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Figure 1:Shaded, volume rendered spheres stored with two values per voxel: a value indicating the distance to the closest surface point; and
a binary intensity value. The sphere in a) has radius 30 voxels and is stored in an array of size643. The spheres in b), c), and d) have radii 3
voxels, 2 voxels and 1.5 voxels respectively and are stored in arrays of size103. The surface normal used in surface shading was calculated
using a 6-point central difference operator on the distance values. Remarkably smooth shading can be achieved for these low resolution data
volumes because the function of the distance-to-closest surface varies smoothly across surfaces. (See color plate.)

Abstract

High quality rendering and physics-based modeling in volume
graphics have been limited because intensity-based volumetric data
do not represent surfaces well. High spatial frequencies due to
abrupt intensity changes at object surfaces result in jagged or ter-
raced surfaces in rendered images. The use of a distance-to-closest-
surface function to encode object surfaces is proposed. This func-
tion varies smoothly across surfaces and hence can be accurately
reconstructed from sampled data. The zero-value iso-surface of
the distance map yields the object surface and the derivative of the
distance map yields the surface normal. Examples of rendered im-
ages are presented along with a new method for calculating distance
maps from sampled binary data.

Keywords: Volume Rendering, Volume Graphics, Surgical Simu-
lation, Medical Applications

1 Introduction

Objects in volume graphics are represented by discrete arrays of
sampled data. Unlike surface-based object representations, volu-
metric data can embody interior structure. For this reason, volu-
metric models have advantages over surface models for visualiza-
tion and physics-based modeling of complex objects. For exam-
ple, a volumetric representation allows the visualization of interior
anatomical structure from medical image data or the modeling of
3D object deformation using mass-spring models or finite element
methods. In addition, while operations such as object cutting, slic-
ing, or tearing are challenging for surface-based models, they can
be performed relatively easily with a volumetric representation [5].
In applications such as surgical simulation, tissue complexity and
the need to be able to model volume deformation and object cutting

and tearing make volumetric models very attractive.

While significant advances have been made both in the accep-
tance of volume graphics and in the sophistication of volume ren-
dering and object manipulation algorithms, two important issues
have limited its use: 1) the large number of elements in a volu-
metric object is challenging for data storage, image rendering, and
physical modeling; and 2) due to the nature of discrete sampling,
volumetric data sets do not represent arbitrarily oriented surfaces
well. While hardware and software developments have addressed
the first point (e.g. [15, 8, 24, 23]), the inability to represent sur-
faces remains an important limitation of volume graphics.

In computer graphics, an accurate representation of surfaces is
important for a number of reasons. First, the use of a lighting and
shading model for high quality rendering requires knowledge of
surface location and orientation. Second, in physics-based graphics
or in haptic interactions with graphical models, calculating impact
forces requires the positions and surface normals of contact points.
Errors in contact position and surface normals create artifacts in
rendering and inconsistencies in physical modeling. While there
is no explicit representation of surfaces in volumetric data, there
may be prior knowledge of surfaces. For example, if the data is
created from an analytic model or modified by applying a cutting
plane to the volume, then a mathematical description of the object’s
surface may exist. If the data comes from a medical scan of human
anatomy, then knowledge about the existence and smoothness of
object surfaces could be exploited.

In his edited book, Kaufman states that: “volume visualization
still lacks a simple yet general shading paradigm that provides
high-fidelity shading for natural appearance and optimal recogni-
tion” [11, p. 171]. Shading is difficult in volume graphics because
surfaces are not well represented in intensity-based sampled data.
Most volumetric models are intensity-based: the image intensity
varies relatively slowly over object interiors but changes abruptly



at object surfaces. During rendering, these abrupt changes are de-
tected and used to determine the strength and direction of surfaces
in the data. However, because an abrupt change in intensity repre-
sents high spatial frequencies in the data, high sampling rates are
required to reconstruct the image and its gradient near surfaces1

Existing approaches to shading in volume rendering assume that the
volume is band limited and that data is sampled above the Nyquist
rate. When this is not true, (for example in binary sampled data),
rendered images have characteristic terraced or jagged surfaces.
This image aliasing can be reduced by low-pass filtering the sam-
pled data (e.g. [30]) but such filters blur surfaces indiscriminately,
eliminating detail than may be important.

