∞[ and ϵ̂ ∈]0,∞[ such that for all t0 ∈ R
and for all x0 ∈ Rn with ||x0|| < c1 and for all ϵ ∈]0, ϵ̂[,

||φϵ(t, t0, x0)|| < c2, ∀t ∈ [t0 + T,∞[

3. LEARNING-BASED ADAPTIVE CONTROLLER

Consider the system (1), with parametric uncertainties
∆ ∈ Rp

ẋ = f(t, x,∆, u) (6)
We associate with (6), the output vector

y = h(x) (7)
where h : Rn → Rh.
The control objective here is for y to asymptotically track
a desired smooth vector time-dependent trajectory yref :
[0,∞) → Rh.
Let us now define the output tracking error vector as
ey(t) = y(t) − yref (t).
We then assume the following
Assumption 1. There exists a robust control feedback
uiss(t, x, ∆̂) : R×Rn × Rp → Rm, with ∆̂(t) being the
dynamic estimate of the uncertain vector ∆, such that,
the closed-loop error dynamics

ėy = f(t, ey, e∆) (8)
is iISS from the input vector e∆ = ∆ − ∆̂(t) to the state
vector ey.
Remark 2. Assumption 1 might seem too general, how-
ever, several control approaches can be used to design
a controller uiss rendering an uncertain system iISS, for
instance backstepping control approach has been shown
to achieve such a property for parametric strict-feedback
systems, e.g. Krstic et al. [1995]. This is a preliminary
report, and we do not pretend here to present a detailed
solution for all the cases. A more detailed study of how to
achieve Assumption 1 for specific classes of systems and
how to use it in the context of ES learning-based adaptive
control, will be presented in our future reports.

Let us define now the following cost function
Q(∆̂, t) = F (ey(∆̂), t) (9)

where F : Rh × R+ → R+, F (0, t) = 0, F (ey, t) > 0 for
ey ≠ 0. We need the following assumptions on Q.
Assumption 3. The cost function Q has a local minimum
at ∆̂∗ = ∆.
Assumption 4. |∂Q(∆̂,t)

∂t | < ρQ, ∀t ∈ R+, ∀∆̂ ∈ Rp.
Remark 5. Assumption 3 simply means that we can con-
sider that Q has at least a local minimum at the true values
of the uncertain parameters.

We can now present the following Lemma.
Lemma 6. Consider the system (6), (7), with the cost
function (9), then under Assumptions 1, 3 and 4 , the
controller uiss, where ∆̂ is estimated with the multi-
parameter extremum seeking algorithm
˙̂∆i = a

√
(ωi)cos(ωit) − k

√
ωisin(ωit)Q(∆̂), i ∈ {1, ..., p}

(10)
with a > 0, k > 0, ωi ≠ ωj , i, j, k ∈ {1, ..., p}, and
ωi > ω∗, ∀i ∈ {1, ..., p}, with ω∗ large enough, ensures
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for all (t, x, u) ∈ [0,∞)× Rn × Rm, where α1, α2 are class K∞ functions, ρ is a class K function,

and W (x) is a continuous positive definite function on Rn. Then, the system (1) is input-to-state

stable (ISS).

Remark 1. Note that other equivalent definitions for ISS have been given in [50, pp. 1974-1975].

For instance, Theorem 1 holds if inequality (2) is replaced by

∂V

∂t
+

∂V

∂x
f(t, x, u) ≤ −µ(∥x∥) + Ω(∥u∥),

where µ ∈ K∞
⋂

C1 and Ω ∈ K∞.

3. PROBLEM FORMULATION

3.1. Nonlinear system model

We consider here affine uncertain nonlinear systems of the form

ẋ = f(x) + ∆f(t, x) + g(x)u, x(0) = x0,

y = h(x),
(3)

where x ∈ Rn, u ∈ Rp, y ∈ Rm (p ≥ m), represent the state, the input, and the controlled output

vectors, respectively. ∆f(t, x) is a vector field representing additive model uncertainties. The vector

fields f , ∆f , columns of g and function h satisfy the following standard assumptions.

Assumption A1 The function f : Rn → Rn and the columns of g : Rn → Rp are C∞ vector fields

on a bounded set X of Rn and h : Rn → Rm is a C∞ vector on X . The vector field ∆f(x) is C1 on

X .

Assumption A2 System (3) has a well-defined (vector) relative degree {r1, r2, · · · , rm} at each

point x0 ∈ X , and the system is linearizable, i.e.,
∑m

i=1 ri = n.

Assumption A3 The desired output trajectories yid (1 ≤ i ≤ m) are smooth functions of time,

relating desired initial points yid(0) at t = 0 to desired final points yid(tf ) at t = tf .

3.2. Control objectives

Our objective is to design a learning-based state feedback adaptive iterative controller such that

the output tracking error remains bounded over the learning iterations, whereas the tracking error

upper-bound is a function of the uncertain parameters estimation error, which can be decreased by

the data-driven learning iterations. We stress that the goal of learning algorithm is not stabilization

but rather performance optimization, i.e., the learning improves the parameters estimation error,

which in turn improves the output tracking error. To achieve this control objective, we proceed as
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follows: first, we design a robust controller which can guarantee input-to-state stability (ISS) of

the tracking error dynamics w.r.t. the estimation errors input. More formally, we want to design a

state-feedback controller u(t, x), such that the solution of the feedback dynamics satisfies the ISS

condition

∥ey(t)∥ ≤ β(∥ey(t0)∥, t− t0) + γ( sup
t0≤τ≤t

∥e∆(τ)∥),

where ey, e∆ denote the output tracking error, and the uncertainties estimation error, respectively.

Then, we combine this controller with a data-driven learning algorithm to iteratively estimate the

uncertain parameters, by optimizing online a desired learning cost function, i.e, we want to design a

learning algorithm such that e∆(I) decreases with the number of learning iterations I , which implies

by the ISS condition that ey will decrease with I , as well.

4. ADAPTIVE CONTROLLER DESIGN

4.1. Nominal Controller

Let us first consider the system under nominal conditions, i.e., when ∆f(t, x) = 0. In this case, it is

well known, e.g., [49], that system (3) can be written as

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t), (4)

where
y(r)(t) = [y(r1)

1 (t), y(r2)
2 (t), · · · , y(rm)

m (t)]T ,

ξ(t) = [ξ1(t), · · · , ξm(t)]T ,

ξi(t) = [yi(t), · · · , y(ri−1)
i (t)]. 1 ≤ i ≤ m

(5)

The functions b(ξ), A(ξ) can be written as functions of f , g and h, and A(ξ) is non-singular in X̃ ,

where X̃ is the image of the set of X by the diffeomorphism x $→ ξ between the states of system (3)

and the linearized model (4). Now, to deal with the uncertain model, we first need to introduce one

more assumption on system (3).

Assumption A4 The additive uncertainties ∆f(t, x) in (3) appear as additive uncertainties in the

input-output linearized model (4)-(5) as follows (see also [51])

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t) + ∆b(t, ξ(t)), (6)

where ∆b(t, ξ) is C1 w.r.t. the state vector ξ ∈ X̃ .

Remark 2. Assumption A4 can be ensured under the matching conditions, e.g., [52].

It is well known that the nominal model (4) can be easily transformed into a linear input-output

mapping. Indeed, we can first define a virtual input vector v(t) as

v(t) = b(ξ(t)) + A(ξ(t))u(t). (7)
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Combining (4) and (7), we can obtain the following input-output mapping

y(r)(t) = v(t). (8)

Based on the linear system (8), it is straightforward to design a stabilizing controller for the nominal

system (4) as∗

un = A−1(ξ) [vs(t, ξ)− b(ξ)] , (9)

where vs is a m× 1 vector and the i-th (1 ≤ i ≤ m) element vsi is given by

vsi = y(ri)
id −Ki

ri
(y(ri−1)

i − y(ri−1)
id )− · · ·−Ki

1(yi − yid). (10)

If we denote the tracking error as ei(t) ! yi(t)− yid(t), we obtain the following tracking error

dynamics

e(ri)
i (t) + Ki

ri
e(ri−1)(t) + · · · + Ki

1ei(t) = 0, (11)

where i ∈ {1, 2, · · · , m}. By properly selecting the gains K i
j where i ∈ {1, 2, · · · , m} and

j ∈ {1, 2, · · · , ri}, we can obtain global asymptotic stability of the tracking errors ei(t). To

formalize this condition, we add the following assumption.

Assumption A5 There exists a non-empty set A where K i
j ∈ A such that the polynomials in (11)

are Hurwitz, where i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}.

To this end, we define z = [z1, z2, · · · , zm]T , where zi = [ei, ėi, · · · , e(ri−1)
i ] and i ∈

{1, 2, · · · , m}. Then, from (11), we can obtain

ż = Ãz,

where Ã ∈ Rn×n is a diagonal block matrix given by

Ã = diag{Ã1, Ã2, · · · , Ãm}, (12)

and Ãi (1 ≤ i ≤ m) is a ri × ri matrix given by

Ãi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 1

0
. . .

... 1

−Ki
1 −Ki

2 · · · · · · −Ki
ri

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

∗The inverse of A is to be understood in the sense of Moore-Penrose pseudo-inverse which is guaranteed to exist by the

relative degree Assumption A2.
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As discussed above, the gains K i
j can be chosen such that the matrix Ã is Hurwitz. Thus, there exists

a positive definite matrix P > 0 such that (see e.g. [49])

ÃT P + PÃ = − I. (13)

In the next section, we build upon the nominal controller (9) to write a robust ISS controller.

