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Abstract

We investigate the use of linear and nonlinear principal
manifolds for learning low-dimensional representations for
visual recognition. Three techniques: Principal Component
Analysis (PCA), Independent Component Analysis (ICA)
and Nonlinear PCA (NLPCA) are examined and tested in
a visual recognition experiment using a large gallery of
facial images from the “FERET” database. We compare the
recognition performance of a nearest-neighbour matching
rule with each principal manifold representation to that
of a maximum a posteriori (MAP) matching rule using
a Bayesian similarity measure derived from probabilistic
subspaces and demonstrate the superiority of the latter.

1. Introduction

In recent years, computer vision research has witnessed
a growing interest in subspace analysis techniques. In
particular, eigenvector decomposition has been shown to
be an effective tool for solving problems which use high-
dimensional representations of phenomena which are intrin-
sically low-dimensional. This general analysis framework
lends itself to several closely related formulations in ob-
ject modeling and recognition which employ theprincipal
modesor the characteristicdegrees-of-freedomfor descrip-
tion. The identification and parametric representation of
data in terms of these “principal manifolds” is at the core
of recent advances in parametric descriptions of shape [7],
target detection [31, 4, 29], nonlinear image interpolation
[3], visual learning [27, 28, 30, 25], automatic face recog-
nition [34, 31, 24] as well as density estimation [25, 26].

Subspace methods also form the basis for exploratory
data analysis and pattern recognition where they are used
to extract low-dimensional manifolds comprised of statis-
tically uncorrelated or independent variables which tend to
simplify tasks such as classification. The Karhunen-Lo`eve

Transform (KLT) [17] and Principal Components Analysis
(PCA) [14] are examples of eigenvector-based techniques
which are commonly used for dimensionality reduction and
feature extraction. Independent Component Analysis (ICA)
[6] is yet another linear decomposition which seeks statisti-
cally independentand non-Gaussian components, modeling
the observed data as a linear mixture of (unknown) indepen-
dent sources. ICA’s proficiency in “blind source separation”
[15] has found a particular niche in the analysis of EEG
[18] and fMRI [21] signals of the brain. Nonlinear PCA
(NLPCA) [16, 8] and nonlinear Principal Surfaces [9, 10]
are extensions of these linear techniques. In the following
section we will briefly review these principal manifolds,
their derivation and subsequent statistical properties. In
Section 3, an alternative technique using subspace densities
and Bayesian similarity is presented and in Section 4 its
performance is compared to Euclidean similarity metrics on
principal manifolds.

2. Subspace Representations

Spatiotopic visual data (e.g., images, depth maps, flow
fields,etc.) can be represented as vectors —i.e., as points
in a high-dimensional vector space. For example, am-by-n
pixel 2D image can be mapped to a vectorx 2 RN=mn,
by lexicographic ordering of the pixel elements.1 Despite
this high-dimensional embedding, the natural constraints of
the physical world (and the imaging process) dictate that the
data will in fact lie in a lower-dimensional manifold. The
primary goal of subspace analysis is to identify, represent
and parameterize this manifold in accordance with some
optimality criteria. We will now review several leading
approaches to obtaining both linear and nonlinear princi-
pal manifolds, and highlight their corresponding statistical
properties.

1Without loss of generality we will hereafter assume that the mean
image vector�x is always subtracted from the data.
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Figure 1. (a) PCA basis (linear, ordered and orthogonal) (b) ICA basis (linear, unordered and non-orthogonal) and (c) Principal
Curve (parameterized nonlinear manifold)

2.1. Linear PCA Manifolds

In PCA [14] the basis functions in a discrete Karhunen-
Loève Transform (KLT) [17] are obtained by solving the
algebraic eigenvalue problem� = �T�� where� is
the covariance matrix of the data,� is the eigenvector
matrix of � and� is the corresponding diagonal matrix
of eigenvalues. The unitary matrix� defines a coordinate
transform (rotation) whichdecorrelatesthe data and makes
explicit theinvariant subspaceof the matrix “operator”�.
Most commonly, PCA is a partial KLT which identifies the
largest (or principal) eigenvalue eigenvectors for projecting
the data: y = �T

M x, where�M is a submatrix of
� containing the principal eigenvectors (from here on we
will just use� to denote�M ). PCA can be seen as a
linear projectionRN ! RM onto the lower-dimensional
subspace corresponding to the maximal eigenvalues. The
main properties of the PCA transform are summarized by
the following:

x � �y ! �T� = I ! Efyiyjgi6=j = 0 (1)

corresponding to approximate reconstruction, orthonormal-
ity of the basis� and decorrelated principal components,
respectively. Figure 1(a) illustrates the PC vectors (columns
of �) obtained with a toy data set corresponding to an es-
sentially one-dimensional (nonlinear) manifold. Projection
of the data points onto the first PC would then correspond
to a 1D linear manifold representation (the 2nd PC, shown
as a smaller line segment in the figure, would be discarded
in this low-dimensional example).

