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Abstract

We propose a framework for learning hidden-
variable models by optimizing entropies, in
which entropy minimization, posterior maxi-
mization, and free energy minimization are
all equivalent. Solutions for the maximum
a posteriori (MAP) estimator yield powerful
learning algorithms that combine all the charms
of expectation-maximization and deterministic
annealing. Contained as special cases are
the methods of maximum entropy, maximum
likelihood, and a new method, maximum struc-
ture. We focus on the maximum structure case,
in which entropy minimization maximizes the
amount of evidence supporting each parameter
while minimizing uncertainty in the sufficient
statistics and cross-entropy between the model
and the data. In iterative estimation, the
MAP estimator gradually extinguishes excess
parameters, sculpting a model structure that
reflects hidden structures in the data. These
models are highly resistant to over-fitting and
have the particular virtue of being easy to
interpret, often yielding insights into the hidden
causes that generate the data.

1 Motivation

In pattern discovery we seek a model that reflects the
structure of the data, which we hope in turn reflects
the structure of the generating process. The unspoken
premise is that the universe is constructed out of relatively
small processes; in order to produce an object (dataset)
larger than itself, a small process must have some kind of
repetition structure, e.g., loops. Therefore a dataset is an
“unrolled” record of the process’ internal structure. If we
can find a compact model of the data, we feel increasingly

�Email: brand@merl.com or brand@media.mit.edu.

confident that 1) we can interpret the model and in doing so
learn about the process, and 2) predictions made from the
model will be consistent with new samples taken from the
process. We now know that #2 is well-founded: Recent
theorems in algorithmic complexity assure us that of all
possible models (e.g., of all possible Turing machines)
the one yielding the smallest two part encoding—model
plus data relative to the the model—is the best strategy
for hypothesis identification [Vitanyi and Li, 1996] and
almost always the best strategy for prediction [Vit´anyi and
Li, 1997].

Sadly, the function which yields the most compact model
is not computable. Furthermore, we only know how
to search efficiently for accurate models (disregarding
compactness) in quite restricted spaces, e.g., for locally
optimal parameterizations of stochastic models whose kind
and structure we fix in advance. In this paper we
broaden that scope by estimating both model structure and
parameters in a manner that reveals salient structures in the
data. Fortuitously, our framework also yields a fast hill-
climbing procedure for finding nearly global optima.

2 Setting

We are interested in learning (point estimating) a single
model that is highly predictive and whose structure reflects
the structure of the generating process. We must address
three important limits: finite data, finite time, and finite
precision. In particular, we want to extract as much
essentialstructure as possible from a dataset without
modeling any of its accidental structure (e.g., noise
and sampling artifacts); we want to do so without any
wasted or speculative computation (e.g., models discarded
by a selection process); and we want to maximize the
information content of all parameters (e.g., bits of evidence
supporting each parameter) while being realistic about the
information capacity of digitally represented numbers. We
begin in a Bayesian setting, but inx6 we shall show that
our framework has its clearest interpretation when learning
is considered a problem of minimizing entropies.



We begin with a set of observations
X = fx1;x2; : : : ;xNg and a hypothesis class of hidden-
variable models whose likelihoods are (approximated in
practice by) products of densities drawn from the flat-
exponential family, e.g., those having minimal sufficient
statistics and parameter vectors of equal dimension1. We
use hidden variables because we assume that the data
has latent structure and/or is incomplete. The vector
�=f�1; � � � ; �Ng parameterizes a model and specifies its
structure via a sparse encoding. Starting from a random
over-parameterized model� we seek an optimal embedded
model�� that maximizes the posterior given by Bayes’
rule: ��=argmax

�
P (�jX) / P (Xj�)P (�), where the

likelihood P (Xj�) measures accuracy in modeling the
data and the priorP (�) measures consistency with our
background knowledge.

3 Maximum structure priors

What is our background knowledge?Let us assert that the
vector of model parameters� is itself taken from a random
variable� which generates all possible processes. We
know that on average, these processes are not infinitely
unpredictable—otherwise learning would be impossible!
Therefore our background knowledge is that, on average,
learning will succeed. More formally, we say that the
expected entropy of processes from� is finite. We write
this prior knowledge as� : E�[H(�)]=h, whereH(�) is
an entropy measure assessed on the model specified by�,
E� is the expectation with regard to�, andh is some finite
value. The classic maximum-entropy method [Jaynes,
1982,x2] allows us to derive the mathematical form of a
distribution from knowledge� about its expectations via
Euler-Lagrange equations, yielding

P (�j�) / exp[��H(�)] (1)

where the Lagrange multiplier� depends onh and is
unknown. We shall find meaningful interpretations for
several values of�, but we shall concentrate on the
assumption that�=1. This we shall call the entropic prior

Pe(�)
def/ e�H(�) (2)

We assume� henceforth and drop it from notation. We
note in passing that by making a similar assertion about the
expected perplexity (eH(�)) and assuming a measure on�,
it is also possible to integrate out the Lagrange multiplier
and arrive directly at eqn. 2.

