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Abstract

Windows NT was not designed as a real-time op-
erating system, but market forces and the acceptance
of NT in industrial applications have generated a need
for achieving real-time functionality with NT. As its
use for real-time applications proliferates, based on an
experimental evaluation of NT, we quantitatively char-
acterize the obstacles placed by NT. As a result of these
observations, we provide a set of recommendations for
users to consider while building real-time applications
on NT. These are validated by the use of NT for a pro-
totype application involving real-time control that in-
cludes multimedia information processing. The results
of the above study should provide system designers with
guidelines, as well as insight, into the design of an ar-
chitecture based on NT for supporting applications with
components having real-time constraints.

1. Introduction

Ideally, for supporting real-time applications, a real-
time operating system ought to be used. However, mar-
ket forces and the acceptance of NT in industrial appli-
cations have generated a need for achieving real-time
functionality using NT. Many real-time systems and
applications desire to use NT as is, so as not to incur
the overhead of either the installation of other kernels
and facilities beyond those provided in the standard
NT package, or the usage of some other APIs that run
in parallel with NT's Win32.

�Supported in part by NSF under Grant CDA-9502639 and

by MERL- A Mitsubishi Electric Research Laboratory.

The purpose of this paper is to examine NT from the
perspective of real-time constraints and systematically
arrive at guidelines and recommendations that will be
useful for real-time system designers as they build ap-
plications using NT. Because NT was not designed with
predictability in mind, it is neither advisable nor fea-
sible to use NT for hard real-time applications, for
example, at the controller level with sub-millisecond
precision. But, used judiciously, it may be useful for
applications that (1) can tolerate occasional deadline
misses, and (2) have delay/response time requirements
in the tens to hundreds of milliseconds range such as
those described in [5, 7, 9]. To this end, a key element
of our study is to see to what extent the unpredictable
parts of NT can be \masked".

We begin, in Section 2, by giving an overview of
the capabilities of NT that are potentially useful to
real-time system builders. We then critically evaluate
their performance characteristics via a series of exper-
iments. The experiments and the observations derived
from them are summarized in Section 3. These obser-
vations are then used to build a prototype of an appli-
cation involving real-time control that includes multi-
media information processing. Section 4 describes the
components of the prototype along with the resulting
assessment of NT's suitability for such real-time appli-
cations. This section also contains a set of guidelines
and recommendations that emerge from the experimen-
tal evaluation of NT for real-time uses.

In this work our intention is to evaluate NT \as is"
for real-time uses. On the other hand, various commer-
cial e�orts are aggressively working towards extending
NT (typically by modifying NT or its underlying layers



[8], [14]). Section 5 critically evaluates these e�orts as
well as Windows CE (intended for embedded applica-
tions) and other research e�orts.

Although there have been e�orts in qualitatively an-
alyzing Windows NT's suitability for real-time applica-
tions [11], this paper is the �rst e�ort in quantitatively
studying NT via an experimental approach. We hope
this paper, based on systematic experimental evalua-
tions, will provide guidelines, as well as insight, needed
to design a software architecture based on Windows
NT capable of supporting hard and soft real-time tasks.
This architecture is the foundation of an operating sys-
tems test-bed that we are currently building to help
in the development and evaluation of scheduling tech-
niques that support, in a synergistic manner, the needs
of tasks having a variety of real-time and non real-time
requirements.

2. Windows NT as a Real-Time OS

NT's use of threads and thirty two possible priority
levels can be helpful in constructing real-time applica-
tions. So we discuss these �rst.

Each process belongs to one of the following prior-
ity classes: IDLE, NORMAL, HIGH and REALTIME. By
default, the priority class of a process is NORMAL. Pro-
cesses that monitor the system, such as screen savers
or applications that periodically update a display, use
the priority class IDLE. A process with HIGH priority
class has precedence over a process with NORMAL pri-
ority class. The REALTIME priority class is provided
as a support for real-time applications.

Windows NT assigns a scheduling base priority to
each thread. This base priority is determined by the
combination of the priority class of its process and the
priority level of the thread. A thread can have any of
the following seven priority levels: IDLE, LOWEST, BE-

LOW NORMAL, NORMAL, ABOVE NORMAL, HIGH-

EST, and TIME CRITICAL. The base priorities range
from zero (lowest priority) to 31 (highest priority).

Given this priority structure, Windows NT per-
forms priority based preemptive scheduling. When two
threads have the same base priority, a time sharing ap-
proach is used. REALTIME priority class threads have
non-degradable priorities, while NORMAL and HIGH

priorities can be decayed by the NT scheduler.
However, at a fundamental level, Windows NT was

designed as a general purpose OS and many of the poli-
cies/mechanisms are geared towards optimizing the av-
erage case, and this is at odds with the high predictabil-
ity requirements of many real-time environments. The
following are some of the limitations in Windows NT
{ due mostly to the lack of provisions that take into
account the priority of an event/object by various

services/mechanisms { that may contribute to unpre-
dictable delays for user applications [8, 11, 14].