4.2. Lyapunov reconstruction-based ISS Controller

We now consider the uncertain model (3), i.e., when ∆f(t, x) ≠ 0. The corresponding exact

linearized model is given by (6) where ∆b(t, ξ(t)) ≠ 0. The global asymptotic stability of the

error dynamics (11) cannot be guaranteed anymore due to the additive uncertainty ∆b(t, ξ(t)). We

use Lyapunov reconstruction techniques to design a new controller so that the tracking error is

guaranteed to be bounded given that the estimate error of ∆b(t, ξ(t)) is bounded. The new controller

for the uncertain model (6) is defined as

uf = un + ur, (14)

where the nominal controller un is given by (9) and the robust controller ur will be given later. By

using controller (14), and (6) we obtain

y(r)(t) = b(ξ(t)) + A(ξ(t))uf + ∆b(t, ξ(t)),

= b(ξ(t)) + A(ξ(t))un + A(ξ(t))ur + ∆b(t, ξ(t)),

= vs(t, ξ) + A(ξ(t))ur + ∆b(t, ξ(t)), (15)

where (15) holds from (9). This leads to the following error dynamics

ż = Ãz + B̃δ, (16)

where Ã is defined in (12), δ is a m× 1 vector given by

δ = A(ξ(t))ur + ∆b(t, ξ(t)), (17)

and the matrix B̃ ∈ Rn×m is given by

B̃ =
[

B̃T
1 , B̃T

2 , . . . , B̃T
m

]T
, (18)

where each B̃i (1 ≤ i ≤ m) is given by a ri ×m matrix such that

B̃i(l, q) =

⎧
⎨

⎩
1 for l = ri, q = i,

0 otherwise.
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As discussed above, the gains K i
j can be chosen such that the matrix Ã is Hurwitz. Thus, there exists

a positive definite matrix P > 0 such that (see e.g. [49])

ÃT P + PÃ = − I. (13)

In the next section, we build upon the nominal controller (9) to write a robust ISS controller.

4.2. Lyapunov reconstruction-based ISS Controller

We now consider the uncertain model (3), i.e., when ∆f(t, x) ≠ 0. The corresponding exact

linearized model is given by (6) where ∆b(t, ξ(t)) ≠ 0. The global asymptotic stability of the

error dynamics (11) cannot be guaranteed anymore due to the additive uncertainty ∆b(t, ξ(t)). We

use Lyapunov reconstruction techniques to design a new controller so that the tracking error is

guaranteed to be bounded given that the estimate error of ∆b(t, ξ(t)) is bounded. The new controller

for the uncertain model (6) is defined as

uf = un + ur, (14)

where the nominal controller un is given by (9) and the robust controller ur will be given later. By

using controller (14), and (6) we obtain

y(r)(t) = b(ξ(t)) + A(ξ(t))uf + ∆b(t, ξ(t)),

= b(ξ(t)) + A(ξ(t))un + A(ξ(t))ur + ∆b(t, ξ(t)),

= vs(t, ξ) + A(ξ(t))ur + ∆b(t, ξ(t)), (15)

where (15) holds from (9). This leads to the following error dynamics

ż = Ãz + B̃δ, (16)

where Ã is defined in (12), δ is a m× 1 vector given by

δ = A(ξ(t))ur + ∆b(t, ξ(t)), (17)

and the matrix B̃ ∈ Rn×m is given by

B̃ =
[

B̃T
1 , B̃T

2 , . . . , B̃T
m

]T
, (18)

where each B̃i (1 ≤ i ≤ m) is given by a ri ×m matrix such that

B̃i(l, q) =

⎧
⎨

⎩
1 for l = ri, q = i,

0 otherwise.
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If we choose V (z) = zT Pz as a Lyapunov function for the dynamics (16), where P is the solution

of the Lyapunov equation (13), we obtain

V̇ (t) =
∂V

∂z
ż,

= zT (ÃT P + PÃ)z + 2zT PB̃δ,

= − ∥z∥2 + 2zT PB̃δ, (19)

where δ given by (17) depends on the robust controller ur.

Next, we design the controller ur based on the form of the uncertainties ∆b(t, ξ(t)). More

specifically, we consider the case when ∆b(t, ξ(t)) is of the following form

∆b(t, ξ(t)) = E Q(ξ, t), (20)

where E ∈ Rm×m is a matrix of unknown constant parameters, and Q(ξ, t) : Rn × R→ Rm is a

known bounded function of states and time variables. For notational convenience, we denote by Ê(t)

the estimate of E, and by eE = E − Ê, the estimate error. We define the unknown parameter vector

∆ = [E(1, 1), ..., E(m,m)]T ∈ Rm2
, i.e., concatenation of all elements of E, its estimate is denoted

by ∆̂(t) = [Ê(1, 1), ..., Ê(m,m)]T , and the estimation error vector is given by e∆(t) = ∆− ∆̂(t).

Next, we propose the following robust controller

ur = −A−1(ξ)[B̃T Pz∥Q(ξ, t)∥2 + Ê(t)Q(ξ, t)]. (21)

The closed-loop error dynamics can be written as

ż = f̃(t, z, e∆), (22)

where e∆(t) is considered to be an input to the system (22).

Theorem 2

Consider the system (3), under Assumptions A1-A5, where ∆b(t, ξ(t)) satisfies (20). If we apply to

(3) the feedback controller (14), where un is given by (9) and ur is given by (21), then the closed-

loop system (22) is ISS from the estimation errors input e∆(t) ∈ Rm2
to the tracking errors state

z(t) ∈ Rn.

Proof: By substitution (21) into (17), we obtain

δ = − B̃T Pz∥Q(ξ, t)∥2 − Ê(t) Q(ξ, t) + ∆b(t, ξ(t)),

= − B̃T Pz∥Q(ξ, t)∥2 − Ê(t) Q(ξ, t) + E Q(ξ, t),

If we consider V (z) = zT Pz as a Lyapunov function for the error dynamics (16). Then, from (19),

we obtain

V̇ ≤− ∥z∥2 + 2zT PB̃E Q(ξ, t)− 2zT PB̃Ê(t) Q(ξ, t)− 2∥zT PB̃∥2∥Q(ξ, t)∥2,
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follows: first, we design a robust controller which can guarantee input-to-state stability (ISS) of

the tracking error dynamics w.r.t. the estimation errors input. More formally, we want to design a

state-feedback controller u(t, x), such that the solution of the feedback dynamics satisfies the ISS

condition

∥ey(t)∥ ≤ β(∥ey(t0)∥, t− t0) + γ( sup
t0≤τ≤t

∥e∆(τ)∥),

where ey, e∆ denote the output tracking error, and the uncertainties estimation error, respectively.

Then, we combine this controller with a data-driven learning algorithm to iteratively estimate the

uncertain parameters, by optimizing online a desired learning cost function, i.e, we want to design a

learning algorithm such that e∆(I) decreases with the number of learning iterations I , which implies

by the ISS condition that ey will decrease with I , as well.

4. ADAPTIVE CONTROLLER DESIGN

4.1. Nominal Controller

Let us first consider the system under nominal conditions, i.e., when ∆f(t, x) = 0. In this case, it is

well known, e.g., [49], that system (3) can be written as

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t), (4)

where
y(r)(t) = [y(r1)

1 (t), y(r2)
2 (t), · · · , y(rm)

m (t)]T ,

ξ(t) = [ξ1(t), · · · , ξm(t)]T ,

ξi(t) = [yi(t), · · · , y(ri−1)
i (t)]. 1 ≤ i ≤ m

(5)

The functions b(ξ), A(ξ) can be written as functions of f , g and h, and A(ξ) is non-singular in X̃ ,

where X̃ is the image of the set of X by the diffeomorphism x $→ ξ between the states of system (3)

and the linearized model (4). Now, to deal with the uncertain model, we first need to introduce one

more assumption on system (3).

Assumption A4 The additive uncertainties ∆f(t, x) in (3) appear as additive uncertainties in the

input-output linearized model (4)-(5) as follows (see also [51])

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t) + ∆b(t, ξ(t)), (6)

where ∆b(t, ξ) is C1 w.r.t. the state vector ξ ∈ X̃ .

Remark 2. Assumption A4 can be ensured under the matching conditions, e.g., [52].

It is well known that the nominal model (4) can be easily transformed into a linear input-output

mapping. Indeed, we can first define a virtual input vector v(t) as

v(t) = b(ξ(t)) + A(ξ(t))u(t). (7)
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Combining (4) and (7), we can obtain the following input-output mapping

y(r)(t) = v(t). (8)

Based on the linear system (8), it is straightforward to design a stabilizing controller for the nominal

system (4) as∗

un = A−1(ξ) [vs(t, ξ)− b(ξ)] , (9)

where vs is a m× 1 vector and the i-th (1 ≤ i ≤ m) element vsi is given by

vsi = y(ri)
id −Ki

ri
(y(ri−1)

i − y(ri−1)
id )− · · ·−Ki

1(yi − yid). (10)

If we denote the tracking error as ei(t) ! yi(t)− yid(t), we obtain the following tracking error

dynamics

e(ri)
i (t) + Ki

ri
e(ri−1)(t) + · · · + Ki

1ei(t) = 0, (11)

where i ∈ {1, 2, · · · , m}. By properly selecting the gains K i
j where i ∈ {1, 2, · · · , m} and

j ∈ {1, 2, · · · , ri}, we can obtain global asymptotic stability of the tracking errors ei(t). To

formalize this condition, we add the following assumption.

Assumption A5 There exists a non-empty set A where K i
j ∈ A such that the polynomials in (11)

are Hurwitz, where i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}.

