

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts

Millimeter wave adaptive transmission using spatial scattering modulation

*Yacong Ding

Kyeong Jin Kim Toshiaki Koike-Akino Milutin Pajovic Philip Orlik

* ECE Dept. of Univ. of California, San Diego. His work was done while he was with MERL.

1

© MERL

Outline

- Motivation
- Contribution
 - Spatial modulation (SM)
 - Spatial scattering modulation (SSM)
 - Transmitter/signal/receiver
 - Simulation results
 - Adaptive SSM
 - Simulation results
- Conclusions

Motivation: Uplink mmWave System

- hardware resource
 - antenna array and phase shifter array in user equipment (UE) and base station (BS): we can form a very narrow and directional beam from both sides
 - a limited number of RF chains in UE due to hardware cost and power consumption: a single RF chain in UE vs. a multiple number of RF chains in BS
- mmWave channel
 - narrowband mmWave channel environment
 - line-of-sight (LOS) is entirely blocked
 - Only reflections from scattering clusters exist
 - Large path loss for nLOS over LOS: sparsity in angular domain
- Question: How to increase spectral efficiency considering mmWave channel characteristics and hardware resource especially in UE?

Spatial Modulation (SM): Overview

[1] M. D. Renzo, et al, "Spatial Modulation for Multiple-Antenna Wireless Systems: A Survey", IEEE Commu. Mag. Dec. 2011

- Transmitter:
 - Activate a single antenna encoded by information bits
 - Two inputs are used due to available four antennas
 - In the example, $[b_2: b_1] = [1:0]$
 - Other antennas are in silent for one transmission epoch

Receiver:

 We need to detect which antenna was used for transmission, and actually transmitted symbols

Problem in mmWave system:

- Due to dense packing of antenna elements in the same aperture, transmissions from different antennas are indistinguishable
- We still need to use a narrow and directional beamforming

4

Spatial Scattering Modulation (SSM)

- Extension SM, which uses the DoF in spatial transmit antenna domain
 - Use DoF in angular domain (AoD)
 - Due to use of a single RF chain
 - Each transmission epoch, UE steers only to a single direction (transmit antenna array points to one of the scattering clusters)
 - · At least two scattering clusters are required
 - For N_s scatters, $\lfloor \log_2(N_s) \rfloor$ bits are encoded to specify a particular AoD or scattering cluster
 - Next $\log_2(M)$ bits are used to select a point in the signal constellation with M size These bits are transmitted via a transmit beam determined by selected AoD
 - If the receiver can detect the scattering cluster that used by UE, then $\lfloor \log_2(N_s) \rfloor$ bits can be detected

[2] Y. Ding, et al, "Spatial Scattering Modulation for Uplink Millimeter-Wave Systems", IEEE Communications Letters, 2017

Spatial Scattering Modulation (SSM): transmitter

6

Spatial Scattering Modulation (SSM): signal

- Transmitter:
 - s: modulation symbol, $p \in \{a_t(\theta_1^t), \dots, a_t(\theta_{\lfloor \log_2(N_s) \rfloor}^t)\}$, $a_t(\theta_l^t)$: ULA array manifold vectors
- Channel: a narrowband discrete channel model [3,4]
 - $\boldsymbol{H} = \sum_{l=1}^{N_S} \beta_l \, \mathbf{a}_{\mathrm{r}}(\theta_l^r) \, \mathbf{a}_{\mathrm{t}}(\theta_l^t)^H$
 - β_l : gain of the *l*th scattering cluster

•
$$\mathbf{a}_{t}(\theta_{l}^{t}) = \frac{1}{\sqrt{N_{t}}} \left[1, e^{j2\pi\phi_{l}^{t}}, \cdots, e^{j2\pi\phi_{l}^{t}(N_{t}-1)} \right]^{T}, \phi_{l}^{t} = \frac{d_{t}}{\lambda} \sin(\theta_{l}^{t})$$

•
$$\mathbf{a}_{r}(\theta_{l}^{r}) = \frac{1}{\sqrt{N_{r}}} \left[1, e^{j2\pi\phi_{l}^{r}}, \cdots, e^{j2\pi\phi_{l}^{r}(N_{r}-1)} \right]^{T}, \phi_{l}^{r} = \frac{\mathrm{d}_{r}}{\lambda} \sin(\theta_{l}^{r})$$

- d_t , d_r : antenna spacing, λ : wave length of the propagation, N_t , N_r : antenna elements

- Assume a large number of antenna elements in the UE and BS

 $- \mathbf{a}_{\mathrm{r}}(\theta_{l}^{r}) \mathbf{a}_{\mathrm{r}}(\theta_{k}^{r})^{H} = \delta(l-k), \quad \mathbf{a}_{\mathrm{t}}(\theta_{l}^{t}) \mathbf{a}_{\mathrm{t}}(\theta_{k}^{t})^{H} = \delta(l-k)$

