
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Cranium Network Interface: Architecture
and Implementation

Neil McKenzie

TR98-14 December 1998

Abstract

As the performance of networks and processors increases, the performance of the network in-
terface becomes an increasingly significant bottleneck in the overall performance of the parallel
or distributed system. The bottleneck persists because it is fundamentally difficult to design and
construct network interfaces. We seek to reduce the difficulty by developing a generic network
interface template architecture called Cranium. Key aspects of this architecture are hardware
support for argument checking, data movement (DMA) and efficient handlers for both short
messages and large messages. Cranium provides protected direct access to user-level programs.
Cranium is also compatible with networks that may deliver packets out-of-order; there is zero
penalty for unordered packets. We introduce the Cranium architecture and describe a related
implementation project called ChaosLAN.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1998
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Cranium Network Interface:
Architecture and Implementation

Neil R. McKenzie

TR-98-14 October 1998

Abstract

As the performance of networks and processors increases, the performance of the
network interface becomes an increasingly significant bottleneck in the overall per-
formance of the parallel or distributed system. The bottleneck persists because it is
fundamentally difficult to design and construct network interfaces. We seek to reduce
the difficulty by developing a generic network interface template architecture called
Cranium. Key aspects of this architecture are hardware support for argument check-
ing, data movement (DMA) and efficient handlers for both short messages and large
messages. Cranium provides protected direct access to user-level programs. Cranium
is also compatible with networks that may deliver packets out-of-order; there is zero
penalty for unordered packets. We introduce the Cranium architecture and describe a
related implementation project called ChaosLAN.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Information Technology Center America; an acknowledgment of the authors and individual contributions to the work;
and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1998
201 Broadway, Cambridge, Massachusetts 02139



1. First printing, October 26, 1998



1

1 Introduction

The network interface ties together many disparate levels of a complete parallel or distributed com-
puter system. At the hardware level, it ties together the processor, the memory and the network
router. It provides services for the operating system: argument checking, protection, atomicity and
restartability. It provides a medium of communication for application programs. It provides a soft-
ware interface to the network for application programmers and the authors of run-time libraries and
compilers. It is therefore not surprising that network interface design is difficult. The complexity
of integrating all the levels of a parallel or distributed computer system makes the design of the
network interface a daunting task. A lack of design skill at any of these levels will result in a net-
work interface that delivers poor performance. Furthermore, new network interface designs often
fail to build upon previous experience because earlier efforts are too closely tied to the particular
implementation of the processor or network.

The intrinsic difficulty of network interface design motivated us to develop a template architec-
ture for network interfaces, called Cranium [1, 2, 3]. We began by examining the network interface
strategies in existing designs, and developing abstractions that are independent of any particular
compiler, programming language, operating system, processor instruction set, network or hardware
implementation technology. From these abstractions we synthesized the template network interface
architecture. The goal was to create the simplest network interface design that provides all of the
necessary functionality, one that provides the best possible communication performance over a wide
range of possible uses and environments.

In the remainder of this introduction, we examine the techniques and benefits of hardware sup-
port in the network interface for message passing, and discuss one of the properties,protocol pro-
cessing, in depth. We discuss the Cranium architecture in Section 2. In Section 3 we describe an
implementation project that is based on the Cranium network interface architecture.

1.1 Hardware support in the network interface for message passing

To make message passing efficient, a network interface design provides direct hardware support
for many aspects of the message passing system. Three important types of support that have been
explored in many research and commercial network interfaces are support for argument checking,
data movement and protocol processing, described as follows.

� Argument checking is a significant source of software overhead in a message passing sys-
tem. If argument checking is performed only in software, it is by code that runs at supervisor
level, as part of the operating system (i.e. in a device driver). All interactions between the
application program and the operating system involve hundreds or thousands of processor
instructions and are fundamentally slow. Support for argument checking in the network inter-
face hardware can dramatically reduce this source of overhead.

� Hardware support for data movement is called Direct Memory Access (DMA). DMA reduces
the transfer time per message word for two reasons. First, DMA can take advantage of a fast

MERL-TR-98-14 October 1998



2

pipelined memory bus mode called burst mode. Second, DMA allows packets to be sent or re-
ceived while the processor attends to other tasks. This ability to overlap communication with
computation can greatly reduce the overhead of communication. If the network interface does
not provide DMA, then the data movement style is called PIO (programmed input/output) in
which all data are moved using processor instructions. Some network interfaces support both
DMA and PIO.

