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Abstract

We address the problem of reconstructing the 3-dimensional motions of a human figure from
a monocular image sequence. We take a statistical approach, and use a set of motion capture
examples to build a gaussian probability model for short human motion sequences. We first
study this model in a simplified rendering domain. This yields analytic results for the optimal
3-d estimate given a 2-d temporal sequence, as well as for which motion modes are difficult to
estimate. The results from the simplified rendering conditions show that if we can overlay a
stick figure on an image of a moving human, we can estimate his or her 3-d motion well. We
built an interactive tracking system to process real video sequences, and can achieve good 3-d
reconstructions of the human figure motion.
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Abstract

We address the problem of reconstructing the 3-dimensional motions of a
human �gure from a monocular image sequence. We take a statistical approach,
and use a set of motion capture examples to build a gaussian probability model
for short human motion sequences. We �rst study this model in a simpli�ed
rendering domain. This yields analytic results for the optimal 3-d estimate
given a 2-d temporal sequence, as well as for which motion modes are di�cult
to estimate. The results from the simpli�ed rendering conditions show that if
we can overlay a stick �gure on an image of a moving human, we can estimate
his or her 3-d motion well. We built an interactive tracking system to process
real video sequences, and can achieve good 3-d reconstructions of the human
�gure motion.
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1 Introduction

As one watches a �lm or video of a person moving, one can easily estimate the
3-dimensional motions of the moving person from watching the 2-d projected
images over time. A dancer could repeat the motions depicted in the �lm.
Yet such 3-d motion is hard for a computer to estimate.

Many applications would follow from a computer with the same abilities
to infer 3-d motions. There are applications to public safety for elevators and
escalators, as well as in interactive games, and virtual reality. In computer
graphics, a growing industry is devoted to \motion capture", where digitized
human �gure motion drives computer graphic characters. The human's 3-
d motion information is digitized either by magnetic sensors or by optical
techniques with multiple calibrated cameras and a special suit of markers.
Unfortunately, either technique is expensive and cumbersome. To obtain 3-
d �gure motion information from single-camera video would allow motion
capture driven by ordinary monocular video cameras, and could be applied
to archival �lm or video.

Under constrained viewing and motion conditions, Goncalves and collab-
orators [8] tracked the motion of an arm in 3-d. Rehg and Kanade [13] track
some hand motions over 3-d, allowing signi�cant occlusions. However, this
requires 3-d model initialization, and controlled viewing conditions. Work at
recovering body pose from more than one camera has met with more success
(e.g. [6, 10]). Despite research attention (e.g., [5]), the problem of recovering
3-d �gure motion from single camera video has not been solved satisfactorily.

Our approach is to use strong prior knowledge about how humans move.
We show that this prior knowledge dramatically improves the 3d reconstruc-
tions. We learn our prior model from examples of 3-d human motion.

We �rst study the 3-d reconstruction in a simpli�ed image rendering do-
main where a Bayesian analysis provides analytic solutions to fundamental
questions about estimating �gural motion from image data. Using insights
from the simpli�ed domain, we apply our Bayesian method to real images
and reconstruct human �gure motions from archival video. Our system acco-
modates interactive correction of automated 2-d tracking errors, which allows
reconstruction even from di�cult �lm sequences.
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2 Prior model

Our training examples are 10 3-d motion capture sequences, of 5 - 10 seconds
each, obtained from http://www.biovision.com. The data is position in-
formation of 37 markers over 120 to 240 temporal frames for each sequence,
sampled at roughly 20 frames per second. The motions are an ecclectic set
of short activities, presumably designed to illustrate the range and preci-
sion of the motion capture equipment. Fig. 1 shows subsets of 3 of the 10
motion sequences. (As in our other motion displays, these �gures show a
\stroboscopic" display of an animated sequence, temporally subsampled and
sometimes spatially o�set for clarity. We draw lines between markers (circles)
to create a stick person that is easier to interpret.)

We seek a simple and tractable, yet useful, probabilistic model for the
3d motions, learned from these examples. We divide up the motion signals
into \segments" of a �xed, short temporal length. Our prior model will be a
probability distribution over those temporal segments, marker positions over
a few frames.

If we choose too many frames for our units of human motion, our training
data won't be long enough to give us a reliable enough model of such a
complex vector. If we choose too few frames, we won't capture enough motion
regularities with our model. For what follows, we found 10 to be a good
number of frames for each segment. Sampling from the original data, with an
overlapped o�set of 5 frames, we obtained 257 10-frame segments, represented
by 1110 numbers each (37 body markers times 3 dimensions times 10 frames).