To this end, we define z = [z1, z2, · · · , zm]T , where zi = [ei, ėi, · · · , e(ri−1)
i ] and i ∈

{1, 2, · · · , m}. Then, from (11), we can obtain

ż = Ãz,

where Ã ∈ Rn×n is a diagonal block matrix given by

Ã = diag{Ã1, Ã2, · · · , Ãm}, (12)

and Ãi (1 ≤ i ≤ m) is a ri × ri matrix given by

Ãi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 1

0
. . .

... 1

−Ki
1 −Ki

2 · · · · · · −Ki
ri

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

∗The inverse of A is to be understood in the sense of Moore-Penrose pseudo-inverse which is guaranteed to exist by the

relative degree Assumption A2.
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follows: first, we design a robust controller which can guarantee input-to-state stability (ISS) of
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where
y(r)(t) = [y(r1)

1 (t), y(r2)
2 (t), · · · , y(rm)

m (t)]T ,

ξ(t) = [ξ1(t), · · · , ξm(t)]T ,

ξi(t) = [yi(t), · · · , y(ri−1)
i (t)]. 1 ≤ i ≤ m

(5)

The functions b(ξ), A(ξ) can be written as functions of f , g and h, and A(ξ) is non-singular in X̃ ,

where X̃ is the image of the set of X by the diffeomorphism x $→ ξ between the states of system (3)

and the linearized model (4). Now, to deal with the uncertain model, we first need to introduce one

more assumption on system (3).

Assumption A4 The additive uncertainties ∆f(t, x) in (3) appear as additive uncertainties in the

input-output linearized model (4)-(5) as follows (see also [51])

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t) + ∆b(t, ξ(t)), (6)

where ∆b(t, ξ) is C1 w.r.t. the state vector ξ ∈ X̃ .

Remark 2. Assumption A4 can be ensured under the matching conditions, e.g., [52].

It is well known that the nominal model (4) can be easily transformed into a linear input-output

mapping. Indeed, we can first define a virtual input vector v(t) as

v(t) = b(ξ(t)) + A(ξ(t))u(t). (7)
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If we choose V (z) = zT Pz as a Lyapunov function for the dynamics (16), where P is the solution

of the Lyapunov equation (13), we obtain

V̇ (t) =
∂V

∂z
ż,

= zT (ÃT P + PÃ)z + 2zT PB̃δ,

= − ∥z∥2 + 2zT PB̃δ, (19)

where δ given by (17) depends on the robust controller ur.

Next, we design the controller ur based on the form of the uncertainties ∆b(t, ξ(t)). More

specifically, we consider the case when ∆b(t, ξ(t)) is of the following form

∆b(t, ξ(t)) = E Q(ξ, t), (20)

where E ∈ Rm×m is a matrix of unknown constant parameters, and Q(ξ, t) : Rn × R→ Rm is a

known bounded function of states and time variables. For notational convenience, we denote by Ê(t)

the estimate of E, and by eE = E − Ê, the estimate error. We define the unknown parameter vector

∆ = [E(1, 1), ..., E(m,m)]T ∈ Rm2
, i.e., concatenation of all elements of E, its estimate is denoted

by ∆̂(t) = [Ê(1, 1), ..., Ê(m,m)]T , and the estimation error vector is given by e∆(t) = ∆− ∆̂(t).

Next, we propose the following robust controller

ur = −A−1(ξ)[B̃T Pz∥Q(ξ, t)∥2 + Ê(t)Q(ξ, t)]. (21)

The closed-loop error dynamics can be written as

ż = f̃(t, z, e∆), (22)

where e∆(t) is considered to be an input to the system (22).

Theorem 2

Consider the system (3), under Assumptions A1-A5, where ∆b(t, ξ(t)) satisfies (20). If we apply to

(3) the feedback controller (14), where un is given by (9) and ur is given by (21), then the closed-

loop system (22) is ISS from the estimation errors input e∆(t) ∈ Rm2
to the tracking errors state

z(t) ∈ Rn.

Proof: By substitution (21) into (17), we obtain

δ = − B̃T Pz∥Q(ξ, t)∥2 − Ê(t) Q(ξ, t) + ∆b(t, ξ(t)),

= − B̃T Pz∥Q(ξ, t)∥2 − Ê(t) Q(ξ, t) + E Q(ξ, t),

If we consider V (z) = zT Pz as a Lyapunov function for the error dynamics (16). Then, from (19),

we obtain

V̇ ≤− ∥z∥2 + 2zT PB̃E Q(ξ, t)− 2zT PB̃Ê(t) Q(ξ, t)− 2∥zT PB̃∥2∥Q(ξ, t)∥2,
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Algorithm 1 MES-based Learning Adaptive Controller
– Initialize: I = 1, x(0) = x0, Jth > 0, ∆̂ = ∆nominal, Ki

1, ...,K
i
ri

, i = 1, ...,m.

– Solve (13).

– Apply the controller (9), (14), and (21), to (3), (20).

(Loop) – Evaluate the learning cost J by (24).

– IF J ≤ Jth → Exit Loop, IF not:

– I=I+1.

– Estimate ∆̂ by (25).

– Reset t ∈ [(I − 1)tf , Itf ], x((I − 1)tf ) = x0, then, apply the controller (9), (14), and

(21), to (3), (20).

– Go to (Loop).

Assumption A7 The initial error e∆(t0) is sufficiently small, i.e., the original parameter estimate

vector ∆̂ is in the compact neighborhood V(∆) as defined in Assumption A6.

Assumption A8 The cost function J is analytic and its variation with respect to the uncertain

parameters is bounded in the neighborhood of ∆̂∗, i.e., ∥ ∂J
∂∆̂

(∆̃)∥ ≤ ξ2, ξ2 > 0, ∆̃ ∈ V(∆̂∗), where

V(∆̂∗) denotes a compact neighborhood of ∆̂∗.

Remark 5. Assumption A6 simply states that the cost function J has at least a local minimum at the

true values of the uncertain parameters.

Remark 6. Assumption A7 indicates that our results are of local nature, i.e., our analysis holds in a

small neighborhood of the actual values of the uncertain parameters. This makes the results of the

MES-based controller valid only for small uncertainties. This can be a limitation in some practical

applications. We will address this problem in the Section 4.4, where we introduce another learning

algorithm with more global convergence results.

We can now present the stability analysis of the MES-based controller (Algorithm 1).

Lemma 3

Consider the system (3), under Assumptions A1-A8, where the uncertainty is given by (20). If we

apply to (3) the feedback controller (14), (9), and (21), where the state vector is reset following the

resetting law x(Itf ) = x0, I ∈ {1, 2, ...}, the desired trajectory vector is reset following ŷid(t) =

yid(t− (I − 1)tf ), (I − 1)tf ≤ t ≤ Itf , I ∈ {1, 2, ...}, the cost function is given by (24), and the

elements of the vector ∆̂(t) are estimated through the iterative MES algorithm

˙̃xi = ai sin(ωit + π
2 )J(∆̂), ai > 0,

δ̂∆i(t) = x̃i + ai sin(ωit− π
2 ),

∆̂i(t) = ∆̂i−nominal + δ∆i(t),

δ∆i(t) = δ̂∆i((I − 1)tf ), (I − 1)tf ≤ t ≤ Itf , I = 1, 2, 3, ..., i ∈ {1, 2, . . . ,m2},

(25)
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If we choose V (z) = zT Pz as a Lyapunov function for the dynamics (16), where P is the solution

of the Lyapunov equation (13), we obtain

V̇ (t) =
∂V

∂z
ż,

= zT (ÃT P + PÃ)z + 2zT PB̃δ,

= − ∥z∥2 + 2zT PB̃δ, (19)

where δ given by (17) depends on the robust controller ur.

Next, we design the controller ur based on the form of the uncertainties ∆b(t, ξ(t)). More

specifically, we consider the case when ∆b(t, ξ(t)) is of the following form

∆b(t, ξ(t)) = E Q(ξ, t), (20)

where E ∈ Rm×m is a matrix of unknown constant parameters, and Q(ξ, t) : Rn × R→ Rm is a

known bounded function of states and time variables. For notational convenience, we denote by Ê(t)

the estimate of E, and by eE = E − Ê, the estimate error. We define the unknown parameter vector

∆ = [E(1, 1), ..., E(m,m)]T ∈ Rm2
, i.e., concatenation of all elements of E, its estimate is denoted

by ∆̂(t) = [Ê(1, 1), ..., Ê(m,m)]T , and the estimation error vector is given by e∆(t) = ∆− ∆̂(t).

Next, we propose the following robust controller

ur = −A−1(ξ)[B̃T Pz∥Q(ξ, t)∥2 + Ê(t)Q(ξ, t)]. (21)

The closed-loop error dynamics can be written as

ż = f̃(t, z, e∆), (22)

where e∆(t) is considered to be an input to the system (22).

Theorem 2

Consider the system (3), under Assumptions A1-A5, where ∆b(t, ξ(t)) satisfies (20). If we apply to

(3) the feedback controller (14), where un is given by (9) and ur is given by (21), then the closed-

loop system (22) is ISS from the estimation errors input e∆(t) ∈ Rm2
to the tracking errors state

z(t) ∈ Rn.

Proof: By substitution (21) into (17), we obtain

δ = − B̃T Pz∥Q(ξ, t)∥2 − Ê(t) Q(ξ, t) + ∆b(t, ξ(t)),

= − B̃T Pz∥Q(ξ, t)∥2 − Ê(t) Q(ξ, t) + E Q(ξ, t),

If we consider V (z) = zT Pz as a Lyapunov function for the error dynamics (16). Then, from (19),

we obtain

V̇ ≤− ∥z∥2 + 2zT PB̃E Q(ξ, t)− 2zT PB̃Ê(t) Q(ξ, t)− 2∥zT PB̃∥2∥Q(ξ, t)∥2,
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which leads to

V̇ ≤ − ∥z∥2 + 2zT PB̃eEQ(ξ, t)− 2∥zT PB̃∥2∥Q(ξ, t)∥2.