We call the reader’s attention to two properties that derive
from the definition of entropy: 1)Pe(�) is a bias for
compact models having less ambiguity, more determinism,

1These are the maximum entropy distributions given the
assertion that a random variable can be characterized by its
expectations

and therefore more structure. 2)Pe(�) is invariant to
reparameterizations of the model, because the entropy
is defined in terms of the model’s joint and/or factored
distributions.

We turn now from inferential principles to optimization
problems. Models with hidden variables can be very
difficult to fit and notoriously prone to over-fitting. Eqn.
2 is a remarkable form which we shall exploit to simul-
taneously estimate structure and parameters of complex
probability models—a mixed combinatorial (structure)
and continuous (parameter) optimization problem. We
shall develop MAP estimators such that in expectation
maximization (EM ), the prior drives weakly supported
parameters toward extinction, allowing them to be removed
from the model without loss of posterior probability. The
resulting models can be quite good; however, both hidden-
variable and combinatorial optimization problems have
notoriously rough energy surfaces and EM is merely a local
hill-climber. Before presenting estimators inx5 we shall
develop a technique that uses the entropic prior to improve
the quality of local optima found by EM, and which finds a
quasi-global optimum in the limiting case.

4 Prior balancing

We now introduce a generalization of the posterior, by
rewriting Bayes’ rule with a manipulation of the prior:

~P (�jX; T; T0)
def/ P (Xj�)P (�)T0�T �(T ) (3)

where T is normally positive and�(T ) 2 (0; 1] is a
driving term that monotonically increases asT ap-
proaches zero (e.g.,�(T )/e�T 2=2). Varying T balances
the prior against the likelihood, which is useful in
iterative parameter estimation because it allows� to
get into the right neighborhood with respect to one
constraint before attempting to satisfy the other. Of
course, to obtain a proper probability we are obliged
to make Z=T0�T converge to a meaningful value
(e.g., 1) which can be done by following the gradient
�T / @

@T log ~P (�jX; T; T0) or by iteratively tracking the
MAP estimate ofT̂ =argmaxT

~P (�jX; T; T0). Using the
shorthandH=� logP (�), the gradient and MAP estimate
for the Gaussian driving function are

�T / H�T ; T̂ = H (4)

T ’s decay rate can be controlled with a variance term on
�, or by choice of a different driving function. E.g.,�(T )
may be one-sided (e.g.,�(T )=eT�e

T

; �T / H+1�eT ;
T̂ =log(1+H)) or a barrier term (e.g.,�(T )=e�T

3=2

;
�T / H�

p
T ; T̂ =H2). If T0 is not known, the gap

from equilibriumT to the desiredZ can be bridged with
a heuristic schedule.

We introduce this as an optimization technique; it is unclear
that there is any useful interpretation as an inference



principle. However, prior balancing does take on a physical
meaning with the entropic prior. Taking the negated
logarithm of eqn. 3 with the entropic priorPe(�), we obtain

� log ~Pe(�jX; T; T0)

= ~F =+ E�(T�T0)H(�)�log �(T )
�+ F = E�TH

(5)

where E=� logP (Xj�) is the error or energy cost
of a given parameterization, andT is understood as
temperature. The notation=+ indicates equality assuming
additive constants (normalizing terms) that have been
omitted. ~F is an upper bound on the Helmholtz free
energy equation of statistical physics, with equality at
�(T )=1, T0=0. Maximizing the modified posterior
thus minimizes the free energy, which is analogous to
finding an equilibrium configuration in a complex model
whose different parts compete to explain the data. In
models with factorizable likelihoods and priors, the prior
on each independent parameter can be balanced separately,
allowing different parts of the model to mature at different
rates.