The priority level of interrupts is always higher than
that of a user-level thread, including threads in the
real-time class. When an interrupt occurs, the trap
handler saves the machine's state and calls the inter-
rupt dispatcher. The interrupt dispatcher among other
things, makes the system execute an Interrupt Service
Routine (ISR). Only critical processing is performed in
the ISR and the bulk of the processing is done in a
Deferred Procedure Call (DPC).

DPCs are queued in the system DPC queue, in a
First In First Out (FIFO) manner. While this separa-
tion of ISR and DPC ensures quick response to any
further interrupts, it has the disadvantage that the
priority structure at the interrupt level is not main-
tained in the DPC queues. A DPC is not preempt-
able by another DPC, but can be preempted by an
(unimportant) interrupt. As a result of all this, the in-
terrupt handling and the DPC mechanisms introduce
unpredictable delays both for interrupt processing and
for real-time computations. More generally, the lack
of provision for avoiding priority inversions is the pri-
mary problem for real-time applications. Windows CE,
another operating system from Microsoft designed for
embedded communication and entertainment applica-
tions, supports priority inheritance (See Section 5).

Threads executing in kernel mode are not preempt-
able by user level threads and execute with dispatching
temporarily disabled, but interrupts can occur during
the execution of the kernel. As kernel level threads can
mask some or all interrupts by raising the CPU's cur-
rent IRQL (Interrupt request levels), the responsive-
ness at any point in time to an interrupt depends on
the mask set by kernel entities at that time, and the ex-
ecution time of the corresponding kernel entities. Also,
since only kernel level threads are allowed to mask and
unmask interrupts, even an unimportant interrupt can
adversely a�ect a real-time priority user level thread.
All of these do not bode well for real-time processing.

Unpredictability also occurs because some system
calls (e.g., some GUI calls) are synchronous and are
executed by system processes running at a non-real-
time class priority.

Given these, the natural question to ask is: What
are the conditions under which NT can in fact be used
for real-time applications? This is what we intend to
explore in the rest of the paper, �rst by studying the
behavior of the real-time related NT components and
then by using them in a prototype real-time applica-
tion.



3. Real-Time Features of Windows NT

In this section, we report on the results of experi-
ments conducted to evaluate real-time features of Win-
dows NT Workstation 4.0.

The platform used was a PC equipped with a
233MHz Pentium processor, 64MB of RAM and 256KB
of cache. Where communication is called for, the net-
work involved was a 10Mb Ethernet. Each PC uses
3Com3C590 combo Ethernet card connected via de-
partment wide network. Timing of events and the time
taken for various activities was determined using NT's
QueryPerformanceCounter(), a counter with a a res-
olution of 0.83 �seconds.

3.1. I/O Interference on Real-Time Threads

Our experiments were targeted towards the behav-
ior of threads at REALTIME priority class and their
e�ect on the I/O Subsystem, and visa versa. To this
end, we used two threads both with same thread pri-
ority in the REALTIME class, one performing I/O and
another CPU-intensive thread performing a continuous
For loop. The following three experiments were con-
ducted:
Experiment 1: To study the e�ect on keyboard

and mouse I/O, the I/O thread was made to read from
the keyboard/mouse. When the CPU-intensive thread
was running, it was observed that no I/O activity took
place. After the CPU-intensive thread completed, all
the keyboard inputs were processed. This shows that
the CPU-intensive real-time thread essentially shuts
out keyboard/mouse I/O even when this I/O occurs
from/to a real-time thread.
Experiment 2: To study the e�ect on disk I/O,

the I/O thread was made to write a �le, speci�cally,
40,000 64-bit values were written. The time-stamps
for the I/O and CPU-intensive activities were found to
be interleaved indicating time-sharing between the two
threads. This shows that a CPU-intensive real-time
thread did not shut out disk I/O.
Experiment 3: To study the e�ect on network I/O,

the I/O thread was made to read data from a remote
server using Windows Sockets API. Again here, the
time-stamps for the two activities were found to inter-
leave indicating time-sharing between the two threads.
This shows that a CPU-intensive real-time thread has
no adverse impact on network I/O.

To explain the above observations, we must briey
explain how NT handles I/O { beyond the use of DPCs.
In the Windows NT I/O subsystem, I/O requests pass
through several stages of processing:

1. The I/O manager sends the request in the form of
an I/O request packet (IRP) to the device driver.
The driver starts the I/O operation.

2. The device completes the I/O operation and inter-
rupts. The device driver then services the inter-
rupt. (This involves execution of ISR and queuing
of a DPC.)