Since zT PB̃eEQ(ξ) ≤ ∥zT PB̃eEQ(ξ)∥ ≤ ∥zT PB̃∥∥eE∥F ∥Q(ξ)∥ = ∥zT PB̃∥∥e∆∥∥Q(ξ)∥, we

obtain

V̇ ≤ − ∥z∥2 + 2∥zT PB̃∥∥e∆∥∥Q(ξ, t)∥ − 2∥zT PB̃∥2∥Q(ξ, t)∥2,

≤ − ∥z∥2 − 2(∥zT PB̃∥∥Q(ξ, t)∥ − 1
2
∥e∆∥)2 +

1
2
∥e∆∥2,

≤ − ∥z∥2 +
1
2
∥e∆∥2.

Thus, we have the following relation

V̇ ≤ −1
2
∥z∥2, ∀∥z∥ ≥ ∥e∆∥ > 0,

Then from the Lyapunov direct Theorem 1, we obtain that system (22) is ISS from input e∆ to state

z. ✷

Remark 3. In the case of constant uncertainty vector, i.e., ∆b = ∆ = cte ∈ Rm, the controller (21)

boils down to the simple feedback

ur = −A−1(ξ)[B̃T Pz + ∆̂(t)]. (23)

Remark 4. We have not explicitly mentioned in Theorem 2 the case of measurement noise.

However, in the case of bounded additive measurement noise d(t) ∈ Rp which appears as an

additive disturbance to ∆b, i.e., the new uncertainty term writes as ∆b + A.d(t), we can easily

show, following the same steps as in the proof of Theorem 2, that the ISS result holds from the

extended input (eT
∆, d̃T )T , d̃ = A.d, to the tracking error z. This means that the controller (9), (14),

and (21) is robust w.r.t. this type of measurement noise, and the results of Theorem 2 remains valid

in this case.

4.3. Iterative MES-based parametric uncertainties estimation

Let us define now the following cost function

J(∆̂) = F (z(∆̂)), (24)

where F : Rn → R, F (0) = 0, F (z) > 0 for z ∈ Rn − {0}. We need the following assumptions on

J .

Assumption A6 The cost function J has a local minimum at ∆̂∗ = ∆, i.e., J(∆̂) > J(∆), ∀∆̂ ∈

V(∆), where V(∆) denotes a compact neighborhood of ∆.
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Algorithm 1 MES-based Learning Adaptive Controller
– Initialize: I = 1, x(0) = x0, Jth > 0, ∆̂ = ∆nominal, Ki

1, ...,K
i
ri

, i = 1, ...,m.

– Solve (13).

– Apply the controller (9), (14), and (21), to (3), (20).

(Loop) – Evaluate the learning cost J by (24).

– IF J ≤ Jth → Exit Loop, IF not:

– I=I+1.

– Estimate ∆̂ by (25).

– Reset t ∈ [(I − 1)tf , Itf ], x((I − 1)tf ) = x0, then, apply the controller (9), (14), and

(21), to (3), (20).

– Go to (Loop).

Assumption A7 The initial error e∆(t0) is sufficiently small, i.e., the original parameter estimate

vector ∆̂ is in the compact neighborhood V(∆) as defined in Assumption A6.

Assumption A8 The cost function J is analytic and its variation with respect to the uncertain

parameters is bounded in the neighborhood of ∆̂∗, i.e., ∥ ∂J
∂∆̂

(∆̃)∥ ≤ ξ2, ξ2 > 0, ∆̃ ∈ V(∆̂∗), where

V(∆̂∗) denotes a compact neighborhood of ∆̂∗.

Remark 5. Assumption A6 simply states that the cost function J has at least a local minimum at the

true values of the uncertain parameters.

Remark 6. Assumption A7 indicates that our results are of local nature, i.e., our analysis holds in a

small neighborhood of the actual values of the uncertain parameters. This makes the results of the

MES-based controller valid only for small uncertainties. This can be a limitation in some practical

applications. We will address this problem in the Section 4.4, where we introduce another learning

algorithm with more global convergence results.

We can now present the stability analysis of the MES-based controller (Algorithm 1).

Lemma 3

Consider the system (3), under Assumptions A1-A8, where the uncertainty is given by (20). If we

apply to (3) the feedback controller (14), (9), and (21), where the state vector is reset following the

resetting law x(Itf ) = x0, I ∈ {1, 2, ...}, the desired trajectory vector is reset following ŷid(t) =

yid(t− (I − 1)tf ), (I − 1)tf ≤ t ≤ Itf , I ∈ {1, 2, ...}, the cost function is given by (24), and the

elements of the vector ∆̂(t) are estimated through the iterative MES algorithm

˙̃xi = ai sin(ωit + π
2 )J(∆̂), ai > 0,

δ̂∆i(t) = x̃i + ai sin(ωit− π
2 ),

∆̂i(t) = ∆̂i−nominal + δ∆i(t),

δ∆i(t) = δ̂∆i((I − 1)tf ), (I − 1)tf ≤ t ≤ Itf , I = 1, 2, 3, ..., i ∈ {1, 2, . . . ,m2},

(25)
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GP-UCB* uncertainties estimator (Data-driven) 

- Gaussian process upper confidence bound GP-UCB* is used as the data-
driven part of the controller

- Bayesian stochastic optimization, i.e., noisy observation of the cost
function

- Global optimum on compact search sets

* Srinivas N, Krause A, Kakade SM, Seeger M., 2010, Gaussian process optimization in the bandit setting: No 
regret and experimental design. In: Proceedings of the 27th International Conference on Machine Learning.
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We briefly discuss GP-UCB in our context following the discussion of the original papers [46, 57].

Consider the learning cost function J : D → R to be minimized, which can be defined by (24).

This function depends on the states of the closed-loop system, which depend on the parameters

∆̂ used in the controller design. Thus, we can consider it as an unknown function of ∆̂, where

D ⊂ Rm2
.

In this context of GP-UCB, to be able to capture the fact that J has a global minimum in the

compact search set D, we need to extend Assumption A6, as follows:

Assumption A9 The cost function J has a global minimum at ∆̂∗ = ∆, in the compact search set

D, i.e., J(∆̂) > J(∆), ∀∆̂ ∈ D.

Let us assume that J̃ is a function sampled from a Gaussian Process (GP). Recall that a GP

is a stochastic process indexed by the set D that has the property that for any finite subset of

the evaluation points, that is {∆̂1, ∆̂2, . . . , ∆̂I} ⊂ D, the joint distribution of
(
J̃(∆̂i)

)I

i=1
is a

multivariate Gaussian distribution.

We recall that GP is defined by a mean function

µ(∆̂) = E
[
J̃(∆̂)

]
, (30)

and its covariance function (or kernel)

K(∆̂, ∆̂′) = Cov(J̃(∆̂), J̃(∆̂′)) = E
[(

J̃(∆̂)− µ(∆̂)
)(

J̃(∆̂′)− µ(∆̂′)
)⊤]

. (31)

The kernel K of a GP determines the behavior of a typical function sampled from the GP. For

instance, if we choose

K(∆̂, ∆̂′) = exp

(
−∥∆̂− ∆̂′∥2

2l2

)
, (32)

the squared exponential kernel with length scale l > 0, it implies that the GP is mean square

differentiable of all orders.

Let us first briefly describe how we can find the posterior distribution of a GP(0, K), i.e., a

GP with zero prior mean. Suppose that for ∆̂I−1 ! {∆̂1, ∆̂2, . . . , ∆̂I−1} ⊂ D, we have observed

the noisy evaluation yi = J̃(∆̂i) = J(∆̂i) + ηi with ηi ∼ N(0,σ2) being i.i.d. Gaussian noise.

We can find the posterior mean and variance for a new point ∆̂∗ ∈ D as follows: Denote the

vector of observed values by yI−1 = [y1, . . . , yI−1]⊤ ∈ RI−1, and define the Grammian matrix

K ∈ RI−1×I−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector K∗ = [K(∆̂1, ∆̂∗), . . . , K(∆̂I−1, ∆̂∗)]. The

expected mean µI(∆̂∗) and the variance σI(∆̂∗) of the posterior of the GP evaluated at ∆̂∗ are (cf.

Section 2.2 of [63])

µI(∆̂∗) = K∗
[
K + σ2I

]−1 yI−1, (33)

σ2
I (∆̂∗) = K(∆̂∗, ∆̂∗)− KT

∗
[
K + σ2I

]−1
K∗. (34)
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We briefly discuss GP-UCB in our context following the discussion of the original papers [46, 57].

Consider the learning cost function J : D → R to be minimized, which can be defined by (24).

This function depends on the states of the closed-loop system, which depend on the parameters

∆̂ used in the controller design. Thus, we can consider it as an unknown function of ∆̂, where

D ⊂ Rm2
.

In this context of GP-UCB, to be able to capture the fact that J has a global minimum in the

compact search set D, we need to extend Assumption A6, as follows:

Assumption A9 The cost function J has a global minimum at ∆̂∗ = ∆, in the compact search set

D, i.e., J(∆̂) > J(∆), ∀∆̂ ∈ D.

Let us assume that J̃ is a function sampled from a Gaussian Process (GP). Recall that a GP

is a stochastic process indexed by the set D that has the property that for any finite subset of

the evaluation points, that is {∆̂1, ∆̂2, . . . , ∆̂I} ⊂ D, the joint distribution of
(
J̃(∆̂i)

)I

i=1
is a

multivariate Gaussian distribution.