Four interesting cases immediately fall out of~F : 1)
Iteratively re-estimating� while T!0 gives deterministic
annealing (DA) [Rose et al., 1990; Miller et al., 1996;
Hofmann et al., 1998], a pseudo-global optimizer for pock-
marked energy surfaces. DA belongs to a family of
continuation techniques that convolve (smooth) a energy
surface to make it globally convex, then track the optimum
as gradual deconvolution reintroduces surface texture2.
The following illustration shows how tracking a local
minimum leads to the global minimum of the function in
the forefront:
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During DA, entropy at high temperatures keeps the system
from prematurely committing to nearby local optima
and forces it to explore the energy surface’s large-scale

2A statistical analogue is robust M-estimation [Huber, 1981]
with a shrinking scale parameter [Li, 1996].

structure. In a hidden-variable model, this is equivalent to
maximizing almost equally w.r.t. all possible hypotheses
within the model (e.g., all possible paths through a
hidden Markov model), then concentrating on the most
promising hypotheses as the temperature declines. In
x5 we’ll introduce MAP estimators that fold DA into
EM at no additional computational cost. Note that our
modified posterior gives a useful amendment to DA—
an automatic annealing schedule that tracks the quality
(inversely, entropy) of the model via the gradients or MAP
estimates w.r.t.T .

The remaining cases of interest arise out of different termi-
nal temperatures:2) At T�T0=1 we obtain a maximum-
entropy solution.3) At T�T0=0 we obtain the maximum-
likelihood (ML) solution3. 4) At �Z=T�T0=�1 we
obtain the maximum structure solution corresponding the
the entropic prior in eqn. 2. Conveniently, we have derived
a single MAP estimator for all four cases.

5 MAP estimators

We obtain MAP parameter estimators by solving for
maxima of the log of the balanced posterior,

�̂ = argmax
�

[logP (Xj�)� ZH(�)] (6)

Although this can lead to systems of transcendental
equations, we have obtained solutions for most simple
distributions and, by subadditivity principles, for all models
composed thereof.

For the multivariate Gaussian distribution with mean�
and covariance matrixK the entropy is12 log((2�)dejKj).
The entropic prior is thusPe(�;K) / jKj�1=2, which is
uniform in � and inversely proportional to the volume of
K. To find the entropic MAP estimator we set the gradient
of the log-posterior to zero. Without loss of generality we
assume a zero mean to simplify the derivation:

0 =
d

dK
log

 "
NY
n

N (xn;K)

#
Pe(K)Z

!
(7)

=
d

dK

"
NX
n

�
� 1

2x
>
n
K�1xn � 1

2 log(2�)
djKj

�#

�Z d

dK
H(N (K)) (8)

=
d

2dK

"
NX
n

�
�x>

n
K�1xn � log jKj

�
� Z log jKj � c

#
(9)

= 1
2

NX
n

2K�1xnx
>
nK

�1 �K�1xnx
>
nK

�1 � I

3We thank the anonymous reviewers for pointing out work
by [Ukeda and Nagano, 1995], who developed this special case
directly via maximum entropy considerations, albeit without
estimators or annealing schedule.
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=

NX
n

K�1xnx
>
nK

�1 � N+Z
N K�1
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NX
n

�
K�1xnx

>
n
K�1 � N+Z

N K�1
�
� I (11)

Left- and right-multiplying byK reveals the entropic
MAP estimator for covariances, which is essentially an
N+Z normalization of the scatter ofN samples:

K̂=

P
N

n
xnx

>
n

N + Z
(12)

Note that the maximum structure (Z=1) MAP estimator is
the best mean squared-error estimate, while the maximum-
entropy (Z=�1) MAP estimator is the best unbiased
estimate. Similarly normalized estimators give the scale
parameters of related distributions, e.g., exponential,
Laplace, and gamma.

A multinomial distribution
has entropyH(�) = �P

i
�i log �i, and entropic prior

Pe(�) / ��=
Q
i
��i
i

. For the MAP estimator given a
vector ! of evidence for each alternative, we set the
derivative of the log-posterior to zero, using a Lagrange
multiplier to ensure

P
i
�i=1,

0 =
@

@�i

 
log
Y
i

�!i+Z�i
i

+ �
X
i

�i

!
(13)

=
!i

�i
+ Z log �i + Z + � (14)

We solve this a system of simultaneous transcenden-
tal equations for�i using the LambertW function
[Corless et al., 1996], an inverse mapping satisfying
W (y)eW (y) = y and thereforelogW (y) +W (y) = log y.
Settingy=ex and working backwards towards eqn. 14,

0 = �W (ex)� logW (ex) + x (15)