3. The I/O manager completes the I/O request.

In the third step of I/O processing, the system writes
the data from the I/O operation into the address space
of the thread which requested the I/O. In this step, two
mechanisms are used [1]:

� Bu�ered I/O: Used for slower I/O devices where
the data transfer �rst takes place into the system
memory area and an Asynchronous Procedure Call
(APC) is queued to copy this data into the user
thread' s local area.

� Direct I/O: Used for faster devices like the disk.
The data transfer directly takes place into the user
thread's local address space, which is locked by the
system.

In Experiment 1, since the keyboard and mouse
I/O are performed as Bu�ered I/O, the execution of
APCs responsible for copying of the data into the user
thread's address space was not possible until the CPU-
intensive thread was completed. This is because the
input processing for keyboard/mouse is actually done
by threads in the kernel, which are not running with
real-time priority. Since priority inheritance is not be-
ing done, the threads processing input are not executed
until the CPU-intensive thread completes.

On the other hand, for Experiments 2 and 3, since
the disk and network I/O are performed as Direct
I/O, the system locks the corresponding threads' bu�er
space into memory. This ensures that the I/O is per-
formed even if a CPU-intensive real-time thread of the
same priority is running, which is possible due to time
sharing between threads of the same priority.

3.2. Time Taken for Process/Thread System Calls

In order to perform user-level scheduling of real-time
threads, which we consider as a possible approach to
run real-time applications on Windows NT, we con-
ducted experiments to �nd the time taken for the com-
pletion of various process/thread related Win32 API
calls. The values obtained from our experiments are
listed in Table 1. The times listed (in �secs) are times
that fall within the 90th percentile, i.e., 90% of the
1000 observations had values that were equal to or less
than the reported number. We are reporting this and
not worst-case (or averages) because of our interest in
soft real-time and not hard real-time (or timesharing)
applications.



Win32API Function Name Time
(�secs)

CreateProcess() 2600

SetPriorityClass()

from normal to real-time priority class 240

SetPriorityClass()

for all others combinations 125

SetThreadPriority()

for a thread to set its own priority 9

SetThreadPriority()

for a thread to set priority of another
thread of the same process

10

QueryPerformanceCounter()

to obtain the current time-stamp 6

Table 1. Time Taken for System Operations

3.3. Time Taken by System Activities

The next set of experiments was done to identify
the system activities taking place in the background
and worst case processor time needed to perform these
activities. To this end, we observed the system without
any other application running and logged the activity
every second for a continuous period of 30 minutes.
The following were (individually) observed in at least
one of the logs.

� Process 'system' had 23 threads, thread1 getting
a maximum of 53ms.

� Process 'csrss' had 10 threads, thread4 getting a
maximum of 50ms.

� Process 'services' had 18 threads, thread15 getting
a maximum of 50ms.

� Process 'perfmon' had 2 threads, thread1 getting
a maximum of 53ms.

Other threads of these processes consumed negligi-
ble processor time. Even though the above were not ob-
served within the same second, the observations mean
that system activities can take at most a total of 153ms
in a one second interval (discounting the time Process
'perfmon' takes since this is a performance monitor we
instantiated, not a system activity).

It should be noted that when user processes are run-
ning in the system they may generate some system ac-
tivity such as page-faults.

3.4. Summary and Recommendations

From a real-time perspective, the above observations
imply that to use Windows NT for real-time applica-
tions, the following principles should be practiced:

(a) Lock pages in memory for real-time threads. En-
sure that real-time threads are not inactive for a
long time, since NT may unlock pages of inactive
threads.

(b) The potential blocking time due to NT system ac-
tivity must be taken into account when accounting
for the delays incurred by an application thread.

(c) If there are processes or threads doing network
or disk I/O, the e�ect of systemwide FIFO DPC
queues may lead to unbounded response times
even for real-time threads. If the duration of I/O
activity in a given period can be characterized, it
may be possible to pessimistically compute the re-
sponse times.

(d) One should not depend on the Windows NT sched-
uler to accomplish the correct \fair sharing" be-
havior in cases where screen, keyboard and mouse
interactions are at the same level of priority as the
other real-time CPU-intensive tasks.

(e) To achieve more predictability for real-time tasks
in general, and to achieve responsiveness for oper-
ator/human inputs in particular, a real-time sys-
tem designer must not design the system such that
real-time threads monopolize the CPU and I/O
all the time. One must leave some computation
and I/O time for those important but non-real-
time NT tasks, such as those servicing the inter-
active I/O activities, to execute. These non-real-
time NT tasks are not under our (user-level) con-
trol, but will have adverse e�ect on the intended
real-time tasks if not executed in time. To accom-
plish this goal, one approach is to use periodic ex-
ecution with user-level controlled cooperative pre-
emptions, i.e., to design all threads in the real-
time class as periodic tasks using a heartbeat timer
mechanism described in the next section, such that
real-time threads voluntarily give up the CPU to
allow interactive I/O operations to complete.