We recall that GP is defined by a mean function

µ(∆̂) = E
[
J̃(∆̂)

]
, (30)

and its covariance function (or kernel)

K(∆̂, ∆̂′) = Cov(J̃(∆̂), J̃(∆̂′)) = E
[(

J̃(∆̂)− µ(∆̂)
)(

J̃(∆̂′)− µ(∆̂′)
)⊤]

. (31)

The kernel K of a GP determines the behavior of a typical function sampled from the GP. For

instance, if we choose

K(∆̂, ∆̂′) = exp

(
−∥∆̂− ∆̂′∥2

2l2

)
, (32)

the squared exponential kernel with length scale l > 0, it implies that the GP is mean square

differentiable of all orders.

Let us first briefly describe how we can find the posterior distribution of a GP(0, K), i.e., a

GP with zero prior mean. Suppose that for ∆̂I−1 ! {∆̂1, ∆̂2, . . . , ∆̂I−1} ⊂ D, we have observed

the noisy evaluation yi = J̃(∆̂i) = J(∆̂i) + ηi with ηi ∼ N(0,σ2) being i.i.d. Gaussian noise.

We can find the posterior mean and variance for a new point ∆̂∗ ∈ D as follows: Denote the

vector of observed values by yI−1 = [y1, . . . , yI−1]⊤ ∈ RI−1, and define the Grammian matrix

K ∈ RI−1×I−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector K∗ = [K(∆̂1, ∆̂∗), . . . , K(∆̂I−1, ∆̂∗)]. The

expected mean µI(∆̂∗) and the variance σI(∆̂∗) of the posterior of the GP evaluated at ∆̂∗ are (cf.

Section 2.2 of [63])

µI(∆̂∗) = K∗
[
K + σ2I

]−1 yI−1, (33)

σ2
I (∆̂∗) = K(∆̂∗, ∆̂∗)− KT

∗
[
K + σ2I

]−1
K∗. (34)
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We briefly discuss GP-UCB in our context following the discussion of the original papers [46, 57].

Consider the learning cost function J : D → R to be minimized, which can be defined by (24).

This function depends on the states of the closed-loop system, which depend on the parameters

∆̂ used in the controller design. Thus, we can consider it as an unknown function of ∆̂, where

D ⊂ Rm2
.

In this context of GP-UCB, to be able to capture the fact that J has a global minimum in the

compact search set D, we need to extend Assumption A6, as follows:

Assumption A9 The cost function J has a global minimum at ∆̂∗ = ∆, in the compact search set

D, i.e., J(∆̂) > J(∆), ∀∆̂ ∈ D.

Let us assume that J̃ is a function sampled from a Gaussian Process (GP). Recall that a GP

is a stochastic process indexed by the set D that has the property that for any finite subset of

the evaluation points, that is {∆̂1, ∆̂2, . . . , ∆̂I} ⊂ D, the joint distribution of
(
J̃(∆̂i)

)I

i=1
is a

multivariate Gaussian distribution.

We recall that GP is defined by a mean function

µ(∆̂) = E
[
J̃(∆̂)

]
, (30)

and its covariance function (or kernel)

K(∆̂, ∆̂′) = Cov(J̃(∆̂), J̃(∆̂′)) = E
[(

J̃(∆̂)− µ(∆̂)
)(

J̃(∆̂′)− µ(∆̂′)
)⊤]

. (31)

The kernel K of a GP determines the behavior of a typical function sampled from the GP. For

instance, if we choose

K(∆̂, ∆̂′) = exp

(
−∥∆̂− ∆̂′∥2

2l2

)
, (32)

the squared exponential kernel with length scale l > 0, it implies that the GP is mean square

differentiable of all orders.

Let us first briefly describe how we can find the posterior distribution of a GP(0, K), i.e., a

GP with zero prior mean. Suppose that for ∆̂I−1 ! {∆̂1, ∆̂2, . . . , ∆̂I−1} ⊂ D, we have observed

the noisy evaluation yi = J̃(∆̂i) = J(∆̂i) + ηi with ηi ∼ N(0,σ2) being i.i.d. Gaussian noise.

We can find the posterior mean and variance for a new point ∆̂∗ ∈ D as follows: Denote the

vector of observed values by yI−1 = [y1, . . . , yI−1]⊤ ∈ RI−1, and define the Grammian matrix

K ∈ RI−1×I−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector K∗ = [K(∆̂1, ∆̂∗), . . . , K(∆̂I−1, ∆̂∗)]. The

expected mean µI(∆̂∗) and the variance σI(∆̂∗) of the posterior of the GP evaluated at ∆̂∗ are (cf.

Section 2.2 of [63])

µI(∆̂∗) = K∗
[
K + σ2I

]−1 yI−1, (33)

σ2
I (∆̂∗) = K(∆̂∗, ∆̂∗)− KT

∗
[
K + σ2I

]−1
K∗. (34)
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We briefly discuss GP-UCB in our context following the discussion of the original papers [46, 57].

Consider the learning cost function J : D → R to be minimized, which can be defined by (24).

This function depends on the states of the closed-loop system, which depend on the parameters

∆̂ used in the controller design. Thus, we can consider it as an unknown function of ∆̂, where

D ⊂ Rm2
.

In this context of GP-UCB, to be able to capture the fact that J has a global minimum in the

compact search set D, we need to extend Assumption A6, as follows:

Assumption A9 The cost function J has a global minimum at ∆̂∗ = ∆, in the compact search set

D, i.e., J(∆̂) > J(∆), ∀∆̂ ∈ D.

Let us assume that J̃ is a function sampled from a Gaussian Process (GP). Recall that a GP

is a stochastic process indexed by the set D that has the property that for any finite subset of

the evaluation points, that is {∆̂1, ∆̂2, . . . , ∆̂I} ⊂ D, the joint distribution of
(
J̃(∆̂i)

)I

i=1
is a

multivariate Gaussian distribution.

We recall that GP is defined by a mean function

µ(∆̂) = E
[
J̃(∆̂)

]
, (30)

and its covariance function (or kernel)

K(∆̂, ∆̂′) = Cov(J̃(∆̂), J̃(∆̂′)) = E
[(

J̃(∆̂)− µ(∆̂)
)(

J̃(∆̂′)− µ(∆̂′)
)⊤]

. (31)

The kernel K of a GP determines the behavior of a typical function sampled from the GP. For

instance, if we choose

K(∆̂, ∆̂′) = exp

(
−∥∆̂− ∆̂′∥2

2l2

)
, (32)

the squared exponential kernel with length scale l > 0, it implies that the GP is mean square

differentiable of all orders.

Let us first briefly describe how we can find the posterior distribution of a GP(0, K), i.e., a

GP with zero prior mean. Suppose that for ∆̂I−1 ! {∆̂1, ∆̂2, . . . , ∆̂I−1} ⊂ D, we have observed

the noisy evaluation yi = J̃(∆̂i) = J(∆̂i) + ηi with ηi ∼ N(0,σ2) being i.i.d. Gaussian noise.

We can find the posterior mean and variance for a new point ∆̂∗ ∈ D as follows: Denote the

vector of observed values by yI−1 = [y1, . . . , yI−1]⊤ ∈ RI−1, and define the Grammian matrix

K ∈ RI−1×I−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector K∗ = [K(∆̂1, ∆̂∗), . . . , K(∆̂I−1, ∆̂∗)]. The

expected mean µI(∆̂∗) and the variance σI(∆̂∗) of the posterior of the GP evaluated at ∆̂∗ are (cf.

Section 2.2 of [63])

µI(∆̂∗) = K∗
[
K + σ2I

]−1 yI−1, (33)

σ2
I (∆̂∗) = K(∆̂∗, ∆̂∗)− KT

∗
[
K + σ2I

]−1
K∗. (34)
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, (32)
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GP with zero prior mean. Suppose that for ∆̂I−1 ! {∆̂1, ∆̂2, . . . , ∆̂I−1} ⊂ D, we have observed

the noisy evaluation yi = J̃(∆̂i) = J(∆̂i) + ηi with ηi ∼ N(0,σ2) being i.i.d. Gaussian noise.

We can find the posterior mean and variance for a new point ∆̂∗ ∈ D as follows: Denote the

vector of observed values by yI−1 = [y1, . . . , yI−1]⊤ ∈ RI−1, and define the Grammian matrix

K ∈ RI−1×I−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector K∗ = [K(∆̂1, ∆̂∗), . . . , K(∆̂I−1, ∆̂∗)]. The

expected mean µI(∆̂∗) and the variance σI(∆̂∗) of the posterior of the GP evaluated at ∆̂∗ are (cf.

Section 2.2 of [63])

µI(∆̂∗) = K∗
[
K + σ2I

]−1 yI−1, (33)

σ2
I (∆̂∗) = K(∆̂∗, ∆̂∗)− KT

∗
[
K + σ2I

]−1
K∗. (34)
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Consider the learning cost function J : D → R to be minimized, which can be defined by (24).
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∆̂ used in the controller design. Thus, we can consider it as an unknown function of ∆̂, where
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Let us assume that J̃ is a function sampled from a Gaussian Process (GP). Recall that a GP

is a stochastic process indexed by the set D that has the property that for any finite subset of

the evaluation points, that is {∆̂1, ∆̂2, . . . , ∆̂I} ⊂ D, the joint distribution of
(
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)I
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is a

multivariate Gaussian distribution.

We recall that GP is defined by a mean function

µ(∆̂) = E
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, (30)
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The kernel K of a GP determines the behavior of a typical function sampled from the GP. For
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K(∆̂, ∆̂′) = exp

(
−∥∆̂− ∆̂′∥2

2l2

)
, (32)

the squared exponential kernel with length scale l > 0, it implies that the GP is mean square

differentiable of all orders.

