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Abstract

We show a learning-based method for low-level vi-

sion problems{estimating scenes from images. We

generate a synthetic world of scenes and their corre-

sponding rendered images. We model that world with

a Markov network, learning the network parameters

from the examples. Bayesian belief propagation allows

us to e�ciently �nd a local maximum of the posterior

probability for the scene, given the image. We call this

approach VISTA{Vision by Image/Scene TrAining.

We apply VISTA to the \super-resolution" prob-

lem (estimating high frequency details from a low-

resolution image), showing good results. For the mo-

tion estimation problem, we show �gure/ground dis-

crimination, solution of the aperture problem, and

�lling-in arising from application of the same prob-

abilistic machinery.

1 Introduction

We seek machinery for learning low-level vision
problems, such as motion analysis, inferring shape and
albedo from a photograph, or extrapolating image de-
tail. For these problems, given image data, we want to
estimate an underlying scene. The scene quantities to
be estimated might be projected object velocities, sur-
face shapes and reectance patterns, or missing high
frequency details.

Low-level vision problems are typically under-
constrained, so Bayesian [3, 23, 38] and regulariza-
tion techniques [31] are fundamental. There has been
much work and progress (for example, [23, 25, 15]),
but di�culties remain in working with complex, real
images. Typically, prior probabilities or constraints
are made-up, rather than learned. A general machin-
ery for a learning-based solution to low-level vision
problems would have many applications.

A recent research theme has been to learn the
statistics of natural images. Researchers have related
those statistics to properties of the human visual sys-
tem [28, 2, 36], or have used statistical methods with
biologically plausible image representations to analyse

and synthesize realistic image textures [14, 8, 42, 36].
These methods may help us understand the early
stages of representation and processing, but unfortu-
nately, they don't address how a visual system might
interpret images, i.e., estimate the underlying scene.

We want to combine the two research themes of
scene estimation and statistical learning. We study
the statistical properties of a synthetically generated,
labelled world of images with scenes, to learn how to
infer scenes from images. Our prior probabilities can
then be rich ones, learned from the training data.

Several researchers have applied related learning
approaches to low-level vision problems, but restricted
themselves to linear models [21, 16], too weak for many
applications. Our approach is similar in spirit to relax-
ation labelling [33, 22], but our Bayesian propagation
algorithm is more e�cient and we utilize large sets of
labelled training data.

We interpret images by modeling the relationship
between local regions of images and scenes, and be-
tween neighboring local scene regions. The former al-
lows initial scene estimates; the later allows the es-
timates to propagate. We train from image/scene
pairs and apply the Bayesian machinery of graphical
models [29, 5, 20]. We were inspired by the work of
Weiss [39], who pointed out the speed advantage of
Bayesian methods over conventional relaxation meth-
ods for propagating local measurement information.
For a related approach, but with heuristically derived
propagation rules, see [34].

We call our approach VISTA, Vision by Im-
age/Scene TrAining. It is a general machinery that
may apply to various problems. We illustrate it for
estimating missing image details, and estimating mo-
tion.

2 Markov network

For given image data, y, we seek to estimate the
underlying scene, x (we omit the vector symbols for
notational simplicity). We �rst calculate the poste-
rior probability, P (xjy) = cP (x; y) For this analysis,



we ignore the normalization, c = 1
P (y)

, a constant

over x. Under two common loss functions [3], the
best scene estimate, x̂, is the mean (minimum mean
squared error, MMSE) or the mode (maximum a pos-
teriori, MAP) of the posterior probability.

In general, x̂ can be di�cult to compute [23] with-
out approximations. We make the Markov assump-
tion: we divide both the image and scene into patches,
and assign one node of a Markov network [13, 29, 20] to
each patch. Given the variables at intervening nodes,
two nodes of a Markov network are statistically inde-
pendent. We connect each scene patch to its corre-
sponding image patch, and to its nearest neighbors,
Fig. 1. Solving a Markov network involves a learning

phase, where the parameters of the network connec-
tions are learned from training data, and an inference

phase, when the scene corresponding to particular im-
age data is estimated.

Figure 1: Markov network for vision problems.
Observations, y, have underlying scene explana-
tions, x.