In this paper, surfaces are represented with a function that varies
smoothly across surfaces. Low spatial frequencies of such a func-
tion mean that surfaces in sampled data can be accurately recon-
structed at relatively low sampling rates. In particular, this paper
explores the use of a signed distance-to-closest-surface mapping to
encode object surfaces in sampled volumes. The proposed distance
map has several important properties illustrated in Figure 2. First,
the gradient of the distance map yields the direction of the surface
normal. Second, the zero-value iso-surface of the distance map is
the object surface. Third, unlike intensity-based object represen-
tations, the distance map varies smoothly across object surfaces,
avoiding high spatial frequencies at object boundaries. In fact, Sec-
tion 4 shows that the distance map varies linearly near the surface
when the curvature of the surface is small relative to the sampling
distance. This linearity allows us to use a simple trilinear interpo-
lation function and a 6-point central difference filter to accurately
reconstruct the distance map and its derivative near surfaces [20].
Hence, the distance map provides a way to encode object surfaces
into sampled, volumetric data so that they can be accurately recon-
structed with relatively low-cost reconstruction filters.

This paper is organized as follows: Section 2 presents some
background and related work. Section 3 presents shaded, volume
rendered images to illustrate the effectiveness of the distance map
method for encoding object surfaces. Section 4 presents a mathe-
matical analysis of the distance-to-closest-surface function that can
be used to determine an appropriate sampling rate for an object of
known curvature. Section 5 presents a new way to calculate dis-
tance maps from binary data. In Section 6 future work related to
using distance maps in rendering, haptics and physics-based mod-
eling is discussed. Finally, Section 7 summarizes the importance
and advantages of the distance map approach.

2 Background

Volumetric objects can be generated from measured images, simu-
lated data, or by discretizing analytic functions defining objects or
surfaces. The volumetric data may consist of binary values, grey-
scale values, or a more complex data structure with additional infor-
mation about visual or material properties of the sampled object [5].
When rendering these objects, shading provides visual cues about
object shape and texture and can have a strong effect on the visual
realism of a rendered scene. There are a number of image-space and
object-space shading methods that have been used for shading vol-
umetric objects [12]. In this paper, we assume the use of a shading
model, such as the Phong illumination model [4], which requires an
estimate of the object surface normal for shading calculations.

This paper focuses on volumetric data that originates as analytic
functions, polygonal models, or binary samples. In the first two
cases, prior knowledge of surfaces exist when data is encoded into
the volume. In the second case, exact knowledge of the surface has

1Nyquist’s sampling theorem states that a continuous function can only
be reconstructed accurately if it is sampled at a rate of twice the highest
frequency component of the function (e.g. [22]).
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Figure 2:a) A binary image of a grey object on a black background.
b) The magnitude of the (signed) distance map for the binary im-
age of a), where black corresponds to zero distance from the object
edge. c) The sampled binary image. d) The sampled distance map.
e) Gradient vectors calculated using central differences at sample
points of the sampled binary image (the background shows the true
shape of the binary image). f) Gradient vectors calculated using
central differences at sample points of the sampled distance map.
The sampled distance map provides a smoother and more accu-
rate estimate of the edge normal than the sampled binary image
does. The sampled distance map also provides an estimate of the
edge normal farther from the object edge which could be useful in
physics-based modeling. The zero value of the distance map pro-
vides the location of the surface.

been discarded. Shading from grey-scale data can produce good
quality images when the data is band limited and appropriate filters
are used (e.g. [9]) so that the use of a distance map for surface nor-
mal calculation is not necessary. However, as discussed in Section
5, there are times when a binary segmentation of the grey-scale data
is preferable for surface shading.

Some existing methods store surface normals of known analytic
models [32] or polygonal models [17] at each data point. These
sampled surface normals are used to reconstruct normals for sam-
ples between data elements during rendering. However, this method
requires the storage of 3 floating point values per data element or
quantization of the surface normals, which can result in quantiza-
tion artifacts. In addition, the stored surface normals do not improve
reconstruction of the surface location. Yagel et al. describe a sys-
tem where, for volumetric objects generated from analytic surfaces,
data elements contain pointers to a more complex description of the
underlying surface that can be used for accurate calculation of sur-
face intersections and normals. However, the complexity of this
method greatly increases rendering times.