Let us first briefly describe how we can find the posterior distribution of a GP(0, K), i.e., a

GP with zero prior mean. Suppose that for ∆̂I−1 ! {∆̂1, ∆̂2, . . . , ∆̂I−1} ⊂ D, we have observed

the noisy evaluation yi = J̃(∆̂i) = J(∆̂i) + ηi with ηi ∼ N(0,σ2) being i.i.d. Gaussian noise.

We can find the posterior mean and variance for a new point ∆̂∗ ∈ D as follows: Denote the

vector of observed values by yI−1 = [y1, . . . , yI−1]⊤ ∈ RI−1, and define the Grammian matrix

K ∈ RI−1×I−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector K∗ = [K(∆̂1, ∆̂∗), . . . , K(∆̂I−1, ∆̂∗)]. The

expected mean µI(∆̂∗) and the variance σI(∆̂∗) of the posterior of the GP evaluated at ∆̂∗ are (cf.

Section 2.2 of [63])

µI(∆̂∗) = K∗
[
K + σ2I

]−1 yI−1, (33)

σ2
I (∆̂∗) = K(∆̂∗, ∆̂∗)− KT

∗
[
K + σ2I

]−1
K∗. (34)
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We briefly discuss GP-UCB in our context following the discussion of the original papers [46, 57].

Consider the learning cost function J : D → R to be minimized, which can be defined by (24).

This function depends on the states of the closed-loop system, which depend on the parameters

∆̂ used in the controller design. Thus, we can consider it as an unknown function of ∆̂, where

D ⊂ Rm2
.

In this context of GP-UCB, to be able to capture the fact that J has a global minimum in the

compact search set D, we need to extend Assumption A6, as follows:

Assumption A9 The cost function J has a global minimum at ∆̂∗ = ∆, in the compact search set

D, i.e., J(∆̂) > J(∆), ∀∆̂ ∈ D.

Let us assume that J̃ is a function sampled from a Gaussian Process (GP). Recall that a GP

is a stochastic process indexed by the set D that has the property that for any finite subset of

the evaluation points, that is {∆̂1, ∆̂2, . . . , ∆̂I} ⊂ D, the joint distribution of
(
J̃(∆̂i)

)I

i=1
is a

multivariate Gaussian distribution.

We recall that GP is defined by a mean function

µ(∆̂) = E
[
J̃(∆̂)

]
, (30)

and its covariance function (or kernel)

K(∆̂, ∆̂′) = Cov(J̃(∆̂), J̃(∆̂′)) = E
[(

J̃(∆̂)− µ(∆̂)
)(

J̃(∆̂′)− µ(∆̂′)
)⊤]

. (31)

The kernel K of a GP determines the behavior of a typical function sampled from the GP. For

instance, if we choose

K(∆̂, ∆̂′) = exp

(
−∥∆̂− ∆̂′∥2

2l2

)
, (32)

the squared exponential kernel with length scale l > 0, it implies that the GP is mean square

differentiable of all orders.

Let us first briefly describe how we can find the posterior distribution of a GP(0, K), i.e., a

GP with zero prior mean. Suppose that for ∆̂I−1 ! {∆̂1, ∆̂2, . . . , ∆̂I−1} ⊂ D, we have observed

the noisy evaluation yi = J̃(∆̂i) = J(∆̂i) + ηi with ηi ∼ N(0,σ2) being i.i.d. Gaussian noise.

We can find the posterior mean and variance for a new point ∆̂∗ ∈ D as follows: Denote the

vector of observed values by yI−1 = [y1, . . . , yI−1]⊤ ∈ RI−1, and define the Grammian matrix

K ∈ RI−1×I−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector K∗ = [K(∆̂1, ∆̂∗), . . . , K(∆̂I−1, ∆̂∗)]. The

expected mean µI(∆̂∗) and the variance σI(∆̂∗) of the posterior of the GP evaluated at ∆̂∗ are (cf.

Section 2.2 of [63])

µI(∆̂∗) = K∗
[
K + σ2I

]−1 yI−1, (33)

σ2
I (∆̂∗) = K(∆̂∗, ∆̂∗)− KT

∗
[
K + σ2I

]−1
K∗. (34)
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We briefly discuss GP-UCB in our context following the discussion of the original papers [46, 57].

Consider the learning cost function J : D → R to be minimized, which can be defined by (24).

This function depends on the states of the closed-loop system, which depend on the parameters

∆̂ used in the controller design. Thus, we can consider it as an unknown function of ∆̂, where

D ⊂ Rm2
.

In this context of GP-UCB, to be able to capture the fact that J has a global minimum in the

compact search set D, we need to extend Assumption A6, as follows:

Assumption A9 The cost function J has a global minimum at ∆̂∗ = ∆, in the compact search set

D, i.e., J(∆̂) > J(∆), ∀∆̂ ∈ D.

Let us assume that J̃ is a function sampled from a Gaussian Process (GP). Recall that a GP

is a stochastic process indexed by the set D that has the property that for any finite subset of

the evaluation points, that is {∆̂1, ∆̂2, . . . , ∆̂I} ⊂ D, the joint distribution of
(
J̃(∆̂i)

)I

i=1
is a

multivariate Gaussian distribution.

We recall that GP is defined by a mean function

µ(∆̂) = E
[
J̃(∆̂)

]
, (30)

and its covariance function (or kernel)

K(∆̂, ∆̂′) = Cov(J̃(∆̂), J̃(∆̂′)) = E
[(

J̃(∆̂)− µ(∆̂)
)(

J̃(∆̂′)− µ(∆̂′)
)⊤]

. (31)

The kernel K of a GP determines the behavior of a typical function sampled from the GP. For

instance, if we choose

K(∆̂, ∆̂′) = exp

(
−∥∆̂− ∆̂′∥2

2l2

)
, (32)

the squared exponential kernel with length scale l > 0, it implies that the GP is mean square

differentiable of all orders.

Let us first briefly describe how we can find the posterior distribution of a GP(0, K), i.e., a

GP with zero prior mean. Suppose that for ∆̂I−1 ! {∆̂1, ∆̂2, . . . , ∆̂I−1} ⊂ D, we have observed

the noisy evaluation yi = J̃(∆̂i) = J(∆̂i) + ηi with ηi ∼ N(0,σ2) being i.i.d. Gaussian noise.

We can find the posterior mean and variance for a new point ∆̂∗ ∈ D as follows: Denote the

vector of observed values by yI−1 = [y1, . . . , yI−1]⊤ ∈ RI−1, and define the Grammian matrix

K ∈ RI−1×I−1 with [K]i,j = K(∆̂i, ∆̂j), and the vector K∗ = [K(∆̂1, ∆̂∗), . . . , K(∆̂I−1, ∆̂∗)]. The

expected mean µI(∆̂∗) and the variance σI(∆̂∗) of the posterior of the GP evaluated at ∆̂∗ are (cf.

Section 2.2 of [63])

µI(∆̂∗) = K∗
[
K + σ2I

]−1 yI−1, (33)

σ2
I (∆̂∗) = K(∆̂∗, ∆̂∗)− KT

∗
[
K + σ2I

]−1
K∗. (34)
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Algorithm 2 GP-UCB-based Learning Adaptive Controller
– Initialize: I = 1, x(0) = x0, Jth > 0, ∆̂ = ∆nominal.

– Apply the controller (9), (14), and (21), to (3), (20).

(Loop) – Evaluate the learning cost J by (24).

– IF J ≤ Jth → Exit Loop, IF not:

– I=I+1.

– Estimate ∆̂ by (32), (33), (34), (35), and (36).

– Reset t ∈ [(I − 1)tf , tf ], x((I − 1)tf ) = x0, then, apply the controller (9), (14), and

(21), to (3), (20).

– Go to (Loop).

At iteration I , the GP-UCB algorithm selects the next query point ∆̂I by solving the following

optimization problem:

∆̂I ← argmin
∆̂∈D

µI−1(∆̂)− β1/2
I σI−1(∆̂). (35)

We select βI as†

βI = 2 ∥J∥HK
+ 300γI log3(I/δ), (36)

where δ ∈ (0, 1), represents the confidence parameter, and γI = log(I)c, c > 0.

Remark 12. The optimization problem (35) is often nonlinear and non-convex. Nonetheless solving

it only requires querying the GP, which in general is much faster than querying the original

dynamical system. This is important when the dynamical system is a real system and we would like

to minimize the number of interactions with it before finding a ∆̂ with small J(∆̂). One practical

way to approximately solve (35) is to restrict the search to a finite subset D′ of D. The finite subset

can be a uniform grid structure over D, or it might consist of randomly selected members of D.

Next, the theoretical guarantees for GP-UCB given below are in the form of regret upper bound.

To recall the definition of cumulative regret, let us define ∆̂∗ ← argmin∆̂∈D J(∆̂), the global

minimizer of the objective function. The regret at time t = jtf is defined by rj = J(∆̂j)− J(∆̂∗).

This is a measure of sub-optimality of the choice of ∆̂j according to the cost function J . The

cumulative regret at time T = Ntf is defined as RN =
∑i=N

i=1 ri.

We now summarize the convergence properties of the GP-based iterative adaptive controller

(Algorithm 2), in the following Lemma.

†∥.∥HK
denotes the norm associated with the reproducing kernel Hilbert space (RKHS), e.g. [63].
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(21), to (3), (20).

– Go to (Loop).

At iteration I , the GP-UCB algorithm selects the next query point ∆̂I by solving the following

optimization problem:

∆̂I ← argmin
∆̂∈D

µI−1(∆̂)− β1/2
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it only requires querying the GP, which in general is much faster than querying the original

dynamical system. This is important when the dynamical system is a real system and we would like

to minimize the number of interactions with it before finding a ∆̂ with small J(∆̂). One practical

way to approximately solve (35) is to restrict the search to a finite subset D′ of D. The finite subset

can be a uniform grid structure over D, or it might consist of randomly selected members of D.