� Network interfaces can also provide direct support for message protocol processing. Ames-
sage protocol[4] is an agreement between the sender and the receiver concerning the size,
format and sequence of the message. Supported protocols run efficiently. However, support-
ing every conceivable protocol in hardware is impossible in practice. The best strategy for
the designer of the network interface is to identify the most common message protocols and
support them directly, and emulate the others in software.

The challenge to the designer of the network interface hardware is to manifest all three types of
support, ensure that the software layers of the message passing system are able to take advantage
of these hardware support features correctly and efficiently, yet avoid designing a circuit that is
needlessly complicated and difficult to construct.

Hardware support for argument checking and data movement have been covered extensively in
the literature on network interfaces. However, hardware support for protocol processing has been
less well documented, which motivates us to address it in the following section.

1.2 Protocol processing

To make the network interface as efficient as possible, it must support message passing protocols
directly in hardware. A message passing protocol involves the interaction of data movement, noti-
fication and dispatch and management of buffers. Figure 1 describes a taxonomy of strategies for
the receive interface. Under DMA there are two options. If DMA isprocessor-initiated,then it is
like PIO: notification occurs first, then the data is moved (i.e. DMA is dispatched). If the DMA
style isautomatic-receive, the data movement occurs first, and the processor is optionally notified
afterward.

Within automatic-receive DMA there are two styles of protocol support: buffered and un-
buffered. Under the buffered protocol, incoming packets are placed into buffers managed by the
receiver, such as a hardware FIFO or a ring-queue in the main memory of the processing node.
Under the unbuffered protocol, data from incoming packets are passed directly into pre-allocated
locations in memory, whose destinations are specified by the sender. Most network interfaces that
support message passing (e.g. using the Intel NX message passing interface [5]) support a buffered
protocol. Two examples of support for the unbuffered protocol are the Hamlyn network interface
from HP Labs [6] and the SHRIMP network interface from Princeton [7]. The terminology used by
the Hamlyn team for the unbuffered protocol issender-managedcommunication. Network inter-
faces that support remote-write, such as the NI in the Cray Research T3E [8], can also be considered
to support the unbuffered protocol.

MERL-TR-98-14 October 1998



3

PIO DMA

Automatic

Buffered

Proc. initiated

Unbuffered

Receive interfaces

Figure 1: Taxonomy of the receive interface

The principal advantage of the unbuffered protocol is the ability to filter notification information.
The network interface passes a notification to the processor only when an interesting packet has
been received, such as one that denotes the end of a message. The overhead of notification can be
significant, on the order of tens to hundreds of processor instructions. Therefore, any notification
that is not passed on to the processor reduces the overhead of communication. The reduction in this
type of overhead is the most dramatic when packets are small and messages are large.

It is possible to address the lack of proper protocol support in the network interface by using
software-only techniques such asprotocol compilers[4] and active messages[9]. These types of
software-only techniques can provide a significant savings in overhead over previous implementa-
tions of message passing libraries. However, they cannot solve the performance problems inherent
in the network interface hardware. In general, network interface designs implement only one mes-
sage protocol directly. Other message protocols must be realized by software emulation. Generally
speaking, the buffered protocol works well only for small messages, and the unbuffered protocol
works well only for large messages. Since most programs involve some kind of mix of small and
large messages, all messages of the “wrong type” will be inefficient.

The tension between low latency support and high throughput support motivates the use of two
different mechanisms to deal with the two cases independently. The challenge is to provide a unified
approach that avoids needless complexity.

2 The Cranium network interface architecture

The initial motivation for Cranium came from a requirement to design a high-performance compan-
ion interface to the Chaos network router [1, 2, 10]. The Chaos router has two interesting attributes.
It routes small fixed-size packets, using a payload the size of a processor cache-line (e.g. 32 bytes).
It also uses adaptivity to improve its throughput and reduce its average latency; as a result, pack-
ets may overtake one another in the network, resulting in out-of-order arrival. The name Cranium
comes from the acronym for Chaos Router Autonomous Network Interface for User-level Message

MERL-TR-98-14 October 1998



4

Router

Auto-receive
channels channels

Queuing

CRANIUM

channels
Send

DRAM CPU

Network

Figure 2: Cranium architecture

passing. However, the Cranium approach is broadly applicable to many different network routers.