2.2. Linear ICA Manifolds

Independent Component Analysis (ICA) [15, 6] is sim-
ilar to PCA except that the components are designed

to be as non-Gaussian as possible (usually by minimiz-
ing/maximizing 4th-order cumulants such as kurtosis). ICA
is also closely related to “projection pursuit” [12] where
maximizing non-Gaussianity promotes statisticalindepen-
dence, which is the desired goal. Like PCA, ICA is also a
linear projectionRN ! RM but with different properties:

x � Ay ! ATA 6= I ! P (y) �
Y

p(yi) (2)

corresponding to approximate reconstruction,non-
orthogonalityof the basisA and the near factorization of
the joint distributionP (y) into marginal distributions of the
(non-Gaussian) ICs. An example of an ICA basis is shown
in Figure 1(b) where we see two unordered non-orthogonal
IC vectors one of which is roughly aligned with the first
PC vector in Figure 1(a) —i.e., the direction of maximum
variance. We note that the actual non-Gaussianity and
statistical independence achieved in this toy example are
minimal at best.

2.3. Nonlinear Principal Manifolds

One of the simplest methods for computing nonlinear
principal manifolds is the nonlinear PCA (NLPCA) auto-
associative multi-layer neural network [16, 8] shown in
Figure 2. Hinton [11] was first to point out that nonlinear
networks form useful representations in their hidden layers
and Ackleyet al. [1] were the first to implement an “auto-
encoder” trained to reproduce its inputs. The so-called
“bottleneck” layer forms a lower-dimensional manifold
representation by means of a (weighted-sum-of-sigmoids)
nonlinearprojection function f(x). The resulting PCsy
have an inverse mapping with a similar nonlinearrecon-
structionfunctiong(y), which reproduces the input data as
accurately as possible. The defining property of principal
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Figure 2. An auto-associative (“bottleneck”) neural net-
work for computing principal manifoldsy 2 R

M in the
input spacex 2 RN

manifolds is that theinverse imageof the manifold in the
original spaceRN is (typically) a nonlinear (curved) lower-
dimensional surface that “passes through the middle of the
data” while minimizing the sum total distance between
the data points and their projections on that surface [10].
Note that this is essentially a nonlinear regression on the
data. Furthermore, the NLPCA computed by a multi-layer
sigmoidal network is equivalent — with certain exceptions2

— to aprincipal surfaceunder the more general definition
[9, 10]. To summarize, the main properties of NLPCA are:

y = f(x) ! x � g(y) ! P (y) = ? (3)

corresponding to nonlinear projection, approximate recon-
struction and (almost always) no prior knowledge or cer-
tainty regarding the joint distribution of the components,
respectively. An example of a principal curve is shown
in Figure 1(c) which was obtained with a 2-4-1-4-2 layer
neural network of the type shown in Figure 2. Note how the
principal curve yields a compact and (relatively) accurate
representation of the data.

3. Probabilistic Subspaces

The input visual data (or equivalently its manifold repre-
sentation) can form the basis for simple recognition strate-
gies using Euclidean metrics or normalized correlation.
For example, in its simplest form, the similarity measure
S(I1; I2) between two imagesI1 andI2 (or their manifold
projections) can be set to be inversely proportional to the
norm jjI1 � I2jj. Such a simple formulation suffers from a
major drawback: it does not exploit knowledge of which
types of variation are critical (as opposed to incidental)
in expressing similarity. However, one can formulate a

2The class of functions attainable by this type of neural network
restricts the projection functionf(x) to be smooth and differentiable,
hence suboptimal in some cases [19].
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Figure 3. Signal flow diagrams for computing (a) Eigen-
face similarity and (b) Probabilistic similarity, between two
imagesp andg.

probabilistic similarity measure which is based on the
probability that the image intensity differences, denoted by
� = I1 � I2, are characteristic of typical variations in
appearance of thesameobject. For example, in face recog-
nition, one can define two classes of facial image variations:
intrapersonalvariations
I (corresponding, for example,
to different facial expressions of thesameindividual) and
extrapersonalvariations
E (corresponding to variations
betweendifferent individuals). The similarity measure is
then expressed in terms of the intrapersonala posteriori
probabilityS(I1; I2) = P (
I j�), by Bayes rule:

S =
P (�j
I)P (
I)

P (�j
I )P (
I) + P (�j
E)P (
E)
(4)

The likelihoodsP (�j
I ) andP (�j
E) can be estimated
by traditional means (given enough data) or alternatively
by the subspace density estimation method [25] using
Gaussians or Mixtures-of-Gaussians (for more details see
[26]). Furthermore, the priorsP (
) can be set to reflect
specific operating conditions (e.g.,number of test images
vs. the size of the database) or other sources ofa priori
knowledge regarding the two images being matched. Note
that this particular Bayesian formulation casts the standard
face recognition task (essentially anm-ary classification
problem form objects) into abinary pattern classification
problem with
I and
E . This simpler problem is then
solved using the maximuma posteriori (MAP) rule for



Figure 4. Some representative faces in the dataset.

classification. In other words, two images are determined
to belong to the same individual ifP (
I j�) > P (
E j�),
or equivalently, ifS(I1; I2) > 0:5.

Note that this approach requires two linear projections
of the difference vector�, from which likelihoods can be
estimated for the Bayesian similarity measureS(�) as in
[26]. Therefore, the projection step is linear while the
posterior computation is nonlinear. Because of the double
PCA projections required, this approach has been referred
to as a “dual eigenspace” technique [23, 22]. This Bayesian
method is contrasted to standard PCA or “eigenfaces” in
Figure 3. Note the projection of the difference vector�
onto the “dual subspaces” and the subsequent computation
of the posterior in Equation 4. In contrast, the “eigenface”
method projects images onto a common (universal) sub-
space wherein a Euclidean-based similarity is defined.

4. Experiments

Our experimental data consisted of a training “gallery”
of 706 individual FERET faces and 1,123 test images or
“probes” containing one or more images of every person in
the gallery. All these images were aligned and normalized
as described in [26]. The multiple probe images reflected
different expressions, lighting, glasses on/off,etc.. In order
to limit the fan-in of the NLPCA network (thus reducing
its total number of free parameters) we downsampled the
normalized images to 21-by-12 pixels, thus yielding input
vectors in aRN=252 space. Examples from our dataset
are shown in Figure 4. Note that withN = 252 we
have nearly 3 times as many training samples than the data
dimensionality, thus our parameter estimations (for PCA,
ICA, NLPCA and Bayes) were properly over-constrained.

For our recognition experiments we selected a common
manifold dimensionality ofM = 20. This (somewhat
arbitrary) choice ofM was made for two reasons: it led
to a reasonable PCA reconstruction error of MSE = 0.0012
(or 0.12% per pixel with a normalized intensity range of
[0,1]) and a baseline PCA recognition rate of� 80%
which left a sizeable margin for improvement. To establish
fairness in comparisons, all principal manifold projections
(PCA, ICA and NLPCA) were required to have thesame
MSE of 0.0012, so that each of them could reconstruct the
training set equally well. Naturally, this constraint does not
necessarily result in equal recognition rates as we shall see.

4.1. PCA-based Recognition

The baseline algorithm for our face recognition exper-
iments was the standard PCA-based “eigenfaces” [34, 31,
25]. The first 8 principal eigenvectors of our training data
are shown in Figure 5 (top). Projection of the training/test
set onto this 20-dimensional linear manifold (computed
with PCA on the gallery only) and nearest-neighbor match-
ing using a Euclidean metric yielded a 78.98% recognition
accuracy with the 1,123 probe images. As a sanity check,
we also did full image-vector nearest-neighbor matching
(i.e.,onx 2 R252) yielding 86.46% (see Figure 6). Clearly,
performance is degraded by the252 ! 20 dimensionality
reduction, as expected.

4.2. ICA-based Recognition

For recognition experiments with ICA we used two
different algorithms based on 4th-order cumulants: the
“JADE” algorithm of Cardoso [5] and the fixed-point algo-
rithm of Hyvärinen & Oja [13]. In both algorithms a PCA
whitening step (“sphering”) preceded the core ICA decom-
position. The correspondingnon-orthogonalJADE-derived
ICA basis is shown in Figure 5 (bottom) — similar basis
faces were obtained with Hyv¨arinen’s method. These basis
faces are the columns of the matrixA in the ICA equation
x = Ay and their linear combination (specified by the
ICs) reconstructs the training data (and also preserves the
MSE of the initial PCA step). The ICA manifold projection
was obtained usingy = A�1x for both training and test
images. Nearest-neighbour matching of the ICs, however,
gave a recognition rate of 78.90% (with both ICA methods),
providing no apparent advantage over PCA. This suggests
that seeking non-Gaussian and independent components
may not necessarily yield a better manifold representation
for recognitionpurposes. We note that the experimental
results of Bartlettet al. [2] with FERET faces did favor ICA
over PCA, but mostly with more difficult time-separated
images. Their ICA vs. PCA performance margin at the
� 80% recognition level was not as significant.3