=
�1

1=W (ex)
� logW (ex) + x+ log q � log q (16)

=
�q

q=W (ex)
+ log q=W (ex) + x� log q (17)

Setting x=1+�=Z+logq and q=�!i=Z, eqn. 17
simplifies toZ�eqn. 14:

0=
!i=Z

�(!i=Z)=W (�!ie1+�=Z=Z)
+log

�!i=Z

W (�!ie1+�=Z=Z)
+1 + �=Z

=!i=(Z�i) +log �i +1 + �=Z
(18)

which implies that

�̂i=
�!i=Z

W (�!ie1+�=Z=Z)
(19)

where eqn. 14 and eqn. 19 form a set of fix-point equations
for � that typically converge in 2-5 iterations. This
derivation generalizes that given in [Brand, 1997a]. Details
on computingW are given in [Brand, 1997b].

Differentiating eqn. 14 again we find that the posterior
is concave in any parameter provided!i>Z�i, which
is always true except for near-degenerate cases when
Z>maxi !i (e.g., there is almost no evidence4).

Note that we have assumed that the likelihood and the prior
are factorizable, which is fortunately the case for many
popular hidden-variable models.

6 Minimization of entropies

For flat exponential distributions, the principle of maxi-
mum likelihood is equivalent to minimizing cross-entropy
(directed Kullback-Leibler distance) between the data’s
sufficient statistics and the distribution’s estimated param-
eters. Our framework identifies three entropies associated
with modeling, and the MAP estimator minimizes their
sum. This is most clearly seen by considering the negated
log-posterior of a multinomial parameter in the maximum
structure (Z=1) case:

� logP (!j�)e�H(�) = � log
Y
i

�!i+�i
i

(20)

= �
X
i

(!i + �i) log �i (21)

= �
X
i

(!i log �i + �i log �i � !i log!i + !i log!i)(22)

= �
X
i

!i log!i +
X
i

!i log
!i

�i
�
X
i

�i log �i (23)

= H(!) +D(!jj�) +H(�) (24)

Each of these entropies has a useful interpretation:H(!)
measures uncertainty in the expected sufficient statistics,
and is linearly related to their coding length. The cross-
entropy D(!k�) measures error in the model’s fit to
the data, and is linearly related to the coding costs of
aspects of the data not captured by the model. (Ideally,
this will dwindle to purely random noise.) Together,
these terms give the expected coding length of the data
relative to the model.H(�) measures uncertainty in the
model’s component distributions, as well as its coding
length. In short, MAP estimation reduces all entropies
and relative entropies between the model and the data’s
sufficient statistics. In practice, it does so by extinguishing
parts of the model that are ill-matched to the structure of
the data, and therefore weakly supported. More evidence
concentrates on the surviving parameters (equivalently

4In these cases we may either use slightly more elaborate
methods to find the global optimum or simply accept a local
optimum and ignore its typically negligible effect on the joint
distribution.



H(!) is minimized), and their information content is
thereby maximized.

6.1 Variations

One may introduce other entropies into eqn. 24, perhaps to
symmetrize the cross entropy (equiv. KL divergence)

H(!) +D(!k�) +D(�k!) +H(�): (25)

One might want to conserve information contained in
previous estimates

H(!) +D(!k�) +D(�k�old) +H(�); (26)

or stay close to (or far from) a reference model��

H(!) +D(!k�)�D(�k�
�
) +H(�): (27)

Happily, small variations on the MAP formulæ given above
can accommodate any combination of these constraints.

For simplicity of exposition we have identifiedH(�)
with the entropy of the model’s component distributions,
leading to an extremely efficient form of description
length minimization. One may also choose other entropy
measures forH(�). For example, one may prefer to
minimize the joint entropy

H(X; �) = H(X) + H(�jX)
= c +

P
j
pj
P

i
�ijj log �ijj

(28)

whereH(X) = c is fixed andpj are the probabilities of
hidden variable values given the data. These are estimated
from the data during the E-step of EM, and in some cases
can be computed from the parameters (e.g., in Markov
models,pj = the stationary probability of statej). This
case leads to another small variation on the MAP estimator,
etc., but the result is only approximate, because the entropy
is minimized w.r.t.pj calculated from the previous rather
than the current parameter estimates. Nonetheless, we find
in practice that this case is very well behaved, especially in
deterministic annealing, wherepj changes quite gradually.