Binary data is generated by discretizing analytic or geometric ob-
ject representations or by segmenting measured data. Binary data
consists of one value for points inside the object and a second value
for points outside of the object. Two issues make the estimation
of surface normals from binary data especially difficult: 1) by dis-
cretizing the data or segmenting the volume, any prior information
about an object surface has been discarded and the best that can be
done is to estimate a new surface from the binary samples; and 2)



because of the binary nature of the data, there is always an abrupt
change in data values at object surfaces, resulting in reconstruc-
tion artifacts due to undersampling. There are a number of meth-
ods that have been used to shade binary volumes (see reviews in
[12, 33]). These include shading the six faces of each non-empty
element, producing a blocky appearance, and various methods us-
ing look-up tables [17], smoothing filters, and surface estimation
filters [28] which approximate the surface normal from the state of
local neighbors. One approach that has produced good quality im-
ages is to blur the binary image by filtering with a low pass filter
[30, 31, 1, 21]. This method creates a grey-scale image from the
binary data where surface normals are well represented by the gra-
dient of the smoothed image. When the filter value decreases mono-
tonically with distance from the filter center, this method is closely-
related to the distance-based method presented here. However, the
application of a low-pass filter blurs the data indiscriminately and
removes fine detail that can be critical in medical applications.

There have been a number of studies of filters for image recon-
struction and gradient estimation. Most of these are based on fre-
quency analysis of the filters [3, 18, 2] and all of them apply to
grey-scale data. Moller et al. [20] analyzed interpolation and gra-
dient estimation filters in the spatial domain. By expressing the
filtered image intensity using Taylor series expansion, they found
that estimation errors can be expressed as a function of the filter co-
efficients, the sampling rate, and high order derivatives of the image
function at the sampled point. In particular, they show that trilinear
interpolation and a central difference gradient operator will exactly
reconstruct the image intensity and gradient, respectively, for a lin-
ear image function. This result is used in Section 4.

There are other applications in rendering, modeling, image pro-
cessing, and robotics that have used discrete distance maps. Dis-
tance maps have been used to accelerate volume rendering by re-
ducing the sampling of empty space [35, 27]. Schroeder et al. [26]
used distance maps to generate a swept volume for a moving polyg-
onal model and then constructed a polygonal surface model of the
swept volume using Marching Cubes [16]. In robotics, discrete
distance maps are used for path planning by generating potential
fields around obstacles that decrease with the square of the distance
from the obstacles (e.g. [14, 10]). Yagel et al. [34] use discrete
distance maps for visualizing thick regions of models that may be
problematic in die casting. In image processing, a technique known
as watershed segmentation uses a map of distances from edges or
features to help separate adjoining features (e.g. [25]). This paper
is distinct from these approaches. It uses distance maps to explic-
itly encode surfaces into sampled volumetric data for high quality
shading in volume rendering.

3 Volume Rendering from Distance Maps

To create a distance map, we require a model of the object surface.
When the data originates as an analytic function or a polygonal
model, the surface is known a priori. If the data originates as a bi-
nary volume, a surface model must be estimated from the binary
data. Given the surface model, each sample in the distance map is
assigned the distance to the closest surface point on the model. It
is assumed that objects are far enough apart so that there is no in-
terference in the distance map close to object surfaces, or that indi-
vidual objects are stored in unique volumes. In addition to sampled
distance values which are used for surface normal calculation in
volume rendering, volume elements may contain other values such
as image intensity, color, opacity, etc. In the presented examples,
volume elements consist of a floating point distance value and an
integer (8-bit) intensity value. While floating point distances were
used in this study, preliminary tests suggest that an 8-bit distance
value will be sufficient.

To illustrate the power of distance-based surface normal estima-
tion, several images are presented that have been volume rendered
using a Phong illumination model. Simple geometric objects were
used in these examples so that estimation errors and image artifacts
could be easily recognized and interpreted. More complex objects
are rendered from binary data in Section 5. Section 4 gives some
guidance for choosing sampling rates based on surface curvature.

In the examples presented here, sampled distance maps were
generated from the original object representation with positive dis-
tances inside the object and negative distances outside of the ob-
ject. With this sign convention, outward pointing surface normals
are in the direction of the negative gradient of the distance map.
Distance maps for analytic functions were calculated analytically
(e.g. from the equations defining a sphere and a torus), distance
maps for polygonal objects (e.g. cube and tetrahedron) were gen-
erated from the mathematical description of polygonal faces using
an method adapted from collision detection algorithms [19], and
distance maps for binary data were generated from an algorithm
described in Section 5.