4.3. NLPCA-based Recognition

The NLPCA recognition experiments used a fixed neu-
ral network architecture (252-64-20-64-252) with logistic
sigmoid activation functions. This particular choice of the
number of hidden units (64) was based on experimental
trials (confirming network convergence) and also using
information-theoretic arguments as in [16] such that the

3Compared to Bartlettet al. [2] our faces were cropped much tighter,
leaving no information regarding hair and face shape and also were much
lower in resolution; the combination of these factors makes the recognition
task much more difficult.



Figure 5. PCA faces (top) and ICA faces (bottom)

total number of free parameters (weights and biases) was
roughly one-tenth the total number of data constraints. The
nonlinear optimization (on the gallery set) used a conjugate
gradient technique with line-search and Polak-Ribiere up-
dates [32] until the MSE=0.0012 goal was reached.4 Since
more than one NLPCA manifold exists for a given MSE, we
trained a total of 100 networks, after which both the training
and test sets were projected onto the manifold using the
projectionf(x) and then nearest-neighbour matching of the
y components was performed. The mean recognition rate of
the 100 experimental trials was found to be 60.14% with a
standard deviation of 8.14% (see Figure 6) and the highest
recognition rate obtained in the 100 trials was 74.89%.

4.4. Bayesian Recognition

Bayesian matching requires dual sets of training�s for
the
I and
E classes. But since we could not form
I vec-
tors from the gallery set (since it contained only one image
per person) we divided the total dataset in half such that the
new training set contained 353 gallery images (randomly
selected) with their corresponding test images (594 probes)
which were used to form training samples for both classes,
f�ig
I and f�ig
E . Single Gaussian density estimates
were used for the corresponding likelihoodsP (�j
I) and
P (�j
E) using subspace dimensions ofMI = 10 and
ME = 10 (see [26] for details). Thus the total number
of subspace projections required for Bayesian similarity
(MI + ME = 20) was the same as in all the manifold
experiments. Finally, using the other (unseen) half of the
dataset,maximum-posteriorimatching of the remaining 529
probes with their corresponding 353 gallery images yielded
a 94.71% recognition rate (see Figure 6). Note that the
dataset half used for training (density estimation) consisted
of entirely different individuals than those used in testing.
In contrast, the test set used in the manifold experiments
consisted of individuals already represented in the training
set. This demonstrates the Bayesian method’s ability to

4Note that the usual neural network concerns regarding overfitting and
generalization and the preventive use of methods such as “early-stopping”
or “weight decay” do not apply here since the final MSE goal is preset.
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Figure 6. Recognition performance of PCA, ICA, and
NLPCA manifolds vs. Bayesian similarity matching
(dashed line is the performance of template-matching with
the full-dimensional image vectors).

generalize to new data sets, a very desirable property made
possible by the probabilistic representation of similarity.

5. Discussion

The relative performance of principal manifolds com-
pared to Bayesian subspace matching is summarized in
Figure 6. The advantage of probabilistic matching over
Euclidean-based matching with principal manifolds is quite
evident (� 15% increase). The NLPCA’s poor performance
can be attributed to the general difficulty of computing
nonlinear manifolds and the complexity of cost functions
riddled with local minima. More sophisticated nonlinear
mapping techniques which preserve the localtopologyof
the manifold such as [33, 20] are bound to yield better
representations for recognition.

Note that both PCA and the dual eigenspaces are
uniquely defined for a given training set (thus making
experimental comparisons repeatable), whereas NLPCA
and ICA are not unique due to the variety of different
techniques used to compute them and the stochastic nature
of the optimizations involved. Considering the relative
computational complexity (of learning), NLPCA required
many training epochs and the total number of floating-point
operations was significantly large O(1012) compared to
PCA O(108) and ICA O(109). Since the Bayesian similarity
method’s learning stage requires two separate PCAs, its
complexity is essentially twice that of PCA. Considering its
significant performance gain and its relative simplicity, the
Bayesian subspace method proves to be a very competitive
alternative to Euclidean subspace matching methods.
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