Cranium is activated by channel commands issued by the processor. Cranium then autonomously
schedules and executes its channel operations independent from and concurrent with processor exe-
cution. Cranium is multi-threaded in the sense that multiple message commands can be in progress
simultaneously. Channel registers are loaded and stored directly using memory-mapped read and
write operations. The overhead of sending and receiving messages is minimal, on the order of a few
user-level instructions.

Figure 2 is a block diagram showing the structure of Cranium, which consists of three channel
groups: send channels, auto-receive channels and queuing channels. Each channel represents a
complete context for a message, including the physical address of the local message buffer, the
remote node name, the number of packets to send or receive, and transfer completion status. Fields
in the packet header determine which channel group and channel becomes the handler for the packet
payload.

The send channel group represents the send interface. The receive interface consists of both
the set of queuing channels and the set of auto-receive channels. Each queuing channel manages a
separate ring-queue. Separate queues are maintained for the user and the operating system, and there
is also an error queue. The send and auto-receive channels support DMA transfers up to the size
of an MMU page. The send channels convert long messages into separate packets; the auto-receive
channels re-assemble these packets into messages.

MERL-TR-98-14 October 1998



5

2.1 Send channels and auto-receive channels

The auto-receive channels implement the unbuffered protocol. The send channels and the auto-
receive channels are symmetric; the programmer model for both sets of channels is nearly identical.
At any time, a send channel or auto-receive channel is either in the idle state or in an active state
where it is transmitting or receiving packets. Each activation of a channel initiates a block transfer
of up to an MMU page. If a cache line is 32 bytes and an MMU page is 8K bytes, then there are
up to 256 packets per channel command. Each send channel and auto-receive channel maintains a
packet count, a node ID and a physical buffer base address. The packet counter in the send channel
is copied into the sequence number field in the packet header. For each packet that is sent, the
physical address of the payload data is computed by adding the physical base address to the packet
counter times the size of a cache line. The auto-receive channels place incoming packet data into
memory in the proper location by the same offset from the receiver’s physical base address, thereby
providing compatibility with networks that may deliver packets out-of-order. The processor can
load the packet counter value from the send and auto-receive channels to determine completion
status of the transfer. Optionally, Cranium can interrupt the processor when the counter reaches
zero, indicating that the transfer has completed. Note that any send channel can send to any auto-
receive channel at any node. A restriction is that an auto-receive channel must be activated before
the send channel starts sending packets to it. A protocol error is signaled when a packet is handled
by an inactive auto-receive channel, or if one or more of the fields in the packet header do not match
what is expected by the auto-receive channel. The culprit packets are then deposited into the error
queue.

2.2 Queuing channels

The queuing channels implement the buffered protocol. Packets destined for a particular queuing
channel are placed into the corresponding ring-buffer in memory in the order they are ejected from
the network. Queue memory is implemented using main memory; queue buffers are locked into
the physical memory map. User programs access queue memory directly using load and store
operations. By using main memory to hold the ring-queues, it becomes possible to reduce the size
of the hardware FIFO in the receive interface. DRAM memory is much cheaper and lower power
than comparably sized SRAM needed in the FIFO. Main memory storage also allows the operating
system to change the size of queue memory when the user program is started, rather than requiring
the network interface hardware to be reconfigured. Like the auto-receive channels, data are moved
first by DMA and the processor is notified afterward. Unlike the auto-receive channels, every packet
that arrives into the queuing channels sends a notification to the processor.

