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Abstract

This paper describes a method for creating object surfaces from binary-segmented data that are
free from aliasing and terracing artifacts. In this method, a net of linked surface nodes is created
over the surface of the binary object. The positions of the nodes are adjusted iteratively to reduce
energy in the surface net while satisfying the constraint that each element in the surface net must
remain within its original surface cube. This constraint ensures that fine detail such as cracks
and thin protrusions that are present in the binary data are maintained.
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Abstract. This paper describes a method for creating object surfaces
from binary-segmented data that are free from aliasing and terracing ar-
tifacts. In this method, a net of linked surface nodes is created over the
surface of the binary object. The positions of the nodes are adjusted iter-
atively to reduce energy in the surface net while satisfying the constraint
that each element in the surface net must remain within its original sur-
face cube. This constraint ensures that �ne detail such as cracks and thin
protrusions that are present in the binary data are maintained.

1 Background

Image data from 3D Magnetic Resonance Imaging (MRI) or Computed Tomog-
raphy (CT) scanners can be used to create computer models of human anatomy
for visualization and surgical simulation. Volumetric models, which are com-
posed of 3D arrays of sampled values, are more suitable for visualization and
physically-based modeling of complex objects than surface-based models be-
cause they incorporate internal structure[10]. In particular, volumetric models
are necessary for modeling object deformation using mass-spring (e.g. [21, 15,
14]), �nite element (e.g. [11, 3, 2]), or other methods (e.g. [4, 6]) and they have
signi�cant advantages over surface-based models for modeling the cutting, tear-
ing and joining of objects and soft tissues [8].

Until recently, one of the disadvantages of volumetric models was that they
could not represent surfaces well. High quality rendering with lighting and shad-
ing e�ects is important for anatomical structures because it provides shape cues
and a sense of realism in visualization and simulation. However, in medical data,
image intensities tend to change abruptly at object surfaces, indicating the pres-
ence of high spatial frequencies. These high spatial frequencies cause aliasing
artifacts in volume rendered images, which are manifested as jagged or irregu-
lar surfaces. Such artifacts are particularly noticeable when a highly reective
surface is rendered with a lighting model, such as the Phong lighting model [5].

In [9], a new method for encoding surfaces into volume-sampled data is pro-
posed. In this method, two values are stored for each volume element: an intensity
value which is used to calculate color and opacity at each sample point; and a
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signed distance to the closest surface point, which is used to estimate positions
and normal vectors of the object surface. Because the distance function varies
slowly across object surfaces, it can be sampled at relatively low rates and still
provide alias-free estimates of object surfaces for high quality rendering.

In order to generate the sampled distance map for this representation, a
model of the underlying surface is required. In [9] it was shown that when the
object originates as an analytic or polygonal model, high quality shading can be
accomplished. However, when objects originate in binary-segemented volumes,
as often occurs for medical data, the underlying surface and its distance map
must be estimated from the binary data. Several methods for estimating distance
maps from binary data were analyzed in [7]. However, all of these methods are
prone to artifacts. In particular, when the volume is sampled less frequently in
one dimension (e.g. in MRI, the distance between image planes is often greater
than the in-plane pixel spacing), existing methods for calculating distance maps
are subject to terracing artifacts, where sloped surfaces appear as at terraces
separated by sharp elevation changes.

This paper presents a method for generating a smooth surface model from
binary segmented data that is constrained to follow the original object segmen-
tation but that reduces aliasing and terracing artifacts. The resultant surface
model can be used to generate distance maps for distance-based shading in
volume rendering. In addition, it provides an alternative to methods such as
Marching Cubes [16] for creating triangulated surface models from binary data.

2 Previous Work

2.1 Binary Segmented Data

Image segmentation, where elements of the volume are labeled according to what
structure they belong to, is the �rst step in creating a computer model from 3D
data. Once elements in the volume have been labeled, elements with the same
tissue classi�cation are grouped into objects that represent anatomical struc-
tures. With CT data, segmentation can be performed relatively automatically
using intensity thresholding or other low-level image processing. However, with
MRI, image segmentation is challenging and generally requires more sophisti-
cated algorithms and signi�cant human input. The knee data used to illustrate
examples in this paper were segmented manually from an MRI data volume of
size 512x512x87 acquired at a resolution of 0.25x0.25 mm in-plane and 1.4 mm
between planes.