We want a probabilistic model that describes these vectors. Motivated
by the success of principle components analysis (PCA) at dimensionality
reduction [4, 14], we �rst ask whether we can describe these motion segments
as linear combinations of basis functions. We form a training matrix, M , by
stacking the 1110 dimensional training vectors together in columns, after �rst
subtracting the mean vector, ~m. Singular value decomposition, SVD, gives
M = USV 0, where the columns of U are the basis functions and the diagonal
elements of S are the corresponding singluar values. The solid line of Fig. 3
shows the singular value spectrum. The spectrum drops quickly, allowing a
good summary of the data (91% of the variance) from just 50 eigenvectors.
Figure 2 shows a typical motion sequence synthesized using 40 eigenvectors,
showing an imperfect, but good, reconstruction. Thus, we can summarize
the 1110 dimensional motion segment vectors by their coordinates in a 50
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dimensional subspace of the 1110 dimensional space.
Of course, the singular values themselves provide additional information

about the motion segment data. We can model the data as resulting from a
gaussian probability distribution of covariance � = US [4]. This probabilistic
model is much stronger than just the subspace information itself (e.g., [12]).
Figure 4 shows three random draws from the resulting probability model for
10-frame human motion segments. The motions look like plausible human
motions, although, of course, random. This gaussian distribution provides a
useful prior model for how a human moves over time, yet, as we will see, it is
simple enough to work with easily and to provide some analytic estimation
results.

3 3-d estimation in a simpli�ed rendering do-

main

Our goal is to infer 3-dimensional human motion from an image sequence.
We �rst study the problem under simpli�ed rendering conditions, which helps
us understand the problem and provides analytic results. These results will
give us an upper bound on the estimation accuracy achievable with natural
images, and will also motivate how to process the natural scenes.

Our simpli�ed rendering conditions are as follows: the body is transpar-
ent, and each marker is rendered to the image plane orthographically. For
�gural motion described by human motion basis coe�cients ~�, the rendered
image sequence, ~y, is:

~y = PU~�; (1)

where P is the projection operator which collapses the y dimension of the
image sequence U~�. Note that under these rendering conditions, the markers
are distinguishable from each other.

To estimate the �gure's 3-d motion, we want to �nd the most probable
3-d explanation, speci�ed by ~�, for a given 2-d observation of markers over
time, ~y. By Bayes theorem, we have

P (~�j~y) = k1P (~yj~�)P (~�); (2)

where k1 is a normalization constant independent of the parameters ~� that
we seek to optimize. As developed above, for the prior probability, P (~�), we
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have our multi-dimensional gaussian,

P (~�) = k2e
�~�0��1�~�; (3)

where k2 is another normalization constant. If we model the observation
noise as i.i.d. gaussian with variance �, we have, for the likelihood term of
Bayes theorem,

P (~yj~�) = k3e
�j~y�PU~�j2=(2�2); (4)

with normalization constant k3.
The posterior distribution is the product of these two gaussians. That

yields another gaussian, with mean and covariance found by a matrix gener-
alization of \completing the square" [7]. The squared error optimal estimate
for � is then

� = SU 0P 0(PUSU 0P 0 + �I)�1(~y � (P ~m)) (5)

.
Figure 5 illustrates applying this estimate to an overlapped sequence of 3

motion segments (20 frames, each 10 frame segment o�set by 5 frames). We
omitted one of the 10 sequences from the training data, and used a subset
of it for this test. (a) shows the original sequence, and (b), the orthographic
projection. (c) is the 3-d reconstruction resulting from the likelihood term
alone, omitting the gaussian prior information. This �nds the coe�cients of
the human motion basis functions which best explain the visual data. Note
that the 3-d reconstruction is poor. (d) is the full Bayesian solution of Eq. 5:
including the prior information gives a much better 3-d reconstruction. Our
gaussian probability model and the simpli�ed rendering conditions allow this
analytic solution for the optimal 3-d motion estimate.

We also know the covariance matrix, Q, describing the uncertainty in the
estimated 3-d con�guration after viewing the 2-d sequence,

Q = S � SU 0P 0(PUSU 0P 0 + �I)�1PUS; (6)

where I is the identity matrix, the rows and columns having the dimension-
ality of the observations.