For simplicity, these examples use binary object intensities, with
a value of 255 inside the object and a value of 0 outside the object.
While more sophisticated rendering is possible when grey-scale im-
age values are used to assign colors and opacities, in these exam-
ples, a single color and opacity was assigned to all voxels inside
the object. Distance values were used to estimate surface normals.
A straightforward front-to-back ray-casting algorithm with ray ter-
mination based on accumulated opacities was implemented for vol-
ume rendering. A Phong illumination model with ambient, diffuse
and specular components was used for image shading. Two light
sources were used to illuminate each object model. For each sample
point,(x; y; z), the sign of the distance value is used to determine if
the sample point is inside or outside of the object. If inside, the sur-
face normal required by the lighting model is approximated from
neighboring distance values using the central difference operator:

n = (nx; ny; nz) = ( d(x+ 1; y; z)� d(x� 1; y; z);

d(x; y + 1; z)� d(x; y � 1; z);

d(x; y; z + 1)� d(x; y; z � 1)): (1)

The distance maps of the torus and sphere for Figure 3 were
calculated analytically using the following expressions: 1) distance
to sphere surface centered at the origin, radiusR:

d = R�

p
x2 + y2 + z2:

2) distance to torus centered at the origin, inside radius,R � r,
outside radius,R+ r:

d = r �

q
x2 + y2 + z2 +R2 � 2R

p
x2 + y2:

For the sphere, R = 30 voxels and the data was stored in a volume
with dimensions643 voxels. For the torus, R = 30, r = 15 and the
data was stored in a volume with dimensions643 voxels.

The distance maps of the four spheres in Figure 1 were also gen-
erated analytically. The spheres have radii of 30, 3, 2, and 1.5
voxels and the last three spheres were stored in arrays of size103

voxels. The shading in the smaller spheres is remarkably smooth
for such sparse data sampling. Artifacts that are visible around the
edge of the small spheres are due to the use of a binary representa-
tion of image intensity for estimating color and opacity, rather than
to errors in the surface normal estimation.

The cubes and tetrahedra of Figure 4 were generated from polyg-
onal models. Both objects have sides of length 30 voxels and are
stored in arrays of size643 voxels. Image artifacts appear as bright



Figure 3:Shaded, volume rendered sphere and torus stored as sam-
pled distance-to-closest surface values. The sphere has radius 30
voxels and the torus has outside radius 30 voxels and inside radius
15 voxels. Both objects are stored in643 arrays. Surface normals
were estimated during rendering from 6 neighboring points using
a central difference operator on the distance values. (See color
plate.)

and dark banding along object edges. These artifacts are due to high
spatial frequencies at sharp edges and corners of the surface.

Figure 5 illustrates the difference in image quality for shading
with distance-based surface normal estimation versus gradient esti-
mation from a low-pass filtered version of the binary intensity val-
ues. In the filtered cases, the binary sampled object was smoothed
with a Gaussian filter of radius 3, 6, and 9 (i.e. filter sizes of73,
133, and193) and then the surface normal is estimated from the
smoothed data using central difference operator of Equation 1. It
appears that the largest filter provides an acceptable shading for the
30 voxel radius sphere, but is not sufficient for the 3 voxel radius
sphere. Figure 5 clearly illustrates the benefits of storing the dis-
tance map and using it to calculate surface normals when the object
shape is known a priori. Section 5 addresses the challenge of creat-
ing a good distance map when the original object shape is unknown
and the only representation of the object is a binary map.

4 Choosing Sampling Rates

In the previous section, it was shown that distance maps give re-
markably good reconstructions of surface normals even for low
sampling rates and simple interpolation and gradient estimation fil-
ters. The goal of this section is to provide both intuitive and analytic
guidelines for choosing volume sampling rates so that surfaces can
be accurately reconstructed. Unlike intensity-based volume repre-
sentations, where the optimal sampling rate and estimation filters
depend on thesharpnessof the surface (or how quickly intensities
fall off across surfaces), in the distance-based representation the
optimal sampling rate and estimation filters depend on thecurva-
ture of the surface. For example, if the surface is planar, then its
distance map is a linear 3D field and the surface can be accurately
reconstructed with linear estimation filters from a low resolution
distance map2.