4. Evaluating NT in a Real-Time Setting

To understand NT better, we prototyped a real-time
control scenario involving multimedia information. In
particular the focus was on the operator's workstation
[9]. The software running on the workstation has the
following components [10].

Operator input: The operator inputs control mes-
sages and actuator settings. An input has to be rec-
ognized, processed and sent to a remote destination
through the network. The control message is processed
at the remote node and the necessary control action is
taken. After this an acknowledgment will be sent back
to the operator station.

Incoming sensor data: Data arrives from sensors at
regular intervals and must be stored in a ring bu�er
in main memory. A consumer process reads a single
record from the bu�er, performs some computation,



and displays the result on the screen in a graphical
format.

Incoming video streams: Also executing at the op-
erator workstation is one video process responsible for
retrieving streaming video from the network and dis-
playing it on the screen. It is reasonable to assume that
such a software will most likely be COTS (commercial
o� the shelf).

4.1. Design

The following general principles were followed in de-
signing the prototype application:

� E�ciency through threads: For reasons of e�-
ciency we attempted to use threads wherever pos-
sible, and processes elsewhere.

� Achieving periodicity functionality: Some of the
processing, e.g., sensor data processing, is peri-
odic. We achieved this periodicity by implement-
ing a heartbeat timer. This is a process running
at the highest real-time priority. It periodically
sets events on which di�erent processes or threads
wait. Each time an event is set, the correspond-
ing thread or process can execute one periodic in-
stance and then once again wait for the event to
be set. Currently, the heartbeat timer uses the
Sleep() call to suspend itself till it is time to sig-
nal the next event.

In addition to designing the operator workstation,
there was a need to model the entity with which the
operator interacts. This entity may correspond for ex-
ample, to the local controller on the factory work oor,
which actually carries out the operator's instructions,
monitors the local state and sends state information
back to the operator. Such an entity was modeled as
a remote server. UDP was used for communicating
between operator station and the remote server. The
source of the video stream was just another node on
the network to which the operator workstation is con-
nected.

Besides the Heartbeat timer, the main entities at the
remote server are:

Remote producer: This periodically generates sensor
data and sends it to the operator workstation.

Remote operator input process: This entity waits
for operator input data from the operator worksta-
tion. Currently, this acknowledges the data by sending
the same data back to another thread on the operator
workstation.

Besides the Heartbeat timer, the main entities at the
operator workstation are:

Receiver: This is a periodic process that receives
sensor data from the remote server. It then stores the
same data in a circular bu�er.

Consumer: This is a periodic process with the same
period as the receiver. It reads sensor data from the
circular bu�er and stores it in memory. A precedence
relation exists between the receiver and consumer, en-
forced using an event which the receiver has to set to
allow the consumer to proceed. The bu�er manage-
ment protocol has the following retrieval semantics:
The consumer always receives the most recent data.
Many consumers will require this type of semantics.
For example, the operator is interested in the most re-
cent speed measured within a turbine. However, the
implemented bu�er data structure is general enough
to accommodate a wide variety of retrieval semantics.

Operator input process: This process waits for the
operator to provide commands and sends them out to
the remote server.

In order not to be a�ected by NT's inability to han-
dle mouse/keyboard processing and screen displays in
a timely fashion, all of the operator interactions with
the system were simulated via memory reads/writes.
Speci�cally, operator input was implemented by read-
ing 1K bytes of information from a speci�ed memory
location. At the end of this section, we discuss ap-
proaches to accommodate such operator interactions
and experiment with one possible approach.

Operator ack process: This waits for acknowledg-
ments sent by the remote server in response to opera-
tor input messages. It stores the received acknowledg-
ments in memory.

4.2. Implementation Details

At the operator workstation, a single process clmain
is launched. It initializes global events on the operator
side and spawns 2 processes:

1. Heartbeat timer.

2. Main operator process. This, in turn, spawns 4
threads corresponding to receiver, consumer, op-
erator input and operator ack processing entities.

At the remote server a single process remmain is
launched. It initializes global events on the remote
server and spawns 2 processes:

1. Heartbeat timer.

2. Main remote process. This, in turn, spawns 2
threads corresponding to remote producer and op-
erator input processing entities.

The heartbeat timer on each side is also used to con-
trol various housekeeping activities and to terminate
the di�erent threads and processes gracefully.

Probes are inserted into the code for taking tim-
ing measurements. As before, the high frequency
QueryPerformancecounter() function is used by the



probes for these measurements. In-memory logs are
maintained of the various events and their timing. At
the end of the experiment, the logged data is written
to disk by the parent process on each side.

4.3. Experimental Setup

The following processes were running for this set of
experiments.