Received signal

-
$$\mathbf{y} = \sqrt{E} \mathbf{H} \mathbf{p} \mathbf{s} + \mathbf{n} = \sqrt{E} \sum_{l=1}^{N_S} \beta_l \mathbf{a}_r(\theta_l^r) \mathbf{a}_t(\theta_l^t)^H \mathbf{p} \mathbf{s} + \mathbf{n}$$

= $\sqrt{E} \beta_{l'} \mathbf{a}_r(\theta_{l'}^r) \mathbf{s} + \mathbf{n}$

[3] A. M. Sayeed, "Deconstructing multiantenna fading channels,"T-SP, vol. 50, no. 10, pp. 2563–2579, 2002
[4] O. El Ayach, et al, "Spatially sparse precoding in millimeter wave MIMO systems,"*T-WC, vol. 13, no. 3, pp. 1499–1513, 2014*

7

SSM: Receiver

Simulation results with SSM

- Number of antenna elements in UE and BS: 32
 - Number of RF chains: one for the UE and four for the BS
- Spectral efficiency: 4-bits/Hz
 - Modulation: QPSK for SSM vs. 16QAM for maximum and random beamforming (MBF/RBF) without SSM
- Scattering clusters :
 - $N_s = 4$, with gains $\beta_l \sim CN(0, \sigma_\beta^2)$
- Receiver:
 - Maximum likelihood detector

Simulation results: Spectral efficiency: 4-bits/Hz

- SSM: 2-bit for encoding of the direction. 2-bit for QPSK modulation
- MBF/RBF: 4-bit for 16QAM
- Since $N_s > N$, (# of RF chains), we choose N scattering clusters having the largest N gains
- When N_s is small, MBF works better in BER, however, as N_s increases, SSM works better. For $N_s = 12$, 2 dB gain can be achieved by SSM

Adaptive SSM

- Under available CSI in the system
 - choose one transmission scheme out of full-SSM (FSSM), partial-SSM (PSSM), and MBF which provides a best conditional BER (CBER)
 - a better CBER can be promised
 - FSSM vs. PSSM
 - FSSM uses $Q \log_2(N_s)$ bits for modulation
 - PSSM uses $\log_2(N_s/2)$ bits in specifying a direction and $Q \log_2(N_s/2)$ bits for modulation

Simulation setup

- Number of antenna elements in UE and BS: 32
 - Number of RF chains: one for UE and four for BS
- Spectral efficiency: 4-bits/Hz
 - Modulation: QPSK for FSSM /8QAM for PSSM /16QAM for MBF
- Scattering clusters :
 - $N_{T_s} = 4$, with gains $\beta_l \sim CN(0, \gamma_l), \gamma_l = 10^{-0.1z_l}, z_l \sim N(0, \epsilon^2), \forall l$: lognormal distribution with a variance ϵ
- Receiver:
 - Maximum likelihood detector

Simulation results: adaptive SSM

- Analytical bounds and simulation results match well as the SNR increases
- MBF achieves better average BER performance comparing to FSSM and PSSM
- As N_{T_s} increases, performance gap between MBF and SSMs becomes smaller
- In all the SNR range, the ATS achieves the best performance of all

Simulation results: adaptive SSM: cont.

- Shows the impact of a large number of total scattering clusters N_{T_s} on the BER
- Existence of a larger number of total scattering clusters is more beneficial to SSM (for both FSSM and PSSM)
- Adaptive SSM achieves the best BER performance in all the SNR range.
- N_{T_s} = 18 provides adaptive SSM with 10 dB gain at 1 × 10⁻⁴ BER over N_{T_s} = 6

Simulation results: adaptive SSM: cont.

- When $N_{T_s} = 18$, although MBF can achieve better BER performance over SSM in average sense, there exist more transmission times that SSM achieves the smallest instantaneous BER
- Even for $N_{T_s} = 6$, about 45% of time that the SSM schemes (FSSM and PSSM) can achieve better instantaneous BER at 25 dB SNR
- SSM favors a larger number of clusters N_{T_s}

Conclusions

- Have proposed a spatial scattering modulation scheme, which utilizes the sparsity in the angular domain of the mmWave channel to modulate additional information bits; also considered hardware resource in UE which uses a single RF chain
- Have derived the conditional BER (CBER) for considered schemes (MBF, FSSM, PSSM)
- Based on the derivation of the CBER, we have designed the adaptive SSM which chooses the transmission scheme that provides the best CBER at each transmission epoch
- Especially, adaptive SSM achieves better performance than non-adaptive transmission schemes as the total number of scattering clusters or SNR increases

Thank you