When shading surfaces in volume rendering, surface normals
need only be calculated at sample points on or near the object sur-
face. For this reason, the following analysis of the distance field is
limited to regions within a few sample points from the object sur-
face. The actual size of the region is determined by how far away

2In [20], Moller et al. showed that a linear function in<3 and its 3D
derivative can be reconstructed exactly using trilinear interpolation and a
central difference filter respectively. Because the shortest distance to a pla-
nar surface is linear in<3, Moller’s results indicate that a planar surface
can be accurately represented in a sampled distance map and exactly recon-
structed using these filters.

Figure 4:Volume rendered geometric off-axis cube and tetrahedron
(opaque and transparent versions). The cube is oriented at azimuth
and elevation angles of 45 degrees off-axis before sampling. The
cube sides are 30 voxels long and the cube is stored in an array of
size643 voxels. The tetrahedron has sides of length 30 voxels and
is stored in an array of size643 voxels. (See color plate.)

from the surface the shading is calculated (usually within a few
sample points from the surface) and the sizes of the gradient and
interpolation filters (for trilinear interpolation the filter size is�1,
for the 6-point central difference operator with neighbors interpo-
lated using trilinear interpolation, the filter size is�2).

There are 3 important cases to consider. In the first, illustrated
in Figure 6, the surface is locally smooth and differentiable and rel-
atively far from other surfaces. In the second, illustrated in Figure
7a), the surface may be locally smooth, but a fold in the surface
or an abutting object causes singularities at points equidistant from
two or more surface points. When such singularities lie within the
region where shading is calculated, they can cause artifacts in the
rendered image. Finally, as illustrated in Figure 7b), near edges or
corners, the distance field can be non-linear arbitrarily close to the
surface.

p2

c2

c1

p1

Π1

n1
n2

Figure 6:A locally continuous and differentiable 3D surface.

Considering the first case, and assuming that trilinear interpo-
lation and a 6-point central differences gradient estimation filters
will be used, the surface can be accurately reconstructed when the
distance field is approximately linear within the region used to es-
timate surface normals. Because a smooth, differentiable surface
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Figure 5: A comparison of volume rendered images. Images a) to e) were rendered from a sphere of radius 30 voxels, stored in an array
of size643, rendered with 4 rays per voxel. Images f) to j) were rendered from a sphere of radius 3 voxels, stored in an array of size103,
rendered with 400 rays per voxel. In a) and f) the distance map was used for estimating the surface normal, resulting in a smoothly shaded
surface at both resolutions. In b) and g) no shading was used. In c) and h) central differences was applied to a Gaussian filtered version
of the binary data with a filter of size 7x7x7. In d) and i) the Gaussian filter size was 13x13x13. In (e) and j) the Gaussian filter size was
19x19x19. The largest filter results in acceptable surface shading of the higher resolution sphere. However, a filter of this size would result
in significant loss of detail in a more complex object. None of the filters produce acceptable shading for the low resolution sphere.

a) b)

Figure 7: Irregularities in the distance map. In a) folds in the sur-
face create curves of singular points in the distance field, A and
B, that are equidistant from two surfaces. When such singulari-
ties are within 2 samples from the surfaces, they can cause shading
artifacts. In b) an edge or corner in the surface can create sin-
gular points or sufaces, C, and regions where the distance field is
non-linear arbirtraily close to the object surface (between D and
E). Dark bands along edges of the off-axis cube and tetrahedron in
Figure 4 are examples of such artifacts.

looks planar within a small enough neighborhood of the surface,
the distance field will appear to be linear as long as the sampling
rate is high enough3.