� Operator workstation entities.
� Remote server entities.
� Realvideo player, transmitting distance learning
course material. 1

We observed that when launched, the video player
spawns a few threads which run at various priorities in
the HIGH priority class. This type of priority enhance-
ment is used by COTS applications to boost their per-
formance. Using the performance monitor to observe
the player's load indicated that there are occasional
bursts of activity during which the player uses up to
70� 90% of the CPU. This is perhaps due to the local
bu�ers being �lled after a network congestion. Each
experiment was run with the video stream started at
roughly the same place. This was to ensure that the
workload was comparable.

In all the experiments, the entities at the remote
server side were run in the REALTIME priority class:

� The priority of the heartbeat timer is always set
to HIGHEST level within the REALTIME priority
class.

� The priority of remote producer and operator in-
put processing entities are set to the NORMAL

level within the REALTIME priority class.

This was done to allow the measured delays to reect
activity at the operator end and not be a�ected by
delays due to other activities at the remote server.

At the operator workstation the priority of the pro-
cesses was varied between the NORMAL, HIGH and RE-

ALTIME classes and the priority of all threads was set
to NORMAL.

4.4. Experimental Results

Of interest to us are the timing properties of the
three types of processes { video display, sensor data
processing, and operator command processing { as a
function of the priority level at the operator side, the
o�ered load, and the size of the data shipped by the
operator. As for the workload tested, what we have
experimented with is a real work load [10] character-
izing a typical operator workstation which experiences

1Note that we have no control over the Realvideo player, in-

cluding what threads it spawns and what priorities these threads

execute at.

periodic sensor data input in 1K byte sizes, sends out
sporadic operator commands not more often than every
100ms, and displays one video window.

The quality of the video output was used as an in-
dicator of the e�ect on the video player's performance.
However, we saw no perceivable di�erences in the qual-
ity of the video output as we experimented with di�er-
ent parameters. Similarly, in all cases, the sensor data
processing (by the receiver-consumer pair) was not af-
fected. This pair was found to execute at the speci�ed
frequency with almost no jitter. So we focus on the
Round Trip Time (RTT) as seen by the operator input
process.

4.4.1 Round Trip Delays

In this set of experiments, operator input and receiver-
consumer entities run at the same frequency. Figures
1, 2, 3 respectively plot the round trip delays expe-
rienced by 1000 1KB operator commands for operator
input frequencies of 30; 50; and 100ms. Also, some im-
portant measures (maximum, mean, variance) of the
round trip delays are shown in Table 2. These clearly
indicate that:

� The round trip delay for the operator input vary
much more if the operator input processes are at
NORMAL priority. There is signi�cantly less vari-
ance if HIGH or REAL TIME priorities are used.

� Even through the average round trip delay is very
similar in all cases, the average decreases as pri-
ority increases. For example, for a operator in-
put period of 50ms, the average round trip delay
ranges from 3:356ms corresponding to NORMAL

priority to 2:428ms for REALTIME priority.
� The maximum value also tends to decrease with
increasing priority.

� The most dramatic change is in the variance. For
instance, for a 50ms operator input period, it de-
creases from 19:721 (normal) to 5:879 (high) to
0:242 (real-time). This augurs well for predictabil-
ity.

The above results indicate that even with all the
processes running, the system has enough processing
power to handle all the tasks. The large variance at
NORMAL priority, therefore, can be at least partially
attributed to the Realvideo player as well as system
activities which are running at a higher priority. As
the process priority is increased, this e�ect diminishes,
resulting in lower variance. The real-time processes in
the prototype are typically not computationally inten-
sive, but have strict delay requirements. System ac-
tivities on the other hand can su�er some amount of
jitter. As such, it makes sense to elevate the priority
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Figure 1. RTT with operator commands every 30ms.
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Figure 2. RTT with operator commands every 50ms.
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Figure 3. RTT with operator commands every 100ms

of these real-time processes to ensure that their delay
requirements can be met.

4.4.2 Better Response for Operator Thread

To exercise the system even further, we experimented
with di�erent message lengths (corresponding to dif-
fering amounts of operator input) and a higher rate of
operator input (needless to say that an operator input
every 10ms is humanly impossible, but helps stress the
system).

In the experiments discussed thus far, the threads in
the operator and remote processes had the same prior-
ity level (NORMAL). So, these threads ran in a time-

shared fashion. With a view to improve the respon-
siveness to operator threads we experimented with an
alternative approach whereby as soon as the operator
input thread was given a ticket to run, the priority of
the operator input and acknowledgment was raised to
HIGHEST, thereby giving them a priority higher than
the sensor data threads. This ensures that the oper-
ator input and acknowledgment are processed with a
higher priority than the sensor data threads. Table 3
gives the RTTs for these experiments. (Column \Size"
refers to the size of the message containing operator
input/commands.) It was observed that there was no
e�ect on the timeliness of sensor data threads.