2.3 Protection

Cranium provides the necessary features to implement protected, safe user-level access: address
mapping, logical node identifiers, atomic packet injection, network drain and guaranteed delivery
of operating system messages. Cranium does not allow the user program to write the physical base

MERL-TR-98-14 October 1998



6

OS tables User space

B Buffer B

Buffer A

A

Buf map

Node mapCRANIUM

Node_map_ptr

Buf_map_ptr

Figure 3: Protection for safe user-level access via mapping tables

address of the send or auto-receive channel directly. Similarly, the user program cannot load the
node ID directly, because there may be destination nodes that the user should not be able to access.
In each case there is a level of indirection provided by mapping tables, one for node IDs and one for
buffer addresses. Each mapping table occupies the node’s DRAM in a protected location, accessible
only to the operating system and pinned into physical memory. User programs can specify only the
indices into these tables. Cranium performs a table lookup in each case. If the table entry contains
a valid value, then the translation succeeds. If the table entry contains an invalid value, then the
translation fails and the transfer is canceled. It is therefore impossible for the user program to cause
Cranium to send packets that reference ill-formed buffer addresses or node IDs.

Figure 3 shows the two mapping tables: the node map and the buffer map. The network interface
contains a pair of hardware registers that contain the base physical addresses for each mapping table.
Node Map Ptr points to the base of the node map, andBuf Map Ptr points to the base of the
buffer map. An entry in the node map is the physical identifier for a remote node, or zero to indicate
an unmapped node entry. An index into the node map (i.e. the offset from the base address of the
table) is called anode handle. An index into the buffer map is called abuffer handle. In order to
construct entries in the node map or the buffer map, the user program must call the operating system
and pass a user virtual address or node identifier as an argument. The OS performs the mapping and
returns the handle to the user program. When a buffer is mapped, the OS must also pin its page into
physical memory. For reasons of efficiency, it makes sense for the programmer to map all message
buffers during an initialization phase of the user program, so that all subsequent network commands
are performed at user level. Figure 3 shows two user buffers, A and B, that the user program has
registered with the OS and thereby entered into the buffer map. When the user program wishes
to send a message to node X using buffer A, it passes X’s node handle and A’s buffer handle to a
Cranium send channel. The interface performs a table lookup on each handle to verify that their
corresponding table entries contain valid data, and places the results of the lookup operations into
the send channel’s node ID and physical buffer address registers.

MERL-TR-98-14 October 1998



7

125 MHz

LCA
PCI

LCA 2
User

PCI Pamette

32

32

33 MHz

PCI bus LCA 3

User

LCA 1
UserUser

LCA 0

Mezzanine card

SRAM

SRAM

50Ω

coax50Ω

coax

FPGA

FPGA
Rx

33 MHz

Rx

Tx
FIFO

Tx

FIFO

1 GHz

9502
TQ

9501
TQ

Figure 4: Organization of the PCI Pamette card and the Fibre Channel mezzanine card

3 ChaosLAN implementation project

Extensive software simulation studies demonstrate the efficacy of the Cranium approach [2]. How-
ever, the best simulation is realized by a physical implementation, because it accounts for arti-
facts that are very difficult to simulate, such as operating system interrupt response overhead. The
ChaosLAN project [3] represents a prototype implementation of a gigabit LAN using chaotic rout-
ing and the Cranium network interface architecture.

The goals of the ChaosLAN network interface are to demonstrate the high performance capa-
bility using only readily available subsystems and components; no custom silicon is involved. The
ChaosLAN network interface is based on a generic PCI card called the PCI Pamette [11], a product
of Digital’s System Research Center. The Pamette contains five Xilinx Logic Cell Arrays (LCAs);
one LCA contains the PCI interface and the other four are user-defined. All of the Cranium circuitry
is realized in the Pamette’s four user LCAs and its on-board SRAM.

The gigabit LAN linkage is based on the Fibre Channel standard; we are using commodity Fibre
Channel transmitter and receiver chips from TriQuint (TQ9501 and TQ9502, respectively). The
TQ9501, TQ9502, four FIFOs and three Altera FPGAs occupy a small mezzanine card that plugs
into the Pamette. The Altera FPGAs execute the 8b/10b encode and decode operations according to
the Fibre Channel specification. Figure 4 is a block diagram that shows the structure of the Pamette
and mezzanine card combination.

With two network interfaces housed in two workstations, it is possible to construct a simple
point-to-point network. To construct networks with more than two nodes, the ChaosLAN team
is also developing a network switch based on a custom chip called the Chaos router chip. Our
prototype switch uses 16 Chaos chips to connect up to 16 workstations. Larger networks can be
constructed by cascading multiple switches.