In Figure 6, the distance from a point~p1 to its closest point on the
surface,~c1 is the distance from~p1 to the tangent plane�1 defined
by: n̂1 � ~x+ w1 = 0, wheren̂1 is the unit normal to the surface at
~c1, w1 = �n̂1 � ~c1, and~x 2 <3. The distance from~p1 to ~c1 is:

d( ~p1) = ( ~p1 � ~c1) � n̂1

A second point,~p2, is located within a local neighborhood of the

3Of course, following Moller et al., higher order reconstruction filters
could be used to reconstruct a non-linear distance field with a lower sam-
pling rate so that, just as in intensity-based volume rendering, there are
trade-offs between filter complexity, sampling rate, and accuracy.

surface point~c1. The distance from point~p2 to its closest point on
the surface,~c2 is the distance from~p2 to the tangent plane at~c2.
The distance at~p2 is:

d( ~p2) = ( ~p2 � ~c2) � n̂2

= ( ~p2 � ~c1) � n̂1 + ( ~p2 � ~c2) � (n̂2 � n̂1)� (~c2 � ~c1) � n̂1:

(2)

The first term of Equation 2 is the linear component of the 3D
distance field. When this term dominates, the distance field is ap-
proximately linear. The remaining 2 terms are the non-linear com-
ponents and they are largest in the direction perpendicular to the
normal direction. They are affected by the surface curvature – how
quickly the surface normal and the closest point position vary over
the surface as~p2 moves around<3. When the surface is locally pla-
nar, these terms are zero. Otherwise, for points close to the surface,
the non-linear terms will be very small. For points farther from the
surface, the term( ~p2� ~c2) � (n̂2� n̂1) will dominate the non-linear
terms. For a given surface, the maximum expected magnitude of
this term could be used to determine an optimal sampling rate for a
given acceptable reconstruction error when linear estimation filters
are used.

When there are singularities in the distance field or when edges
or corners generate a non-linear distance fields arbitrarily close to
the surface, there are a number of possible approaches for avoid-
ing artifacts in the shaded image. Fortunately, it is easy to detect
the presence of such irregularities in the distance map. When the
distance map is approximately linear, the magnitude of the gradient
calculated with the central difference filter of Equation 1 is con-
stant and equal to twice the unit distance between samples. When
the sample point is close to a singularity, an edge, or a corner of the
surface, the gradient magnitude will be significantly different from
this value and an irregularity can be detected. If an irregularity
in the distance map is detected, then more sophisticated methods
could be used to estimate the surface normal. Two such methods



include: 1) using a higher order interpolation and gradient estima-
tion filters (such as filters that reconstruct spherical or cylindrical
fields) and 2) using the optional gradient estimator from Tiede et al.
[29], which estimates the surface normals of thin structures from an
optimal subset of the 6 neighbors of the sample point.

5 Calculating Distances from Binary Data

One of the most common sources of binary volume data is seg-
mented medical images, where different tissues or structures are
each assigned a unique classification or type. When the origi-
nal grey-scale data is not available or when consistent surfaces are
not easily extracted from grey-scale images, then the distance map
method can be used to provide high quality shading in volume ren-
dering. However, unlike the analytic and polygonal models pre-
sented so far, binary volumetric data does not contain an accurate
representation of object surfaces. This section discusses why gener-
ating surface normals from binary segmentations can be better than
using the original grey-scale data, briefly describes the generation
of distance maps from binary data using a new method for creating
a smooth surface representation of objects in the binary volume,
and presents images volume rendered from such distance maps.

While there are many cases where the gradient of grey-scale im-
age data provides good estimates of surface normals [9], when sur-
faces are not easily extracted from the grey-scale data these esti-
mates can produce severe artifacts. A problematic case is illustrated
in the 2D MRI image of a human knee of Figure 8. Figure 8b) was
calculated by applying a central difference operator to Figure 8a)
at hand-segmented edge points along the femur, one of the bones
in the knee. Because the bone surface is generally smooth and of
uniform density, surface normals should have relatively constant
magnitudes and slowly varying directions. However, because the
gradient depends on the thickness and image intensity of materials
that are adjacent to the bone surface, and because the materials ad-
jacent to the femur vary significantly, the estimated normals change
dramatically around the edge of the femur. Even when the mag-
nitude of the gradient vector is normalized as in Figure 8c), unex-
pected and sudden changes in the direction of the image gradient
can introduce severe artifacts into shaded images. In such cases, a
binary segmentation of the image volume can provide better surface
normal estimates than the original grey-scale images.

a) b) c)

Figure 8: a) 2D Magnetic Resonance Image (MRI) cross section
through a human knee. b) Image gradient vectors calculated us-
ing central differences on the grey-scale data at edge points of the
segmented femur. c) Image gradient vectors with a normalized mag-
nitude. The direction and magnitude of image gradients vary much
more than we would expect the surface normals of the knee bone
to vary, in some cases pointing inward when we expect an outward
facing normal. Hence, applying a gradient operator to the grey-
scale data does not always provide a good estimate of surface nor-
mals. (Data and segmented image courtesy of R. Kikinis, Brigham
and Women’s Hospital, Boston MA).