For networks without loops, the Markov assump-
tion leads to simple \message-passing" rules for com-
puting the MAP and MMSE estimates [29, 40, 20].
Writing those estimates for xj by marginalizing
(MMSE) or taking the max (MAP) over the other
variables gives:

x̂jMMSE
=

Z
xj

xjdxj

Z
all xi, i 6= j

P (x; y)dx (1)

x̂jMAP =
argmax
[xj ]

max
[ all xi, i 6= j ]

P (x; y):(2)

For a Markov random �eld, the joint probability over
the scenes x and images y can be written as [4, 13, 12]:

P (x; y) =
Y

neighboring i;j

	(xi; xj)
Y
k

�(xk; yk); (3)

where we have introduced pairwise compatibility func-
tions, 	 and �, described below. The factorized struc-
ture of Eq. (3) allows the marginalization and maxi-
mization operations of Eqs. (1) and (2) to pass through
to the compatibility function factors with the appro-
priate arguments. For a network without loops, the
resulting expression can be computed using repeated,

local computations [29, 40, 20], summarized below:
the MMSE estimate at node j is

x̂jMMSE
=

Z
xj

xj�(xj ; yj)
Y
k

Lkjdxj ; (4)

where k runs over all scene node neighbors of node j.
We calculate Lkj from:

Lkj =

Z
xk

	(xk; xj)�(xk ; yk)
Y
l6=j

~Llkdxk ; (5)

where ~Llk is Llk from the previous iteration. The ini-
tial ~Llk's are 1. After at most one iteration per xi
of Eq. (1), Eq. (4) and (5) give Eq. (1). The MAP
estimate equation, Eq. (2), yields analogous formulae,
with the integral of Eq. (5) replaced by maxxk , andR
xj

xj of Eq. (4) replaced by argmaxxj . For linear

topologies, these propagation rules are equivalent to
well-known Bayesian inference methods, such as the
Kalman �lter and the forward-backward algorithm for
Hidden Markov Models [29, 26, 39, 20, 11].

Finding the posterior probability distribution for a
grid-structured Markov network with loops is compu-
tationally expensive and a variety of approximations
have been proposed [13, 12, 20]. Strong empirical re-
sults in \Turbo codes" [24, 27] and recent theoretical
work [40, 41] provide support for a very simple ap-
proximation: applying the propagation rules derived
above even in a network with loops. Table 1 summa-
rizes results from [41]: (1) for Gaussian processes, the
MMSE propagation scheme will converge only to the
true posterior means. (2) Even for non-Gaussian pro-
cesses, if the MAP propagation scheme converges, it
�nds at least a local maximum of the true posterior
probability.

2.1 Learning the compatibility functions

One can measure the marginal probabilities relat-
ing local scenes, xi, and images, yi, as well as neigh-
boring local scenes, xi and xj . Iterated Proportional
Fitting (e.g., [37, 18]) is a scheme to iteratively modify
the compatibility functions until the empirically mea-
sured marginal statistics agree with those predicted by
the model, Eq. (3). For the problems presented here,
we found good results by using the marginal statis-
tics measured from the training data, without modi-
�cations by iterated proportional �tting. Based on a
factorization described in [10, 9], for a message from

scene nodes j to k, we used 	(xj ; xk) =
P (xj;xk)

P (xk)
and

�(xj ; yj) = P (yj jxj). We �t the probabilities with
mixtures of Gaussians.

An alternate method, which we �nd gives compara-
ble results, not shown here, is to use scene and image



Belief propagation Network topology

algorithm no loops arbitrary topology

MMSE rules MMSE, correct posterior marginal probs. For Gaussians, correct means, wrong covs.

MAP rules MAP Local max. of posterior, even for non-Gaussians

Table 1: Summary of results from [41], assuming convergence of belief propagation.

patches with spatially overlap their neighbors. We
assume a Gaussian noise penalty on the multiple ob-
servations of the same pixels in the overlap region,
yielding 	(xk; xj) = exp�(dk�dj)

2=2�2 , where dk and
dj are the corresponding values of the scenes described
at nodes k and j in their region of common support,
and � is a penalty parameter.