7 Trimming

One problem with entropy minimization on digital comput-
ers is that numerical error often intrudes before parameters
are fully extinguished. Eqn. 14 obliges us to add numbers
to their logarithms, which becomes troublesome when
parameter values are not near 1. Fortunately, the prior
allows us to identify excess parameters that can be trimmed
from a model without loss of posterior probability, such
that

~Pe(�n�ijX; Z) � ~Pe(�jX; Z) (29)

Expanding via Bayes’ rule, taking logarithms, and
rearranging, we obtain

Z[H(�)�H(�n�i)] � logP (Xj�)�logP (Xj�n�i) (30)

Operationally, a parameter is trimmed by setting it to a
target value which makes the model simpler or easier to
interpret. Typically the target will be the minimal entropy
extinction value, e.g., setting a multinomial parameter
�i 0, but it may simply be a usefully interpreted value,
e.g., setting a variance parameterkii  1 (equivalently
log kii 0). When zeroing, eqn. 30 can be approximated
via differentials, yielding

Z
@H(�)

@�i
�i > �i

@ logP (Xj�)

@�i
(31)

One may observe from this that a parameter can be
trimmed when varying it increases the entropy faster than
the log-likelihood. The sides of eqns. 30 and 31 can be
mixed and matched to obtain mathematically convenient
forms. For the multinomial trim test, we set l.h.s. eqn. 30
(=�Z�i log �i) against r.h.s. eqn. 31 to obtain:

�i < exp

�
� 1

Z

@ logP (Xj�)

@�i

�
(32)

The gradient of the log-likelihood is normally computed for
re-estimation, so these trimming tests are very cheap.

Solving eqn. 30 via W gives the variance trimming criteria:

kii � �k̂ii=W0(�k̂iie�k̂ii) i� k̂ii > 1 (33)

kii � �k̂ii=W�1(�k̂iie�k̂ii) i� k̂ii < 1 (34)

There is also a trimming test for covariances (kij 0), but
it is beyond the scope of this paper.

Trimming is a local heuristic that increases but does
not maximize the posterior. It makes sense in iterative
estimation of models containing hidden variables because
it can radically sparsify the model, which in turn reduces
ambiguity in the data’s expected sufficient statistics. In
short, it accelerates learning. In our experiments we have
used trimming mainly to speed parameter extinction that
would otherwise happen gradually via MAP estimation.
As noted above, this becomes particularly desirable
when parameters are near extinction and floating-point
calculations introduce numerical round-off and underflow
errors. In addition, trimming near convergence can “bump”
the model out of the local local probability maximum
and into a parameter subspace of simpler geometry, thus
enabling further training.

Not only do parameter extinction and trimming protect
against over-fitting, but by sculpting the model to fit the
data, they often reveal a simple machine that explains the
data (e.g., a finite-state machine from an HMM; a circuit
from a NN). We shall give many examples inx9.

8 Related ideas

Model selection criteria such as MML [Wallace and
Boulton, 1968; Wallace and Freeman, 1987], AIC



[Aikake, 1973], MDL [Rissanen, 1978], BIC [Schwartz,
1978], stochastic complexity [Rissanen, 1989] have a
rich literature in model selection, but usually cannot
be leveraged into priors, let alone estimators, because
they force separate treatments of model structure and
parameter values. For example, BIC and MDL are
asymptotic approximations of the marginal likelihood
pm(XjS) = R p(Xj�; S)d�, assuming structureS and
typically ignoring any priorp(�jS). Selection criteria are
typically formulated at a level of granularity (e.g., number
of parameters) that prevents their use in continuous sample
spaces. The entropic prior bears some resemblance to all
of these selection criteria, but provides a unified treatment
of structure and parameter values. Stochastic complexity
occupies an interesting middle ground because it has
natural interpretations at a bit-level of granularity, leading
to approximate estimators and occasionally yielding a point
estimator for discrete sample spaces. E.g., [Vovk, 1995]
derived a binomial parameter estimator and showed that
it minimizes stochastic complexity and, remarkably, that
it is MDL in the strong sense of [Vit´anyi and Li, 1997],
with probability close to 1. Unfortunately, MDL based
on discretization of continuous values has some severe
consequences; the figure below contrasts the discontinuous
Vovk estimator with equivalent entropic MAP estimator.
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Computer scientists have tried to get more leverage out
of model selection criteria by proposing search heuristics
that reduce the squandered computation that dominates
generate-and-test “structure-learning” algorithms. [Ikeda,
1993] and [Stolcke and Omohundro, 1994] presented
search algorithms for HMM structure that generate
rival models by splitting or merging states that are
likely to reduce description length. Whereas run-times
were reported in days, entropic estimation will induce
HMM topologies from similar datasets in a matter of
minutes. [Friedman, 1998] advertised a “Structural
EM” algorithm for Bayesian networks, but the M-step
is approximate and there is a penalized generate-and-test

search inside the EM loop. We would propose entropy
minimization algorithm for Bayesian networks in which
parameter extinction makes subgraphs deterministic and
thus trimmable. Unfortunately the E-step for dense graphs
can be computationally prohibitive, which makes starting
with over-complete structure problematic.