In binary-sampled data, exact knowledge of the underlying ob-
ject surface is missing and hence distance maps must be approxi-

mated from the binary data rather than from the true surface. [6]
presents experimental results for 5 methods that estimate the dis-
tance map from binary sampled data. These include methods that
estimate distances directly from the binary values (such as chess-
board distance and the city-block distance metrics [25]) and meth-
ods estimate a surface from local binary values and then calculate
distances from this surface. All of these methods produce artifacts
in shaded surfaces which are especially significant when the voxel
data is not isometric (i.e. when the data is sampled at different
resolutions along the three major axes). In [7], a new method for
generating a smooth surface representation from binary sampled
data is presented. This method, Constrained Elastic Surface Nets,
is described here briefly. Surface Nets produce surfaces that are
free from aliasing and terracing artifacts and which can be used to
generate volumetric distance maps. Examples of volume rendered
images that used distance maps for shading object surfaces created
from binary segmented MRI data are presented in Figures 9c) and
10.

a) b) c)

Figure 9: Volume rendered knee bone (femur) with in-plane res-
olution of 0.25 mm and between-plane spacing of 1.4 mm. In a)
surface normals were calculated directly from the binary data. In
b) the binary data was filtered with a Gaussian low-pass filter of
size133 and surface normals were estimated from the filtered data.
In c) a distance map was generated from a constrained surface net
applied to the binary data and surface normals were estimated from
the distance map. Only the distance map method provides accept-
able shading of the femur. In each case, a 6-point central difference
gradient opperator was used to estimate surface normals. Large
diffuse and specular coeffecients were used in rendering to empha-
size surface artifacts. (See color plate.)

a) b)

Figure 10:a) Brain and b) knee bones volume rendered with shad-
ing from a distance map representation. The size of the brain data
set is 137x146x119. The size of the knee data is 304x300x91 (in-
plane spacing 0.27 mm, between-plane spacing 1.0 mm). Both the
brain [13] and knee data originated as binary segmented MRI. The
distance maps were created from a constrained elastic surface net
that was stretched over the surface of the binary data. (See color
plate.)



5.1 Constrained Elastic Surface Nets

The goal of the surface net approach is to create a globally smooth
surface model from binary segmented data that retains fine detail
present in the original segmentation. Methods that apply local low-
pass filters to the binary data can reduce aliasing but they are not
effective at removing terracing artifacts that occur in binary data.
In addition, low-pass filters can eliminate fine structures or cracks
that may be especially important in medical applications. Surface
nets are constructed by linking nodes on the surface of the binary-
segmented volume and relaxing node positions to reduce energy in
the surface net while constraining the nodes to lie within a surface
cube defined by the original segmentation. Figure 11 illustrates how
a linked net of surface points can smooth out terracing artifacts.

a) b)

Figure 11: Terracing artifacts in binary segmented data cause
smooth surfaces to appear jagged. a) A linked net of surfacenodes
is constructed, placing one node at the center of each surface cube.
b) Constrained elastic relaxation of the surface net smooths out ter-
races but keeps each surface node within its original surface cube.

The first step in generating a surface net is to locate cubes that
contain surface nodes. A cube is defined by 8 neighboring voxels
in the binary segmented data, 4 voxels each from 2 adjacent planes.
If all 8 voxels have the same binary value, then the cube is either
entirely inside or entirely outside of the object. If at least one of
the voxels has a binary value that is different from its neighbors,
then the cube is a surface cube. The net is initialized by placing a
node at the center of each surface cube and linking nodes that lie in
adjacent surface cubes. Each node can have up to 6 links, one each
to its right, left, top, bottom, front, and back neighbors.