Although surface normals can be estimated from the original grey-scale data
[12], in volume rendering, grey-scale shading can fail for the same reasons that
automatic segmentation fails. This is illustrated in the MRI image in Figure 1b)
where the grey-scale image gradient has been calculated along the manually-
segmented surface of the femur, a bone in the knee. Because the real bone surface
is smooth and of uniform texture, surface normals along the edge of the femur
should have similar magnitudes and slowly varying directions. However, the grey-
scale image gradient depends on tissues adjacent to the bone surface, whose
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a) b)

Fig. 1. a) MRI cross section through a human knee. b) Image gradient vectors cal-
culated along the surface of the segmented femur using central di�erences on the
grey-scale data. Image gradients vary much more than bone surface normals would
be expected to vary, in some cases pointing inward when an outward facing normal
is expected. Hence, applying a gradient operator to the grey-scale data does not pro-
vide a good estimate of surface normals. (Data and segmentation courtesy of Surgical
Planning Lab, Brigham and Women's Hospital, Boston MA.)

intensities and thicknesses can vary signi�cantly. Hence, both the direction and
magnitude of the calculated gradient can vary dramatically around the edge of
the femur. For this reason, it can be more accurate to estimate surface normals
from a binary segmentation of the data than from the grey-scale image.

Unfortunately, in Volume Rendering, estimating surface normals from bi-
nary data poses signi�cant challenges. Because of the high spatial frequencies
in binary data, rendered images tend to have signi�cant aliasing artifacts that
are particularly apparent in shaded images. In addition, when surfaces lie at a
shallow angle to the sampling grid, the rendered image exhibits terracing, in
which sloped surfaces appear as a sequence of at planes separated by sudden
elevation changes. These elevation changes can be dramatic when the spacing
between image planes is signi�cantly larger than the in-plane spacing, as often
occurs in clinical imaging.

2.2 Existing Methods for Rendering Surfaces from Binary Data

There are a number of existing methods for achieving smooth surfaces from bi-
nary segmented data. In volume rendering, several approaches have been used
to approximate surfaces during rendering (see reviews in [13, 25]) including vari-
ous methods using look-up tables [17], smoothing �lters, and surface estimation
�lters [22] which approximate surface normals from the state of local neighbors.
Alternatively, instead of �ltering during rendering the data can be pre-processed
by appling a low-pass �lter to the binary data [23, 24, 1, 19]. Surface normals are
then estimated from gradients of the resulting band-limited grey-scale image. All
of these methods reduce aliasing artifacts but, because they are applied to local
neighborhoods, they do not eliminate terracing artifacts. As illustrated in Figure



4 Sarah F. F. Gibson

Fig. 2. The e�ect of �ltering on terraces in binary segmented data. a) Original binary
terraces. b) and c) Gaussian low-pass �lters reduce the slope of the terraces but do not
eliminate terraces. In order to eliminate terraces, the �lter extent must be comparable
to the width of the terraces.

2, local �ltering reduces the slopes of terraces. However, unless the �lter extent is
signi�cantly wider than the terraces, terracing artifacts are not removed. When
terraces are wide (i.e. when the slope of the object is small) and deep (i.e. when
the distance between planes is signi�cantly larger than the in-plane sampling), a
local �lter su�cient to eliminate terracing would remove signi�cant detail from
the object model. Figure 3 illustrates the e�ect of a local smoothing �lter on
the femur data. As �lter size is increased, aliasing artifacts are eliminated and
the slope of the terrace is reduced. However, even after convolution with a large
Gaussian �lter of size 19x19x19, unacceptable terracing artifacts remain.

In surface rendering, two basic methods have been used to �t surfaces to
binary data. In the �rst, the binary data is low-pass �ltered, and an algorithm
such as Marching Cubes is applied, where the surface is built through each
surface cube at an iso-surface of the grey-scale data. Unfortunately, the resultant
surface is subject to the same terracing artifacts and loss of �ne detail as low-
pass �ltered volumetric representations. In order to remove terracing artifacts
and reduce the number of triangles in the triangulated surface, surface smoothing
and decimation algorithms can be applied. However, because these procedures
are applied to the surface without reference to the original segmentation, they
can result in further loss of �ne detail.