2.2 Probability Representation

Inspired by the success of [17, 8], we use a sample-
based representation for inference. We describe the
posterior probability as a set of weights on scenes ob-
served in the training set. Given an image to ana-
lyze, for each node we collect a set of 10 or 20 \scene
candidates" from the training data which have im-
age data closely matching the local observation. We
evaluate the posterior probability only at those scene
values. The propagation algorithms, Eq. (5) and (4)
then are discrete matrix calculations. This simpli�-
cation focuses the computation on only those scenes
which render to the observed image data.

3 Super-resolution

For the super-resolution problem, the input image

is a low-resolution image. The scene to be estimated
is a higher resolution image. A good solution to this
problem would allow pixel-based images to be handled
in a relatively resolution-independent manner. Appli-
cations could include enlargment of digital or �lm pho-
tographs, upconversion of video from NTSC format to
HDTV, or image compression.

At �rst, the task may seem impossible|the high
resolution data is not there. However, we can see
edges in the low-resolution image that we know should
remain sharp at the next resolution level. Further-
more, based on the successes of recent texture synthe-
sis methods [14, 8, 42, 36], we might expect to handle
textured areas well, too.

Others [35] have used a Bayesian method, making-
up the prior probability. In contrast, the Markov
network learns the relationship between sharp and
blurred images from large amounts of training data,
and achieves better results. Among the non-Bayesian
methods, fractal image representation [32] (Fig. 8c)
only gathers training data from the one image, while
selecting the nearest neighbor from training data

[30] misses important spatial consistency constraints
(Fig. 4a).

We apply VISTA to this problem as follows. By
blurring and downsampling sharp images, we con-
struct a training set of blurred and sharp image pairs.
We linearly interpolate each blurred image back up
to the original resolution, to form an input image.
The scene to be estimated is the high frequency detail
missing from the blurred image, Fig. 2a, b. We then
take two image processing steps to ease the modeling
burden: (1) we bandpass �lter the blurred image, be-
cause we believe the lowest frequencies won't predict
the highest ones; (2) we normalize both the bandpass
and highpassed images by the local contrast [19] of the
bandpassed image, because we believe their relation-
ship is independent of local contrast, Fig. 2c, d. We
undo this normalization after scene inference.

We extracted center-aligned 7x7 and 3x3 pixel
patches, Fig. 3, from the training images and scenes.
Applying Principal Components Analysis (PCA) [6]
to the training set, we summarized each 3-color patch
of image or scene by a 9-d vector. From 40,000 im-
age/scene pair samples, we �t 15 cluster Gaussian mix-
tures to the marginalized probabilities, assuming spa-
tial translation invariance. For e�ciency, we pruned
frequently occurring image/scene pairs from the train-
ing set.

Given a new image, not in the training set, from
which to infer the high frequency scene, we found the
10 training samples closest to the image data at each
node (patch). The 10 corresponding scenes are the
candidates for that node. We evaluated 	(xj ; xk) at
100 values (10 xj by 10 xk points) to form a compat-
ibility matrix for messages from neighbor nodes j to
k. We propagated the probabilities by Eq. (5).

To process Fig. 5a, we used a training set of 80
images from two Corel database categories: African
grazing animals, and urban skylines. Figure 4a shows
the nearest neighbor solution, at each node using the
scene corresponding to the closest image sample in the
training set. Many di�erent scene patches can explain
each image patch, and the nearest neighbor solution is
very choppy. Figures 4b, c, d show the �rst 3 iterations
of MAP belief propagation. The spatial consistency
imposed by the belief propagation �nds plausible and



(a) input (b) desired output (c) image (d) scene

Figure 2: We want to estimate (b) from (a). The original image, (b) is blurred, subsampled, then interpolated
back up to the original resolution to form (a). The missing high frequency detail, (b) minus (a), is the \scene"
to be estimated, (d) (this is the �rst level of a Laplacian pyramid [7]). The low frequencies of (a) are removed to
form the input bandpassed \image". We contrast normalize the image and scene by the local contrast of the input
bandpassed image, yielding (c) and (d).

Figure 3: Training data samples for super-resolution problem. The large squares are the image data (mid-frequency
data). The small squares above them are the corresponding scene data (high-frequency data).

consistent high frequencies for the tiger image from the
candidate scenes. Figure 5 shows the result of apply-
ing this method recursively to zoom two octaves. The
algorithm keeps edges sharp and invents plausible tex-
tures. Standard cubic spline interpolation, blurrier, is
shown for comparison.