Most exponential density forms have conjugate priors that
can be used to obtain estimators with some description-
lengthreducingproperties. For example, for multinomial
parameters one might use Dirichlet priors with exponents
�i<1. Of course, one must choose values for these
parametersa priori; this is equivalent to inventing extra
observations before any actual samples have been taken,
a potentially dangerous business.

9 Examples

We have used entropic estimation to obtain low entropy
models in a variety of model classes. These have been
tested on benchmark datasets as well as real-time data
obtained directly from computer vision and speech analysis
systems. The resulting models have consistently been
smaller, more discriminative, better generalizing, and
more predictive than conventionally (e.g., ML) estimated
models, except when both are under-fit. Typically the
resulting model is interpretable, often providing insight
into the causal structure of the process that generated the
data. Here we give a variety of examples

9.1 Mixture models

A mixture model was fitted to an ring of Cartesian samples
taken from a uniform distribution over the polar coordi-
natesr2 [1; 2]; �2 [0; 2�]. The figures show the model
estimated conventionally, entropically with trimming, and
entropically with trimming and deterministic annealing.
Initial conditions were identical for all three cases. Ellipses
indicate iso-density contours for the Gaussian components.

Conventional Annealed EntropicEntropic

In the first case, over-fitting has resulted in a model of the
accidental properties of the data (e.g., the clumpiness of the
sample). In the second case, trimming has removed excess
components and the resulting model looks much more like
the essential structure of the data, but a large under-sampled
region near the top still affects the model. In the third
case, DA circumvents this local optimum and finds a model
which generalizes even better.



9.2 Radial basis function networks (RBFNs)

Vowel classification: We obtained the British English
vowel recognition dataset from the CMU Neural-Bench
Archive. Each example of a vowel is characterized by
LPC coefficients from two time-frames. This dataset
has been treated several times using perceptrons, neural
networks, Kanerva models, radial basis function networks,
and non-parametric methods (nearest neighbor). The last
yielded the best classification of the test set (56%), while
RBFNs peaked at 53% with 528 Gaussian basis functions
[Robinson, 1989]. We combined entropically estimated
mixture models of each vowel’s training data into an RBFN
and obtained 58.7% correct classification on the test set.
Entropic estimation found mixtures of 1-3 components per
vowel, resulting in an RBFN of only 22 basis functions.

Home value prediction: We obtained the publicly
available Boston home value database from StatLib and
set out to predict the median home value from 13 other
potentially relevant attributes. The features are numeric-
or boolean-valued and have different (arbitrary) dynamic
ranges; we normalized each dimension to unit variance
before mixture modeling. In each trial, all models were
identically initialized and trained on half of the examples,
randomly selected, then used to predict home values for
the remaining test examples. We use the performance of
the ML model as a baseline in each trial; our measure
of performance is how much an entropically estimated
model reduced the mean squared-error of predictions on
the test set. The following table shows mean improvement
in RBFN prediction accuracy over maximum-likelihood
models, as a function of # of RBFs at initialization.

#RBFs entropic MAP . . . +trimming . . . +annealing
5 y 0.0047 y 0.0040 � 0.0100
10 y -0.0066 y 0.0014 � 0.0032
20 y -0.0781 0.0207 0.0581
40 0.0078 0.3986 0.4065
80 � 0.0959 2.7565 3.5145

All values are at ap<10�5 level of statistical significance
except for those marked with a ‘y’ (p>0:1) or a ‘*’
(p<0:01). The improvement is quite significant given a
large initialization (recall that these scores are in terms of
unit-variance prices). This can be attributed to entropic
estimation’s resistance to over-fitting. The advantage
disappears or becomes statistically insignificant when the
initializations are too small, but notice that even in these
under-fitted models, annealing is finding superior local
optima.