MERL-TR-98-14 October 1998



8

The ChaosLAN mezzanine card is fully functional. We will provide performance measurement
data on the network interface in a follow-up document. Unfortunately, the development of the router
board (see [3]) has been halted due to a lack of funding.

4 Summary

We motivate and describe a template network interface architecture called Cranium. The architec-
ture was developed by studying a large number of existing network interfaces in both research and
commercial systems. The key observations were that hardware support was needed in three critical
areas: argument checking to reduce OS overhead, data movement (DMA) and support for both the
buffered and unbuffered message protocols. Traffic in networks tends to be bi-modal: most mes-
sages are small, but a substantial fraction of packets are associated with a few large messages. The
buffered message protocol works best with small messages and the unbuffered message protocol is
most efficient with large messages. We also introduce a low-cost prototype hardware implemen-
tation of Cranium called the ChaosLAN network interface. Our goal is to demonstrate that the
concepts in Cranium can be implemented inexpensively and deliver excellent performance for both
large and small messages.

Acknowledgments

Thanks go to my colleagues on the ChaosLAN implementation team: Kevin Bolding, Chris Fisher,
Carl Ebeling and Larry Snyder.

References

[1] Neil McKenzie, Kevin Bolding, Carl Ebeling and Lawrence Snyder. Cranium: an interface
for message passing on adaptive packet routing networks.Proc. of Parallel Computer Rout-
ing and Communication Workshop, Seattle WA, May 1994, Springer-Verlag, pp. 266-280.

[2] Neil R. McKenzie.The Cranium network interface architecture: support for message pass-
ing on adaptive packet routing networks.PhD dissertation, technical report UW-CSE-TR
97-02-04, University of Washington, February 1997.

[3] Neil McKenzie, Kevin Bolding, Carl Ebeling and Lawrence Snyder. ChaosLAN: design and
implementation of a gigabit LAN using chaotic routing.Proc. of Parallel Computer Routing
and Communication Workshop, Atlanta GA, June 1997, Springer-Verlag, pp. 211-223.

[4] Edward W. Felten. Protocol compilation: high-performance communication for parallel pro-
grams. PhD dissertation, University of Washington, Dept. of CSE, Sept. 1993, UW-CSE-TR
93-09-09.

MERL-TR-98-14 October 1998



9

[5] Paul Pierce. The NX message passing interface.Parallel Computing20(4), April 1994, pp.
463-80.

[6] Greg Buzzard, David Jacobson, Scott Marovich and John Wilkes. Hamlyn: an high-
performance network interface for sender-based memory management.Proc. of Hot Inter-
connects III Symposium,Stanford University, Palo Alto, CA, August 1995. Also available
as technical report HPL-95-86, Hewlett-Packard Company, HP Labs, Computer Systems
Laboratory, July 1995.

[7] Mattias A. Blumrich, Kai Li, R. Alpert, Cezary Dubnicki, Edward W. Felten and J. Sand-
berg. A virtual memory-mapped network interface for the SHRIMP multicomputer.Proc. of
the 21st International Symposium on Computer Architecture, Chicago IL, April 1994, pp.
142-153.

[8] Steve Scott. Synchronization and communication in the T3E multiprocessor.Proc. of ASP-
LOS VII, Cambridge MA, October 1996, pp. 26-36.

[9] Thorsten von Eicken, David E. Culler, Seth C. Goldstein and Klaus E. Schauser. Active
messages: a mechanism for integrated communication and computation.19th Annual Inter-
national Symposium on Computer Architecture,May 1992, pp. 256-266.

[10] Kevin Bolding.Chaotic routing: design and implementation of an adaptive multicomputer
network router.PhD dissertation, University of Washington, Dept. of CSE, Seattle WA, July
1993.

[11] Mark Shand et al. The PCI Pamette V1. World Wide Web site,
http://www.research.digital.com:80/SRC/pamette/ .

MERL-TR-98-14 October 1998


	Title Page
	Title Page
	page 2


	Cranium Network Interface: Architecture and Implementation
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11