Priority Period Max. Mean Variance
(ms) (ms) (ms)

Normal 30 75.297 2.654 8.846

High 30 27.938 2.523 2.571

Real-
Time

30 16.583 2.362 0.260

Normal 50 43.759 3.356 19.721

High 50 44.098 2.673 5.879

Real-
Time

50 9.475 2.428 0.242

Normal 100 54.858 3.104 16.523

High 100 32.740 2.765 5.184

Real-
Time

100 2.884 2.379 0.004

Table 2. Statistics for round trip delay.

Size RT
Prio.

Max Mean Variance

(bytes) (ms) (ms)

1K Normal 9.473 2.496 0.69

1K Highest 6.990 2.445 0.143

1.5K Normal 10.735 3.495 0.2

1.5K Highest 7.211 3.351 0.025

2K Normal 14.15 4.738 0.693

2K Highest 6.043 4.212 0.014

Table 3. Statistics for RTT with 10ms period.

The maximum delay was considerably lower when
we increased the priority of the operator thread to the
HIGHEST level from NORMAL. In fact, because the
maximum is larger than the period when NORMAL pri-
ority level was used, some of the messages miss their
deadlines. Speci�cally, we found that for a message
size of 1.5K, and NORMAL priority, there were 2 tardy
messages and for a message size of 2K there were 4
tardy messages out of 300 messages. No tardy mes-
sages were observed when the priority was raised to
HIGHEST level.

Even though the mean delays do not di�er by much,
the variance becomes very small when the operator
thread's priority is increased to HIGHEST. For exam-
ple, for a 1.5K message size, an order of magnitude
improvement is seen.

These experiments suggest that by systematic ma-
nipulation of thread priorities, better and more pre-
dictable response times can be achieved.

4.4.3 Accommodating Interactions with Oper-
ator

Since no deadlines were missed even with the period
set to 10 msecs for both operator and sensor, we de-

cided to evaluate the e�ect of allowing keyboard/screen
I/O from the operator thread. To this end, we made
the operator thread display the acknowledgment from
the remote server on the operator's screen. This ex-
periment was done with a message size of 1K and as
described earlier, the whole message is returned as the
acknowledgment, and is then displayed to the operator.
Results (see Table 4) indicate that when the period
is set to 10 or 20ms, because screen I/O is handled
at lower priorities, many of the deadlines are missed
and this has a cascading e�ect. However, increasing
the period of the operator thread to 100ms alleviates
these problems. At this period, even with screen I/O,
no deadlines are missed and the variance in the round
trip delay is low. These results are very encouraging
in that, given human response times, operator interac-
tions are likely to occur at relatively low frequencies,
i.e., higher periods. So it should be possible to accom-
modate them in many situations. Characterizing such
situations is one of our next steps.

Period Max. Mean Variance
(ms) (ms) (ms)

10 126.873 6.150 93.12

20 52.278 3.55 14.067

100 30.913 2.615 1.81

Table 4. Statistics for RTT with screen I/O.

An alternative to assigning or requiring higher pe-
riods for operator threads is to permit controlled pre-
emption of di�erent real-time threads so that operator
interactions can take place. We plan to explore this
avenue also.

4.5. Summary of Results

The prototype implementation models a simple mul-
timedia operator workstation for factory operations.
The prototype is parameterized, so di�erent con�gu-
rations and workloads can be tested. In particular, the
frequency of the operator input as well as the receiver-
consumer pair are tunable parameters, as is the mes-
sage size. A simple heartbeat timer mechanism along
with events was used to emulate periodic processes.
This heartbeat timer is an ideal candidate for imple-
menting meta-level scheduling functionality in Win-
dows NT. Even without using specialized scheduling,
it was observed that just using HIGH or REAL TIME

priority signi�cantly reduces the variability in response
times, without any observable degradation in system
performance. This suggests that as long as the appli-
cation tasks do not monopolize the CPU for long dura-
tions, and there is su�cient CPU capacity, using these



priority assignments may be su�cient to meet the per-
formance requirements of these processes { even when
I/O is involved. However, if the periodic workload per
process is high, or if a process is a COTS application
whose workload varies, it will be necessary to impose
some additional controls on the amount of time allo-
cated to a task. We are currently exercising the dif-
ferent elements of the prototype to experiment with
these situations in order to evaluate several schedul-
ing approaches to meet timeliness requirements. We
are also evaluating di�erent approaches to allow key-
board/screen/mouse I/O under controlled conditions.

5. Other Approaches towards Pre-

dictable NT

Our goal in this paper has been to understand NT's
capabilities and the extent to which NT can be used ju-
diciously as is by being \careful" while exploiting NT's
capabilities.