9.3 Hidden Markov models (HMMs)

Handwriting analysis and classification: We obtained
handwriting samples by 10 writers from the UNIPEN
archive. The diagrams below show entropic and maximum-
likelihood models of the pen-strokes for the digit “5,”

estimated from pen-position data taken at 5msec intervals
from 10 different individuals via an electro-magnetic
resonance sensing tablet. Initial conditions were identical.
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Ellipses indicate show iso-density contours for each
state; �s and arcs indicate state dwell and transition
probabilities, respectively, by their thicknesses. Entropic
estimation induces an interpretable automaton that captures
essential structure and timing of the pen-strokes, as well
as variations in their ordering between writers. 50
of the original 80 dynamical parameters were trimmed.
Estimation without the entropic prior results in a wholly
opaque model, in which none of the original dynamical
parameters were trimmed. Over 10 trials with different
parts of the database held out, entropic models yielded 96%
correct classification; ML models yielded 93%.

Video analysis: In this example a gigabyte of video
randomly taken from an office setting was filtered to
extract motion vectors and then modeled entropically
with a hidden Markov model [Brand, 1997a]. The
resulting HMM state machine is compact enough to read:

recline & swivel

whiteboard

phone

computer

enter/exit

4 5

83

6

10

1

2

7

11

12

9

Roughly 2/3 of the transitions were trimmed. We have
taken the liberty of labeling states by using forward-
backward analysis to find their support in new video. The
states mapped nicely to typical work activities of the office
occupant. An HMM conventionally estimated from the
same initial conditions is fully connected and thus too
bushy to profitably illustrate or interpret.

Prediction in Bach chorales: We obtained a dataset
of melodic lines from 100 of J.S. Bach’s 371 surviving



chorales from the UCI repository [Merz and Murphy,
1998], and transposed all into the key of C. We compared
entropically and conventionally estimated HMMs in
prediction and classification tasks, training from identical
random initial conditions and trying a variety of different
initial state-counts. We trained with 90 chorales and testing
with the remaining 10. In ten trials, all chorales were
rotated into the test set. The results neatly chart the
sparsification, classification, and prediction superiority of
entropically estimated HMMs.
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Entropic versus ML HMM models of Bach chorales

# states at initialization
5 15 25 35

45

50

55

60

65

70

75

%
 s

eq
ue

nc
es

 c
or

re
ct

ly
 c

la
ss

ifi
ed

Lines indicate mean performance over 10 trials; error bars
are 2 standard deviations. It is clear that despite substantial
loss of parameters to sparsification, the entropically
estimated HMMs were, on average, better predictors of
notes. (Each test sequence was truncated to a random
length and the HMMs were used to predict the first missing
note.) They also were better at discriminating between
test chorales and temporally reversed test chorales—
challenging because Bach famously employed melodic
reversal as a compositional device. With larger models,
parameter-trimming became state-trimming: An average of
1.6 states were “pinched off” the 35-state models when all
incoming transitions were deleted.

While the conventionally estimated HMMs were wholly
uninterpretable, in the entropically estimated HMMs one
can discern several basic musical structures. Here is
a sampling of high-probability states and subgraphs of
interest from an entropically estimated 35-state HMM.
(Tones output by each state are listed in order of
probability. and extraneous arcs have been removed for
clarity.)
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34
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These include self-transitioning states that output only

tonic (C-E-G) or dominant (G-B-D) triads, lower- or upper-
register diatonic tones (C-D-E or F-G-A-B), and mordents
(A-]G-A). We also found chordal state sequences (F-A-
C) and states that lead to the tonic (C) via the mediant
(E) or the leading tone (B). Forward-backward analysis
of the chorales confirms that these subgraphs are indeed
“explaining” these musical structures.

Facial animation: In this case we learned a dynamical
model of two covarying signals—acoustic features in
the voice and visual features on the face—from video.
Inspection revealed that the model organized facial
configuration space into prototypes that strongly resemble
visemes. Although technically a recognition model, it was
so sparse and near-deterministic that it can be used to
generate realistic facial motions to accompany a new voice
track, e.g., near-photorealistic face syncing. Moreover,
the empirical the entropy rate of the model indicates that
it is propagating context effects an average of 135msec
forward and backward in time—consistent with vocal co-
articulation effects—but some context is propagating over
300msec—probably facial co-articulation effects, which
typically occur at longer time-scales due to less agile facial
tissue. Surprisingly, the model was able to predict upper
facial motion even more accurately than motion around the
mouth, perhaps by exploiting prosodic information in the
acoustic signal.