Figure 6 explores the algorithm behavior under dif-
ferent training sets. The estimated images properly
reect the structure of the training worlds for noise,
rectangles, and generic images. Figure 8 depicts in
close-up the interpolation for image (a) using an ideal
training set of images taken at the same place and
same time (but not of the same subject) (d), and a
generic training set of images (e) (Fig. 7 shows the
training sets). Both estimates look more similar to the
true high resolution result (f) than either cubic spline
interpolation (b) or zooming by a fractal image com-

pression algorithm (c). Edges are again kept sharp,
while plausible texture is synthesized in the hair.

4 Motion Estimation

To show the breadth of the VISTA technique, we
apply it to the problem of motion estimation. The
scene data to be estimated are the projected veloci-
ties of moving objects. The image data are two suc-
cessive image frames. Because we felt long-range inter-
actions were important, we built Gaussian pyramids
(e.g., [19]) of both image and scene data, connecting
patches to nearest neighbors in both scale and posi-
tion.

Luettgen et al. [26] applied a related message-
passing scheme in a multi-resolution quad-tree net-
work to estimate motion, using Gaussian probabilities.

While the network did not contain loops, its structure
generated artifacts along quad-tree boundaries, arti�-
cial statistical boundaries of the model.

To show the algorithm working on simple test cases,
we generated a synthetic world of moving blobs, of
random intensities and shapes. We wrote a tree-
structured vector quantizer, to code 4 by 4 pixel by
2 frame blocks of image data for each pyramid level
into one of 300 codes for each level, and likewise for
scene patches.

During training, we presented approximately
200,000 examples of irregularly shaped moving blobs
of a contrast with the background randomized to one
of 4 values. For this vector quantized representation,
we used co-occurance histograms to measure the com-
patibility functions, see [10].

Figure 10 shows six iterations of the inference algo-

rithm (Eqs. 4 and 5) as it converges to a good estimate
for the underlying scene velocities. The same machin-
ery we applied to super-resolution leads to, for this
problem, �gure/ground segmentation, aperture prob-
lem constraint propagation, and �lling-in (see cap-
tion). The resulting inferred velocities are correct
within the accuracy of the vector quantized represen-
tation.

5 Summary

We described an approach we call VISTA{Vision
by Image/Scene TrAining. One speci�es prior proba-
bilities on scenes by generating typical examples, cre-
ating a synthetic world of scenes and rendered images.
We break the images and scenes into a Markov net-
work, and learn the parameters of the network from



(a) Nearest neighbor (b) belief prop., iter. 0 (c) belief prop., iter. 1 (d) belief prop., iter. 3

Figure 4: (a) Nearest neighbor solution. The choppiness indicates that many feasible high resolution scenes
correspond to a given low resolution image patch. (b), (c), (d): iterations 0, 1, and 3 of Bayesian belief propagation.
The initial guess is not the same as the nearest neighbor solution because of mixture model �tting to P (yjx).
Underlying the most probable guess shown are 9 other scene candidates at each node. 3 iterations of Bayesian
belief propagation yields a probable guess for the high resolution scene, consistent with the observed low resolution
data, and spatially consistent across scene nodes.

(a) 85 x 51 input (b) cubic spline (c) belief propagation

Figure 5: (a) 85 x 51 resolution input. (b) cubic spline interpolation in Adobe Photoshop to 340x204. (c) belief
propagation zoom to 340x204, zooming up one octave twice.

the training data. To �nd the best scene explanation
given new image data, we apply belief propagation in
the Markov network, an approach supported by ex-
perimental and theoretical studies.

The intuitions of this paper{propagate local esti-
mates to �nd a best, global solution{have a long tra-
dition in computational vision [1, 33, 15, 31]. The
power of the VISTA approach lies in the large training
database, allowing rich prior probabilities and render-
ing models, and the belief propagation, allowing e�-
cient scene inference.

Applied to super-resolution, VISTA gives results
that we believe are the state of the art. Applied to
motion estimation, the same method resolves the aper-
ture problem and appropriately �lls-in motion over
a �gure. The technique may apply to related vision
problems as well, such as line drawing interpretation,
or distinguishing shading from reectance.
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