Of course, without any human motion model, the depth of each marker
would be completely unknown; our prior model for human motion removes
most of those ambiguities. The structure of the posterior covarianceQ reveals
what ambiguities that remain in the 3-d structure after viewing the image
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sequence. Figure 3 compares the diagonal terms of the prior covariance (solid
line) with those of the posterior covariance (dashed line). One mode, mode
2, shows virtually no reduction in uncertainty; that corresponds to a rigid
translation mode moving nearly along the line of sight of the camera, shown
in Fig. 6 (a). The second highest uncertainty mode, mode 1, is another
rigid translation mode, shown in Fig. 6 (b). The non-rigid mode having the
highest posterior uncertainty, mode 10, is shown in Fig. 6 (c). This mode
spreads the arms along the line of sight of the camera. We note that this
high uncertainty mode reects the errors observed in the reconstruction of
Fig. 5 (d).

Under our gaussian prior model, we can quantify how much 3-d motion
information we gain from seeing the orthographic projections of the marker
positions over time. For the example of Fig. 5, the prior probability dis-
tribution occupies a certain volume in the 50 dimensional parameter space.
The ratio of that volume to the posterior probability distribution's volume
is 10�14. While it is hard to gauge high dimensional volumes intuitively,
the ratio is small; the posterior uncertainty is considerably reduced. In post-
processing, we might expect to remove also the rigid mode ambiguities, either
by user interaction, or by applying rigid ground contact constraints.

We draw several conclusions from studying the problem in this simpli�ed
rendering domain. Using prior knowledge of human motion indeed does
improve the 3-d reconstructions possible from monocular image sequence
data. For our training set of human motions, the remaining uncertainty
after observations lay in the rigid translation away from the camera, and in
a mode spreading the arms along the camera ray. The reconstructions are
generally good. The image information we have used are the 2-d projections
of marker positions of a stick �gure. We conclude that if we are able to
accurately overlay a 2-d stick �gure on top of the human �gure in a video
sequence, approximately orthrographically rendered, we should be able to
achieve comparable 3-d reconstruction accuracy from real images.

4 3-d estimation with real images

In order to estimate the 3-d body motion, we �rst want to �nd a stick �gure
summary of the 2-d moving image of a human �gure. This is a problem that
various research groups have addressed, and, to a large degree, solved. Hager
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and Belheumer, and Black and collaborators have developed parameterized
motion models for tracking particular human actions [9, 2]. Blake and col-
laborators [3] have developed contour-based tracking of non-rigid objects.
P�nder [15] tracks the human �gure over stationary environments.

We developed our own tracking method, although code from the tracking
methods of other groups should also work. Because we wanted to reconstruct
3-d �gures even from di�cult �lm sequences, we allowed ourselves interactive
correction of the mistakes of the automatic tracking. This is in addition to
the other interactions needed for the problem: to specify which human to
track, and over which time period.

Our goal was to demonstrate that the reconstruction method developed
for the simpli�ed rendering carried over to natural scenes. We assumed that
the image rendering, over the time frames of interest, was roughly ortho-
graphic. We ignored the e�ect of a moving background; we reconstructed
the �gure's motion relative to the camera frame, not the background.

To achieve some independence of clothes patterns of the human �gure,
we took the gradient of the image intensities, and normalized the gradient
strengths by a blurred average of the local contrast strength. We then blurred
these normalized edge strengths enough to make a low-resolution sampling
of 10 by 8 sensors.

Based on the location of the sticks of our stick �gure, we formed a pre-
diction for what the sensors ought to see, assigning a �xed edge strength to
each stick. We penalize the squared di�erence between the observed sensor
responses and the predictions.

The user can interactively specify the correct location of any stick �gure
part at any time frame. This e�ectively places a spring between the image
position and the stick �gure part at that particular time.

These two inputs are integrated with the prior information in an function
optimization scheme. We seek the ~� which minimizes an energy, E(~�),

E = (~R� ~f(~�))2 + �1(~�
0��1~�) + �2

X

i

(~Ii � Pi~�)
2: (7)

~R is the vector of sensor responses over time from the image data. The func-
tion ~f converts ~� body motion coe�cients to predicted sensor responses. ~Ii
is the ith point position speci�ed by the user, and Pi projects the � coe�-
cients onto the corresponding ith stick �gure part 2-d position. �1 and �2 are
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constants which reect the weights of the image data, the priors over human
motions, and the interactively speci�ed 2-d point matches.

In the Bayesian framework, we interpret E as the negative log of the
posterior probability. �1 and �2 then represent observation and user \noise
strengths". The quadratic penalty for sensor response di�erences is the log of
the likelihood term, and both the interactively placed springs and the gaus-
sian prior motion model represent prior information about the parameters.
(We also included a 90� rotated version of all our training data in the cal-
culation of the prior probability.) We �nd the 3-d body motion parameters
which maximize the posterior probability. This code runs in interactive time
in Matlab on an SGI Onyx.