9.4 Recurrent neural networks (RNNs)

In this rather speculative example, an entropic prior was
designed for the weights of a recurrent neural network by
assuming that� generates neural networks with weights
from a Gaussian distribution with functionally related mean
and variance. This yields a modified back-propagation
rule and a trim test. The figures show a semi-recurrent
neural network (a DAG with self-connections for memory;
activation propagates one link per cycle) trained to compute
XOR using conventional back-prop with weight decay
(left) and entropic back-prop with trimming (right). Initial
conditions were identical.
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Note that the entropically estimated topology is an
amalgam of the two minimal feed-forward XOR circuits.



10 Open questions

Our framework is agnostic with regard to two pressing
questions: Firstly, what criteria should motivate our choice
of an entropy measureH(�)? As discussed inx6, different
choices lead to MDL and entropy minimax. In many cases
they are identical. Both are consistent with our results,
and one can often be used as upper-bound for the other
when analytic forms are unavailable. Secondly, when
should we remove trimmable parameters? Always? At or
near convergence? During DA? Various combinations of
entropic training, trimming, and annealing have intriguing
physical analogues, including the metallurgical processes
of casting, tempering, and bluing.

The entropic prior can pose severe challenges to
integration-based Bayesian methods such as model aver-
aging. Because integrating over all hidden-variable models
in almost always intractable, Bayesians typically fall back
to the marginal likelihoods of a single model structure as
an approximation. For some classes of models, marginal
likelihoods are more predictive than posterior densities,
but in general there is no reason to believe that they are
always a good approximation (e.g., HMMs) or even that
the model structure having the greatest marginal likelihood
shares much probability mass with the posterior mode.
Where integration is desirable but infeasible, we propose
falling back to the weighted responses of a population
of entropically estimated models. Of course, depending
on one’s choice ofH(�), this might require solving
the integral which normalizes the prior—a problem that
remains outstanding.

It is worth inquiring whether this framework can be
extended to purely discrete optimization problems. Our
preliminary results are encouraging: It is possible to gener-
alize the multinomial MAP estimator to compute doubly
stochastic matrices. This allows us to entertain graph-
theoretic problems whose solutions can be formulated as
permutation matrices (zeros but for a single 1 in each
row and column). These problems can be “softened” to
a doubly stochastic matrix (a weighted super-imposition
of all possible solutions) at some high temperature, then
“hardened” to a single quasi-optimal solution as entropy
is algorithmically minimized. Initial experiments with
traveling salesman problems have been quite promising.

11 Summary

We have develops an efficient method for finding
compact hidden-variable probability models via entropy
minimization. These models are highly predictive and
often interpretableas theories that identify relationships
between hidden causes and observed effects. The main
results are: 1) An entropic prior that favors small,
unambiguous, and maximally structured models. 2) A

prior-balancing manipulation of Bayes’ rule that allows
one to gradually introduce or remove constraints in the
course of iterative re-estimation. When combined with
#1 this yields a posterior whose negative logarithm equals
or upper-bounds the Helmholtz free energy of the model.
This posterior contains as special cases the methods of
maximum entropy, maximum likelihood, and our new
method, maximum structure. 3) MAP estimators such that
entropy optimization and deterministic annealing can be
performed wholly within EM. In the maximum structure
case, the MAP estimator smoothly extinguishes excess
parameters, thereby simplifying the model and preventing
over-fitting. 4) Trimming tests that identify excess
parameters whose removal willincrease the posterior.
These accelerate learning. The combined result is a
class of fast and exact hill-climbing algorithms that mix
continuous and combinatoric optimization and evade sub-
optimal equilibria.
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A Deterministic annealing paths

Here we illustrate different annealing methods associated
with the continuation shown inx4. The figures below show
the iso-contours of that surface, and possible paths to the
minimum. The goal is to travel the correct annealing path
while computing as few points along it as possible. In this
regard gradient descent is profligate:

because it finds the local minimum at each temperature by
moving in fixed increments, then lowers the temperature
according to a fixed schedule. This can lead to disaster if
the temperature declines too fast:

Expectation maximization is usually a much more efficient
way to get into the neighborhood of the local optimum:

and we exploit the same machinery to calculate safe jumps
in temperature:

In practice we find it sufficient just to movetowards
the local optimum at each temperature, interleaving
parameter and temperature re-estimation to obtain very fast
trajectories to the optimum.