Once the surface net has been defined, the position of each node
is relaxed to reduce an energy measure in the links. In the exam-
ples presented here, surface nets were relaxed iteratively by con-
sidering each node in sequence and moving that node towards a
position midway between its linked neighbors. The energy was
computed as the sum of the squared lengths of all of the links in
the surface net. Defining the energy and relaxation in this manner
without constraints will cause the surface net to shrink into a sphere
and eventually onto a single point. To remain faithful to the origi-
nal segmentation, a constraint is applied that keeps each node in its
original surface cube. This constraint favors the original segmenta-
tion over smoothness and forces the surface to retain thin structures
and cracks. Figure 12 shows the application of surface nets to some
2D bitmaps. The surface nets generate relatively smooth surfaces
for curves objects, produce sharp corners for rectangular objects,
and preserve thin structures and cracks.

Because the surface net representation contains explicit links be-
tween neighboring nodes, it is relatively straightforward to create a
triangulated surface from the relaxed surface net. [7] describes how
the triangulated surface is created and how the distance map can be
generated from the surface. It also discusses implementation and
timing issues. Figures 9c) and 10 illustrate that this method can
be used to generate smooth surfaces from binary segmented data at
fairly low data resolutions that are free from aliasing and terracing
artifacts.

Figure 12:Examples of surface nets applied to 2D binary objects.
The top row shows the surface net at initialization, after one relax-
ation and after 30 relaxations for a tilted rectangle. The bottom row
shows the surface net at initialization, after one relaxation and af-
ter 20 relaxations for an object with a crack and a thin protrusion.
After relaxation, curved surfaces are relatively smooth, corners are
sharp, and thin structures are preserved.

6 Future Work

The ability to represent surfaces accurately in volume graphics
opens up many research directions in volume rendering, haptics,
and physics based modeling. We have begun to investigate a num-
ber of ways to improve the methods presented here and to explore
new applications and algorithms based on the distance map repre-
sentation. Some of these research directions are outlined here.

While this paper stored distances as floating point values, we
have begun to look at methods for discretizing distance values into
8 bits. The work of [30, 31, 1, 21] suggest that 8 bits will be suffi-
cient for many surfaces. We have begun to study the discretization
errors and storage tradeoffs for these methods. We have also ap-
plied space-leaping methods to reduce the sampling of empty space
and improve rendering times [35, 27].

In haptic rendering and physics-based modeling, the distance
map yields both surface normals and penetration depths required
for calculating interaction forces. In addition, distance maps can be
used both for detecting and anticipating object collisions. In prelim-
inary studies, we have found that a sampled distance map represen-
tation with a central difference surface normal estimator provides a
smooth surface in haptic rendering even for a relatively low resolu-
tion sphere (20x20x20 voxels). We have also successfully tested a
distance-based haptic model of the knee in Figure 10b). We intend
to continue exploring application of the distance map to haptic and
physics-based modeling.

7 Conclusions

Good surface representation is important for high-quality, realis-
tic rendering in computer graphics. Unfortunately, while volumet-
ric objects have advantages over surface models when objects have
complex interior structure, traditional intensity-based sampled data
do not represent arbitrary surfaces well. This paper has presented
a distance map approach for representing surfaces in sampled volu-
metric data. In this approach, distance-to-closest-surface values are
mapped to each sample point and surfaces are reconstructed from
this distance map.

The distance map has some attractive properties. First, the zero-
value of the distance map locates surfaces while the gradient of the
distance map yields surface normals. Second, when the sampling



rate of the volumetric data is adequate (i.e. when it is large rela-
tive to the surface curvature), a low-cost 6-point central difference
gradient estimator applied to the distance map can accurately recon-
struct surface normals near the surface. Third, although folds and
object edges or corners introduce singularities and non-linearities
into the distance field that cause shading artifacts with a central dif-
ference gradient estimator, the presence of these irregularities in the
distance map can be easily detected during rendering so that higher
order filters or more sophisticated gradient estimation methods can
be locally applied. Fourth, in addition to applications in volume
rendering, the distance map approach can be used to reconstruct
surface normals and penetration distances for applications in hap-
tics and physics-based modeling.

The effectiveness of the distance map for encoding analytic and
polygonal surfaces in volumetric data has been illustrated with a
number of examples, including a torus, spheres with radii varying
from 1.5 to 30 voxels, an off-axis cube and a tetrahedron. In addi-
tion, a new method for calculating distance maps from binary data
has been described and illustrated with shaded, volume rendered
images from binary-segmented medical data.
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