We now discuss other approaches that can be envis-
aged for overcoming the limitations of NT [8].
� Use a highly constrained and �ne tuned Windows
NT and application environment. This approach
is suitable mainly for applications whose worst
case resource behavior can be determined before-
hand. The solution involves using a restricted set
of support from Windows NT, and using care-
ful analysis to reduce the timing unpredictabil-
ity. Once such an application is implemented,
changes are either disallowed or require a complete
overhaul in order to guarantee the timing require-
ments.

� Modify the Windows NT kernel [4]. This option
requires continuous changes to the modi�cations
as new versions of NT appear.

� Couple real-time operating systems with Windows
NT, with each OS running in a di�erent machine.

� Provide a Win32 API wrapper around a real-time
OS. This alternative does not meet the require-
ment of running Windows NT applications in uni-
son with the real-time tasks.

� Modify the Hardware Abstraction Layer (HAL).
This is only a partial solution, which needs to be
coupled with a small real-time executive as is done
in Venturcom's RTX [14] and Real-Time Linux
[13].

� Compose a Windows NT driver to run all the time
critical threads. This is the approach taken in
[6]. This approach has the drawback of (1) hav-
ing to create a totally new API for users to con-
struct real-time tasks to run in this driver environ-
ment, and (2) potentially still incurring all poten-
tial blocking from other ISR and DPCs.

The above do not appear to be adequate or feasible
for our purpose. In contrast, many commercial exten-
sions to NT for real-time complement Windows NT
kernel with a real-time kernel. There are two alterna-
tives. In the �rst alternative, the real-time OS co-exists
with Windows NT. In the second alternative, the real-
time kernel becomes part of Windows NT in the form
of a device driver. The objective of the device driver is
to provide the services which are not supported by NT
and to trap hardware interrupts.

The following is a description of commercial prod-
ucts using these approaches:

RadiSys [8] places INtime, a real-time kernel based
on iRMX, outside the Windows NT address space. The
two OSs are able to communicate via an extension
to the Windows NT API. This mechanism uses hard-
ware support in order to achieve a complete separation
between two co-resident operating systems. This ap-
proach is similar to the work done by Je�ay and Bol-
lela [3]. The latter work implemented a small CPU ex-
ecutive which multiplexes the CPU between their own
real-time kernel and an IBM microkernel with an OSF1
server. The di�erence between INtime and [3] is that
INtime runs Windows NT as its lowest priority process
and in [3] the CPU is shared between the two operating
systems. The measures adopted to impart predictabil-
ity include:

� The INtime real-time kernel is based on the iRMX
kernel, and unlike NT, application threads and in-
terrupt handlers share the same priority structure,
allowing suitable priority assignment to threads
and interrupts.

� INtime runs Windows NT as its lowest priority
process. Real-time interrupts and active real-
time threads immediately preempt any running
NT thread, and also disable all non-real-time in-
terrupts. Assuming that iRMX implements some
sort of priority inversion handling protocol, this
arrangement should be able to alleviate the unpre-
dictable delays (at least for the real-time threads).

� The HAL has been modi�ed to ensure that inter-
rupts reserved for real-time use are never masked.
The HAL trappings attempt to assign interrupt
handlers to interrupts reserved for real-time ker-
nel use.

� RadiSys also claims to maintain complete address
space isolation and memory protection between
real-time and Windows NT processes.

Anther commercial solution is the one o�ered by
Imagination Systems [2]. Their real-time subsystem
called HyperKernel has its own scheduler, its own set



of services, and its own internal kernel. From the liter-
ature, it seems that they are using hardware support to
achieve a complete separation between two co-resident
operating systems and also do not modify the HAL.
Also, it seems that interrupts are controlled by direct
access to the Interrupt controller. Super�cially at least,
their methodology appears to have elements of com-
monality to the approach taken by RadiSys as well as
the work by Je�ay and Bollela [3].

The VenturCom approach [14] places a real-time
OS (RTX) as a subsystem inside Windows NT in the
form of a device driver. RTX facilities include prior-
ity scheduling, non-degrading priorities, inversion man-
agement, IPC support, fast clocks and timers, memory
allocation and page fault elimination. We believe that
NT is also considered the lowest priority process, but
have not been able to con�rm this. The approach taken
by VenturCom is similar to the one taken in Real-Time
Linux [13]. Here a software emulation of the interrupt
control hardware interacts with the OS. Interrupts di-
rected to Linux are passed to the emulation software
after real-time tasks are executed by a small real-time
executive. The VenturCom approach also modi�es the
HAL in order to isolate interrupts between NT and the
real-time subsystem.

Although these techniques may considerably ame-
liorate the unpredictability of standard Windows NT,
potential problems arise due to changes they entail to
NT or HAL as well as due to the additional API or
Operating System that one needs to master. Most of
these products are still in the development or initial
deployment stage and more details of their approaches
are needed for in-depth evaluation and understanding.

Another alternative to NT is Windows CE [12] that
is targeted at embedded applications.