The recovered optimal ~� yields the recovered marker positions over time.
We then �t those marker positions to cylinder positions in a simple �gure
model using least squares techniques.

Figure 7 shows the resulting estimates of the 3-d �gure positions from
a 100 frame sequence of Barishnikov dancing. In order to test our 3-d re-
construction algorithm, rather than our 2-d tracking algorithm, we used ap-
proximately one interactive location speci�cation per frame, to ensure the
accurate overlay of a stick �gure over the motion sequence. Figure 7 (a)
shows the input sequence and the overlaid stick �gure.

We minimized E in Eq. 7 to �nd the ~� estimate over each overlapped 10-
frame segment. Positions from the overlapped segments were linearly blended
together. We set the o�set away from the camera of each segment (the rigid
mode we can't estimate) to ensure continuity to the next segment.

Figure 7 (b) shows the recovered 3-d marker positions, viewed from 30�

away from the camera position. Figure 7 (c) shows the 3-d cylinder model,
viewed from that same o�-camera position. Given the simple gaussian prior
model for human motion, we feel the results are remarkably strong. We
have rendered the 3-d dance as a linear combination of basis motions learned
from our motion capture training set. The dancing cylinder �gure generally
captures the 3-d motions of the dancer. The cylinder dancer does not point
his toes, as Barkshnikov does, but toe pointing was not in the training set.
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5 Discussion

Our approach has no notions of balance, support, or friction, apart from what
was learned from the training data. This suggests it may blend well with an
approach based more an physical models of a human (e.g., [11]). Such models
may o�er realistic physical constraints, but may be di�cult to �t from image
data, while our approach o�ers the complementary advantages.

A stronger prior should give our method better results. Despite the an-
alytic appeal of a single gaussian model, a more complex model, such as a
mixture of gaussians [1], may model human motions better, and give better
3-d reconstructions.

6 Summary

We have used a statistical model to infer the 3-d positions of a human �gure
from an image sequence of the human moving. We learned our model of
human motion from a training set of 3-d motion capture data, obtained from
a calibrated tracking system.

We found it fruitful to �rst explore the 3-d recovery problem in a simpli-
�ed rendering model (markers on a transparent �gure, viewed under orthog-
raphy). This linear rendering yields analytic solutions for the mean-squared
optimal 3-d motion estimate, as well as a covariance estimate for the poste-
rior uncertainty in the human motion. This identi�es the rigid and non-rigid
motion modes that are most di�cult to estimate from the 2-d motion se-
quence.

Those results show how to estimate the 3-d �gure motion if we can place
a 2-d stick �gure over the image of the moving person. We developed such
a tracker, allowing interactive correction of tracking mistakes, to test our
3-d recovery method. We show good recovery of 3-d motion for a di�cult
dance sequence, viewed from a single camera. These results show the power
of adding prior knowledge about human motions, in a Bayesian framework,
to the problem of interpreting images of people.
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Figure 1: Example motion sequences from our training set of 10 sequences.
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(a)

(b)

Figure 2: Figure showing approximation of the human motion signal as a
linear combination of basis functions. (a) 40 basis functions approximation;
(b) original.
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Figure 3: Prior (solid line) and posterior (dotted line) covariance matrix
diagonal elements, plotted on a semi-log scale. Measurment of the marker
positions in the image plane dramatically reduces the prior uncertainty
of the human motion. The one mode where uncertainty is not reduced
corresponds to rigid motion along the line of sight.
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Figure 4: Three random draws from the gaussian prior distribution over
the 37 3-d marker positions. Note that they all look human, and correspond
roughly to human motions
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Figure 5: (a) Original 3-d sequence. (b) Orthographically projected image
(markers connected by lines for clarity). (c) 3-d reconstruction omitting
prior information. This is the 3-d �gure in the eigenspace of the human mo-
tions which best accounts for the image data. (d) Full Bayesian reconstruc-
tion. Note that the addition of prior information creates a reconstruction
more similar to the original. The high posterior covariance modes (Fig. 6)
explain the remaining di�erences from the original sequence.
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Figure 6: The three modes with the highest posterior uncertainty.
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Figure 7: Top rows: Samples from 100 frame sequence of Barishnikov
dancing, with tracked 2-d stick �gure overlaid. Middle: Inferred 3-d
(marker) positions, using gaussian prior model for 3-d �gure motions. Bot-
tom: Recovered 3-d moving cylinder �gure, which generally captures well
the 3-d motions of the dancer. (Please see ftp site movie.)
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