Next, the theoretical guarantees for GP-UCB given below are in the form of regret upper bound.

To recall the definition of cumulative regret, let us define ∆̂∗ ← argmin∆̂∈D J(∆̂), the global

minimizer of the objective function. The regret at time t = jtf is defined by rj = J(∆̂j)− J(∆̂∗).

This is a measure of sub-optimality of the choice of ∆̂j according to the cost function J . The

cumulative regret at time T = Ntf is defined as RN =
∑i=N

i=1 ri.

We now summarize the convergence properties of the GP-based iterative adaptive controller

(Algorithm 2), in the following Lemma.

†∥.∥HK
denotes the norm associated with the reproducing kernel Hilbert space (RKHS), e.g. [63].
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Adaptive dynamic programming**

** Vrabie D, Vamvoudakis K, Lewis FL. Optimal Adaptive Control and Differential Games by Reinforcement Learning 
Principles. England: IET Digital Library; 2013.
** More details about ADP algorithms can be found in these two talks by F. Lewis:

https://lewisgroup.uta.edu/FL%20talks%202017/2018%2005%20RL%201-%20main.pdf
https://www3.nd.edu/~pantsakl/Archive/WolovichSymposium/files/Lewis_Presentation.pdf

Linear time-invariant model

where, A is unknown.

The pair               assumed to be stabilizable.(A,B)

x ∈ R
n
, u ∈ R

mẋ = Ax+Bu,

u∗(t) = −Kx(t),
K = R−1

2
BTP,

LQR-type cost function of the form
V (u) =

∫
∞

t0
(xT (τ)R1x(τ) + uT (τ)R2u(τ))dτ,

R1 ≥ 0, R2 > 0.
Model-based

https://lewisgroup.uta.edu/FL%20talks%202017/2018%2005%20RL%201-%20main.pdf
https://www3.nd.edu/~pantsakl/Archive/WolovichSymposium/files/Lewis_Presentation.pdf


Adaptive dynamic programming**

** Vrabie D, Vamvoudakis K, Lewis FL. Optimal Adaptive Control and Differential Games by 
Reinforcement Learning Principles. England: IET Digital Library; 2013.

ATP + PA− PBR−1

2
BTP +Q = 0,

P solution of the Riccati equation

A unknown ! → Learning P
Integral reinforcement learning policy iteration algorithm
(IRL-PIA): 

xTPix =
∫ t+T

t
xT (τ)(R1 +KT

i R2Ki)x(τ)dτ + xT (t+ T )Pix(t+ T ),
Ki+1 = R−1

2 BTPi, i = 1, 2, ...

where the initial gain is chosen such that  is
stable.

K1 A−BK1

Under conditions of stabilizability/detectability:  
u∗(t) → argminu(t)V (u), t ∈ [t0,∞[.

Data-driven
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PapersOnLine, 48(27)

Model update 
Figure from [*] with the addition of the yellow part  



* Emam et al. 21, Safe Model-Based Reinforcement Learning using Robust Control Barrier
Functions, arXiv:2110.05415v1.

Control barrier function (CBF)-
based learning control*,**

d ∈ DModel:

- Model-based
- Data-drivenPolicy:

Filter:

** Xu X., et al. 2015, Robustness of Control Barrier Functions for Safety Critical Control. A. D IFAC-
PapersOnLine, 48(27)



Main points

- Learning-based adaptive control for nonlinear
systems with constant/time-varying parametric uncertainties
(ESC, GP-UCB, ADP, CBF)*

- Learning-based iterative feedback gains tuning for nonlinear
systems affine in the control (ESC)

- Indirect learning-based adaptive iterative control for linear
systems under constraints (ESC-MPC framework)

- Learning-based adaptive PDE stable model reduction/
estimation (ESC, RL)

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive 
dynamic programming, CBF: Control barrier function, RL: Reinforcement learning 



Learning-based iterative feedback gains

auto-tuning for nonlinear systems * 

* M. Benosman, 2016, Multi-Parametric Extremum Seeking-based Auto-Tuning for Robust Input-Output 
Linearization Control", International Journal of Robust and Nonlinear Control, 26(18), 4035-4055.



Learning-based iterative feedback gains

auto-tuning for nonlinear systems 



Learning-based iterative feedback gains

auto-tuning for nonlinear systems 



is a block diagonal matrix of the feedback gains
is an upper bound of the uncertaintyd2(.)

: (using I/O linearization and  Lyapunov 
reconstruction)

Learning-based iterative feedback 

gains auto-tuning for nonlinear systems 

I/O linearization 
Lyapunov reconstruction 



Step two:

Learning-based iterative feedback 

gains auto-tuning for nonlinear systems 



Step two:

Learning-based iterative feedback 

gains auto-tuning for nonlinear systems 



Step two:

Learning-based iterative feedback 

gains auto-tuning for nonlinear systems 



Step two:

Learning-based iterative feedback 

gains auto-tuning for nonlinear systems 



Put together: Robust controller + ESC tuning 

Learning-based iterative feedback 

gains auto-tuning for nonlinear systems 

K̂i
j , δk̂ are estimated by the MES algorithm.

Model-based

Data-driven



z

Learning-based iterative feedback 

gains auto-tuning for nonlinear systems 



Learning-based iterative feedback 

gains auto-tuning for nonlinear systems 



Main points

- Learning-based adaptive control for nonlinear
systems with constant/time-varying parametric uncertainties
(ESC, GP-UCB, ADP, CBF)*

- Learning-based iterative feedback gains tuning for nonlinear
systems affine in the control (ESC)

- Indirect learning-based adaptive iterative control for linear
systems under constraints (ESC-MPC framework)

- Learning-based adaptive PDE stable model reduction/
estimation (ESC, RL)

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive 
dynamic programming, CBF: Control barrier function, RL: Reinforcement learning 



Indirect learning-based adaptive iterative 
control for linear systems under 

constraints (MPC framework) *, **

*   Benosman M., Di Cairano S., Weiss A., 2014, Extremum seeking-based iterative learning linear MPC, IEEE  
Conference on Control Applications (prelim. idea no proofs)

** Subbaraman S., Benosman M., 2016, Extremum Seeking-based Iterative Learning Model Predictive Control   
(ESILC-MPC), IFAC International Workshop on Adaptation and Learning in Control and Signal Processing  
(follow up paper with convergence proofs).



Indirect learning-based adaptive iterative 
control for linear systems under 

constraints (MPC framework) *, **



Indirect learning-based adaptive iterative 
control for linear systems under 

constraints (MPC framework) *, **
different from the MPC cost



ISS -MPC*

* D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “Robust tube-based MPC for tracking of constrained linear systems with 
additive disturbances,” Journal of Process Control, vol. 20, no. 3, pp. 248–260, 2010.

Indirect learning-based adaptive 
iterative control for linear systems under 

constraints (MPC framework) *, **

Model-based

Data-driven



Main points

- Learning-based adaptive control for nonlinear
systems with constant/time-varying parametric uncertainties
(ESC, GP-UCB, ADP, CBF)*

- Learning-based iterative feedback gains tuning for nonlinear
systems affine in the control (ESC)

- Indirect learning-based adaptive iterative control for linear
systems under constraints (ESC-MPC framework)

- Learning-based adaptive PDE stable model reduction/
estimation (ESC, RL)

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive 
dynamic programming, CBF: Control barrier function, RL: Reinforcement learning 



PDE

ODE

Learning-based PDE stable model 
reduction *

* Benosman M., Borggaard J., San O., Kramer B., 2017, Learning-based robust stabilization for reduced order
models of 2D and 3D Boussinesq equations, Applied Mathematical Modelling, Vol. 49, 162-181.



The Closure-Model Concept for ROMs Stabilization

e.g., POD

Closure Model H

Loss of stability (in the 
sense of Lagrange)

We try to recover the stability



A Lyapunov-based closure-Model for Robust ROMs 

Stabilization
Using POD

, D < 0

Model-based



An Extremum Seeking–based Auto-Tuning of Closure Models 
for ROMs

Data-driven



An Extremum Seeking–based Auto-Tuning of Closure 

Models for ROMs



Learning-based observers 

RL-based observer *, **

* Mowlavi S., et al., 2021, Reinforcement Learning State Estimation for High-Dimensional Nonlinear Systems,
ICLR Workshop: AI for Earth and Space Science.
** Benosman et al., 2020, Reinforcement Learning-based Model Reduction for Partial Differential Equations,
World Congress of the International Federation of Automatic Control (IFAC).

Slide from: Mowlavi S.@MIT, presentation at ICLR 21. 

Data-driven

Model-based



Open theoretical problems ?

• Robustness to hyper-parameters tuning
• Large scale systems and high dimensional systems,

e.g., PDE models, delays
• Robustness and safety (state/input constraints) of

ML algorithms from control theory perspective (e.g.,
stability and robustness of (CS-)RL algorithms using
dynamical systems theory tools, neural ODEs from
dynamical systems perspective (useful/scalable ?))

• Sampling efficiency/data constraints
• Real-time computational constraints
• …
* CS: Computer science, RL: Reinforcement learning, ODEs: Ordinary diff. equations, PDEs: Partial diff. equations



Part II: Examples 

A hybrid approach to control: classical control 
theory meets data-driven methods 

Mouhacine Benosman
MERL - Mitsubishi Electric Research Labs, Cambridge, USA

Benelux Meeting on Systems and Control 2022



Mechatronics Examples: Electromagnetic 
brakes*



Mechatronics Examples: Electromagnetic 
brakes*

*  Benosman M.,  Atink G., 2015, Extremum seeking-based nonlinear control for electromagnetic actuators, 
International Journal of Control, 88(3), 517-530.
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Mechatronics Examples: Electromagnetic 
brakes  



Based on (i)ISS back-stepping approach 

Mechatronics Examples: Electromagnetic 
brakes 
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Mechatronics Examples: Electromagnetic 
brakes  



Mechatronics Examples: Electromagnetic 
brakes  



:

:

Mechatronics Examples: DC- Servo motor with 
flexible shaft*

* M. Benosman, 2016, Learning-based adaptive control: An extremum seeking approach-Theory and
Applications, Elsevier.