In the second general method for �tting a surface to binary data, the binary
object is enclosed by a parametric or spline surface. Control points on the surface
are moved towards the binary data in order to minimize an energy function
based on surface curvature and distance between the binary surface and the
parametric surface. McInerney and Terzopoulos used such a technique to detect
and track the surface of the left ventricle in sequences of MRI data [18] and
Takanahi et al. used a similar technique to generate a surface model of muscle
from segmented data [20]. This approach has two main drawbacks for general
applications. First, it is di�cult to determine how many control points will be
needed to ensure su�cient detail in the �nal model. Second, this method does
not handle complex topologies easily.
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a) b)

c) d)

Fig. 3. Shaded, volume rendered images of low-pass �ltered binary data of a human
femur. a) was rendered from the binary data. In b), c) and d), the data was �ltered
with a Gaussian �lter of size 73, 133, and 193 respectively. Even with a large �lter size,
signi�cant terracing artifacts are present.

3 Surface Nets

The goal of the surface net approach is to create a globally smooth surface
model from binary segmented data that retains �ne detail present in the original
segmentation. Methods that apply local low-pass �lters to the binary data can
reduce aliasing but they are not e�ective at removing terracing artifacts. In
addition, low-pass �lters can eliminate �ne structures that can be especially
important in medical applications. In contrast, surface nets produce a smooth
surface that is constrained to maintain all of the surface structure present in the
original data. Surface nets are constructed by linking nodes on the surface of the
binary-segmented volume and relaxing node positions to reduce energy in the
surface net while constraining the nodes to lie within a surface cube de�ned by
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a)

b)

Fig. 4. Terracing artifacts in binary segmented data cause smooth surfaces to appear
jagged. a) A linked net of surface nodes is constructed, placing one node at the center
of each surface cube. b) Constrained elastic relaxation of the surface net smooths out
terraces but keeps each surface node within its original surface cube.

the original segmentation. Figure 4 illustrates how a linked net of surface points
can smooth out terracing artifacts.

3.1 Generating Surface Nets

The �rst step in generating a surface net is to locate cubes that contain surface
nodes. A cube is de�ned by 8 neighboring voxels in the binary segmented data,
4 voxels each from 2 adjacent planes. If all 8 voxels have the same binary value,
then the cube is either entirely inside or entirely outside of the object. If at least
one of the voxels has a binary value that is di�erent from its neighbors, then
the cube is a surface cube. The net is initialized by placing a node at the center
of each surface cube and linking nodes that lie in adjacent surface cubes. Each
node can have up to 6 links, one each to its right, left, top, bottom, front, and
back neighbors.

Once the surface net has been de�ned, the position of each node is relaxed to
reduce an energy measure in the links. In the examples presented here, surface
nets were relaxed iteratively by considering each node in sequence and moving
that node towards a position equi-distant between its linked neighbors. The
energy was computed as the sum of the squared lengths of all of the links in
the surface net1. De�ning the energy and relaxation in this manner without
constraints will cause the surface net to shrink into a sphere and eventually onto
a single point. Hence, to remain faithful to the original segmentation, a constraint
is applied that keeps each node inside its original surface cube. This constraint
favors the original segmentation over smoothness and forces the surface to retain
thin structures and cracks.

1 Alternative energy measures and relaxation schemes are also feasible. For example, a
system that adjusts node positions to reduce local curvature would produce smoother
surfaces and with less sharp corners than the method used here.
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a)

b)

c)

Fig. 5. Examples of surface nets applied to 2D binary objects. Each row contains the
surface net superimposed on its 2D binary object for various numbers of relaxations of
the surface net. In a) a surface net was �t over a circle and relaxed, from left to right,
0, 1, and 10 times. In b) the surface net was �t over a tilted rectangle and relaxed 0,
1, and 30 times. In c) the surface net was �t over an object with a thin crack and a
thin protrusion and relaxed 0, 1, and 20 times. After relaxation, curved surfaces are
relatively smooth, corners are sharp, and thin structures are preserved.

Several examples of surface nets applied to binary segmented 2D objects are
illustrated in Figure 5. Observe that the surface nets generate relatively smooth
surfaces for curves objects, produce sharp corners for rectangular objects, and
preserve thin structures and cracks. Figure 5 shows the surface nets after initial-
ization, after 1 relaxation iteration, and after several iterations. The number of
iterations is chosen according to the desired result: it can either be chosen inter-
actively or set according to the behavior of the computed energy in the net. In
our work, we have observed that the net energy decreases quickly to a minimum
and then increases slowly and asymptotically to a slightly higher level. At the
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a) b) c)

Fig. 6. Possible surface constructions for a 2D surface cube containing matched diag-
onal elements. a) The two black voxels are separated by the surfaces. b) The surface
bridges the space between the two black voxels. In Marching Cubes, one of these two
topologies is chosen arbitrarily. c) In surface nets, neither topology is assumed but the
surface is pinched together at the ambiguous node.

minimum energy level, the surface appears to be smoothest, but corners become
sharper as the energy increases to the �nal level.

The thin protrusion in Figure 5c) demonstrates that the surface net approach
can produce surfaces that are topologically di�erent from surfaces that would
be produced by Marching Cubes. When a surface cube contains like elements
on opposite corners, there may be more than one topological surface that can
be constructed. This is illustrated in 2D in Figures 6a) and b). The separating
surfaces in Figure 6a) and the bridging surface in Figure 6b) both keep black
voxels inside the constructed surface and white voxels out of the constructed
surface but they result in topologically di�erent structures. In Marching Cubes,
one of these surfaces would be chosen arbitrarily. In the surface net approach,
illustrated in Figure 6c), the surface is pinched in at the net node, but neither
a separating nor a bridging surface is created. Because arbitrary topological
decisions are not made arbitrarilyly, higher level algorithms could be applied
after surface smoothing to separate or bridge the surface at ambiguous surface
points.

3.2 Triangulating the Surface and Estimating the Distance Map

Once a smooth surface net has been constructed, the surface net can be trian-
gulated to form a 3D surface model. To create a triangulated surface from the
surface net, each node and its links are considered one at a time. As illustrated in
Figure 7, there are 12 possible triangles joining each node to pairs of neighbors.
By determining which pairs of neighbors are present in the surface, possible sur-
face triangles are identi�ed. In order to avoid creating redundant triangles in the
surface model (see Figure 8), only 6 of the 12 possible triangles are considered
for each node.

In order to volume render these surfaces, distance maps were generated from
the triangulated surfaces by calculating the distances from each point in the
distance map to the nearest surface triangle. This was done using a brute force
method by considering each triangle one at a time, calculating the distance to
each point in the distance map within a local neighborhood of the triangle, and
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Fig. 7. For each node in the surface net, the center node can be connected to its 6
neighbors with 12 possible triangles. In the triangulation, each of the 12 triangles is
created only if the two relevent neighbors are nodes of the surface net.

A B

CD

Fig. 8. To avoid redundant triangulation of the surface net, if triangles DAB and BCD
are created when considering nodes A and C, then triangles CDA and ABC should
not be created when considering nodes D and B.

replacing the current distance value stored at that point with the new distance
value if the new magnitude was smaller.

Figure 9 shows images that have been volume rendered with distance maps
created from binary data using a simple, front-to-back ray casting algorithm and
Phong shading. Surface normals were calculated from the distance map using a
6-neighbor central di�erence gradient estimator. For purposes of comparison, the
images of Figures 3, and 9 were generated using the same rendering algorithm
and imaging parameters. Object opacities were set to 1.0 and large di�use and
specular reection coe�cients were used to emphasize surface artifacts.

Figure 9 compares images rendered from distance maps created from a surface
net that has been relaxed by 10 and 100 iterations. Compared with Figure 3,
there is a signi�cant reduction in terracing artifacts. In addition, the surface
net approach is guaranteed to preserve �ne structures that can be important in
medical applications.

4 Discussion

Applications such as surgical simulation or computer assisted surgery require
computer models of patient anatomy. The best models available are often in
the form of a binary-segmented MRI or CT image volume2. Depending on the

2 A probabilistic classi�cation of the data would help to alleviate some of these arti-
facts. However generating probabilistic classi�ers is still the subject of active research.
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a) b)

Fig. 9. Femur rendered and shaded using distance maps generated from surface nets
after a) 10 relaxations and b) 100 relaxations. Compare with Figure 3, noting a signi�-
cant reduction of terracing artfacts and that all surface elements have been constrained
to lie within 1 voxel of the original binary segmentation.

application, these binary volumes must be converted into volumetric models or
triangulated surface models for graphical representation. However, because of
the high spatial frequencies in binary data, the surfaces of these models are
subject to artifacts known as aliasing and terracing.

In this paper, a method has been presented that produces smooth surfaces
with reduced aliasing and terracing artifacts. The resultant surface net can be
used to generate either volumetric models or triangulated surface models. The
surface net is created by linking surface nodes generated from the binary surface.
Node positions are adjusted to reduce energy in the surface net while following
constraints set by the original binary surface of the data. This creates a relatively
smooth surface that retains �ne detail and structures that can be important in
medical applications.
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