Mechatronics Examples: DC- Servo motor with 
flexible shaft



Mechatronics Examples: DC- Servo motor with 
flexible shaft



Uncertain case- nominal MPCUncertain case- learning MPC

Mechatronics Examples: DC- Servo motor with 
flexible shaft



Fluid dynamics applications

How can we model airflow and temperature in a room with models that are 
precise and computationally trackable for real-time estimation and control ? 

Optimizing HVAC performance is linked to 
modelling/controlling temperature and airflow in the 
room

Figures courtesy of
Shumon Koga@ UCSD, 
from his presentation at
ACC 2019. 

Figures courtesy of
Saleh Nabi @ MERL, 
from his presentation at
APS DFD 2018. 

Hygiene applications: non-optimal vs optimal HVAC airflow to flush 
the virus out of the built environment

Non-optimal

Concertation of virus as a 
function of time

optimal



Fluid dynamics applications: 
The Coupled Burgers’ Equation*

* Benosman M., Borggaard J., San O., Kramer, B., 2017, Learning-based robust stabilization for reduced order models
of 2D and 3D Boussinesq equations, Applied Mathematical Modelling, Vol. 49, 162-181.



Fluid dynamics applications: 
The Coupled Burgers’ Equation



Fluid dynamics applications: 
The Coupled Burgers’ Equation

H → Hnl

µ →

Compete reduced order model



Fluid dynamics applications: 
The Coupled Burgers’ Equation

Learning cost

µ = (µe, µnl)T

Q(µ)



With 10 PODs

Fluid dynamics applications: 
The Coupled Burgers’ Equation



Error between ROM and systems’  measurements before learning

Fluid dynamics applications: 
The Coupled Burgers’ Equation



Fluid dynamics applications: 
The Coupled Burgers’ Equation



With 10 PODs

Fluid dynamics applications: 
The Coupled Burgers’ Equation



Error between ROM and systems’  measurements after learning

Fluid dynamics applications: 
The Coupled Burgers’ Equation



Fluid dynamics applications: 

The 3D Boussinesq Equation



Fluid dynamics applications: 

The 3D Boussinesq Equation

Learning cost

µ →

µ = (µe, µnl)T

, C, P are kept separate to track the impact of different physical 
uncertainties on the ROM



Numerical Results: The 3D Boussinesq Equation (Rayleigh-
Benard modified problem)

Exact temperature at t0 Exact temperature at t=50sec

Temperature flow

3D flow video



Numerical Results: The 3D Boussinesq Equation



Numerical Results: The 3D Boussinesq Equation (Rayleigh-
Benard modified problem)

ROM-G velocity clip no 
learning at t=50 sec

ROM-G velocity clip with
learning at t=50 sec

True velocity clip 
at t=50 sec



Numerical Results: The 3D Boussinesq Equation

Clip of the velocity error at 
t=50 sec.
ROM-G (no learning-8 PODs)

Clip of the velocity error at 
t=50 sec.
ROM-GL (with learning-8 PODs)



Numerical Results: The 2D Boussinesq Equation- Unsteady 
lock exchange flow problem

2D flow video



Numerical Results: The 2D Boussinesq Equation- Unsteady 
lock-exchange flow problem

Reconstruction error ROM-G (no learning) Reconstruction error ROM-G (with learning)



Robotics examples: Rigid 
manipulators*

* Benosman M., Farahmand A.-M., Xia M., 2018, Learning-based iterative modular adaptive control for nonlinear systems,
International Journal of Adaptive Control and Signal Processing, 33(2), pp. 335-355, doi.org/10.1002/acs.2892.
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Robotics examples: Rigid 
manipulators 



Robotics applications : 
Maze mounted on a servo-motor*

Circular Maze Environment (CME)
• Tip and Tilt the maze so that the marble moves from the 

outer ring into the inner-most circle
• Intuitive to humans; most humans can solve very quickly
• Complex for RL agent due to constrained geometry, 

underactuated control, nonlinear dynamics, etc.

Real 
System

Physics 
Engine

sim-to-real

Challenges/Issues
Different Physics
Actuation Delays

Observation Noise
Compute Time

Domain Dependent

* Ota, K., Jha, D.K., Romeres, D., van Baar, J., Smith, K., Semistsu, T., Oiki, T., Sullivan, A., Nikovski, D.N., 
Tenenbaum, J.B., 2021, Data-Efficient Learning for Complex and Real-Time Physical Problem Solving using 
Augmented Simulation, IEEE Robotics and Automation Letters, DOI: 10.1109/LRA.2021.3068887, Vol. 6, No. 2,.

Slide from: Vetro A.@MERL, keynote at IEEE Conference on Autonomous Systems (ICAS), 2021.



Robotics applications : 
Maze mounted on a servo-motor

Goal: obtain accurate model and exploit it for model-
based RL
1. Collect real trajectories 𝑋!"#$ ∼ 𝑓!"#$ in the real system
2. Estimate physical parameters 𝝁∗ to obtain a more accurate physics engine
3. Learn residual model using Gaussian Process
4. Use the estimated model to control the real system with NMPC policy

Initial PE
𝑋!"# ∼ 𝑓$%&,𝝁)*

Real System
𝑋!"#$ ∼ 𝑓!"#$

Parameter 
Estimation

Fine-tuned PE
𝑋!"# ∼ 𝑓$%&, 𝝁∗

)*

GP 
Regression

Fine-tuned PE + GP
𝑋!"# ∼ 𝑓$%&, 𝝁∗

)* +𝑓+)

∼

Real System Estimated Model NMPC

Δ Δ

Slide from: Vetro A.@MERL, keynote at IEEE Conference on Autonomous Systems (ICAS), 2021.



Robotics applications : 
Maze mounted on a rigid arm

Experiments: Comparison with Human Performance
• 15 participants were asked to solve 

the maze by looking at the video feed 
of the marble movement 

• To familiarize them with the controls, 
they were given 1 minute to play with 
the maze using a joystick, but no 
marble 

• Then, they were asked to solve the 
maze five times 

Human or 
RL Agent 

??

Human

Human

RL 
Agent

RL 
Agent

ü Can move the marble to goal within 
minutes of interaction

ü Consistently improve performance with 
larger amount of data

Slide from: Vetro A.@MERL, keynote at IEEE Conference on Autonomous Systems (ICAS), 2021.



Other applications
Batteries estimation  

§ Wei C., Benosman M., Kim, T., 2019, Online Parameter Identification for State of Power Prediction of
Lithium-Ion Batteries in Electric Vehicles Using Extremum Seeking, International Journal of Control,
Automation and Systems.

Gains auto-tuning for PV systems
§ Wei C., Benosman M., 2016, Extremum Seeking-based Adaptive Voltage Control of Distribution Systems

with High PV Penetration, IEEE Innovative Smart Grid Technologies conference, Minneapolis.

Multi-robots source seeking and trajectory planning 
§ Poveda J.I., Benosman M., Teel A.R., Sanfelice R.G., 2021a, Robust Coordinated Hybrid Source Seeking

with Obstacle Avoidance in Multi-Vehicle Autonomous Systems, IEEE Transactions on Automatic Control,
10.1109/TAC.2021.3056365.

RF power amplifiers auto- tunning and automated 
design
§ Kantana, C., Ma, R., Benosman, M., Komatsuzaki, Y., Yamanaka, K., A Hybrid Heuristic Search Control

Assisted Optimization of Dual-Input Doherty Power Amplifier, European Microwave Conference 2021

§ Cao, W., Benosman, M., Zhang, X., Ma, R., Domain Knowledge-Based Automated Analog Circuit Design
with Deep Reinforcement Learning, AAAI Conference on Artificial Intelligence, February 2022 (nominated
for best paper award).

§ Sun Y., Benosman M., Ma R., GaN Distributed RF Power Amplifer Automation Design with Deep
Reinforcement Learning, International Conference on Artificial Intelligence Circuits and Systems
(AICAS) 2022 (AICAS2022 open-edges paper award).



What next?

Sentient meat by Terry Bisson’s:
https://www.wnycstudios.org/podcasts/studio/segments/168264-
theyre-made-out-of-meat

Learning paradigms inspired from:
• Cognitive psychology (mind)
• Neuro-science and brain physiology (brain)     

General AI ? !

e.g., See the course ‘Brains, minds and machines’ summer 
course: https://ocw.mit.edu/courses/res-9-003-brains-minds-
and-machines-summer-course-summer-
2015/pages/syllabus/course-instructors-guest-speakers-and-
icub-team/

https://www.google.com/search?sxsrf=ALiCzsbkOgzchOeTdpjAqTylDJDdqtcpNw:1657093395365&q=sentient+meat&spell=1&sa=X&ved=2ahUKEwjOycL54eP4AhWIP-wKHZP8BaIQkeECKAB6BAgBEDI
https://www.wnycstudios.org/podcasts/studio/segments/168264-theyre-made-out-of-meat
https://ocw.mit.edu/courses/res-9-003-brains-minds-and-machines-summer-course-summer-2015/pages/syllabus/course-instructors-guest-speakers-and-icub-team/


http://www.merl.com

http://www.merl.com/