Unlike Windows NT, Windows CE does not
provide process priority classes. At any time,
there can be a maximum of 32 processes within
the system. Within a process, threads can have
any one of the 8 possible thread priority levels:
TIME CRITICAL, HIGHEST, ABOVE NORMAL, NOR-

MAL, BELOW NORMAL, LOWEST, ABOVE IDLE and
IDLE. The level ABOVE IDLE is not present on Win-
dows NT. Time-critical threads have the highest prior-
ity and are not time shared. Whereas Windows NT dy-
namically adjusts its priorities for threads in dynamic
priority class, Windows CE does not change the prior-
ities of any of the threads dynamically { this may be
detrimental to non real-time computations that com-
pete for processing resources. Windows CE does mod-
ify the priorities to handle priority inversion. As noted
earlier, Windows NT does not support any priority in-
heritance, not even at real-time priority class.

Paging activity in Windows CE uses the above
mechanism to avoid priority inversion. Normally, the
kernel thread handling page faults runs at priority level
NORMAL. When a thread with priority level higher
than NORMAL su�ers a page fault, the priority of the
kernel paging thread is raised to the priority of the
thread causing the fault. This ensures that a thread
is not blocked by another lower priority thread even if
it su�ers a page-fault. Also, a thread running at the
highest priority can be guaranteed to execute within
a known period of time. This is not possible in Win-
dows NT as some of the system threads are not run
at inherited priority (as observed in our keyboard I/O
experiment at real-time priorities). Unbounded delays
due to system wide DPC queues (observed in Windows
NT) are avoided as priority inheritance is applicable to
each and every system thread including the paging ac-
tivity thread. Windows CE queues waiting threads in
priority order rather than simple FIFO as in Windows
NT. Each thread priority has a di�erent FIFO queue.

Interrupt processing in CE is done in two steps:

1. ISR : performs minimal processing, runs at higher
priority than ISTs.

2. IST : Interrupt Service Thread, these usually run
at top two priority levels, ensuring that they run
quickly.

Nested interrupts are not supported. (i.e. no interrupt
is recognized when ISR runs) The time for their execu-
tion can be bounded only if it is guaranteed that the
ISTs run at the same priority as the thread causing it
(i.e. priority inheritance applies to ISTs). From the
available literature, it seems that ISTs run at the two
top priority levels.

In summary, Windows CE provides more levels of
thread priorities, priority inheritance is supported, and
so interrupt latencies can be bounded slightly more eas-
ily than Windows NT.

6. Conclusion and Future Work

By measuring the delays involved in NT's real-time
functions we have gained a number of insights regard-
ing the feasibility of Windows NT for real-time applica-
tions. And, by building a prototype application which
models a simple multimedia operator workstation, we
have demonstrated how to use these insights in the de-
sign of such real-time applications. With the use of
real-time priorities, we have shown that it is possible
to improve the stability of certain real-time tasks.

The one place that Windows NT is very platform de-
pendent is how I/O interrupts are handled. A designer
needs to be aware of the e�ect of the systemwide FIFO



DPC queue on any user thread. This queue has pri-
ority over all user-level threads. This may lead to un-
bounded delays if a badly designed driver is used. Thus
this is the part of Windows NT about which one can-
not make general analytical or quantitative statements
for all potential platforms. A user needs to know what
devices and what drivers he/she is using, and what per-
formance characteristics a particular driver will induce
on the system. If it is possible to characterize vari-
ous I/O activities and their contributions to the DPC
queue, one can possibly place some pessimistic bound
on the response time for real-time threads. Soft real-
time applications which can tolerate occasional delays
due to factors like systemwide DPC queues can be real-
ized using NT. Windows CE has several improvements
to correct this problem, through priority inheritance.

To achieve more predictability for real-time tasks in
general in Windows NT, and to achieve responsiveness
for operator/human inputs in particular, in this paper,
we o�er the following key recommendation to a real-
time system designer using NT:

Design the system such that real-time threads do
not monopolize the CPU and I/O all the time. Some
computation and I/O time must be left for execut-
ing important but non-real-time NT activities, such
as those servicing interactive I/O. These non-real-time
NT tasks are not under our (user-level) control, but will
have adverse e�ects on the intended real-time tasks if
not executed in time. To this end we experimented
with one approach in this paper: facilitating periodic
execution with user-level controlled cooperative pre-
emption. So, all threads in the real-time class were de-
signed to execute periodically using a heartbeat timer
mechanism such that real-time threads voluntarily gave
up the CPU to allow interactive I/O operations to com-
plete.

We plan to implement a systematic rate-based user-
level scheduler to schedule tasks in a given real-time en-
vironment. The prototype system described in this pa-
per provides a suitable test-bed tool to experiment with
di�erent user-level scheduling schemes. The heartbeat
timer can be e�ectively used for such user-level schedul-
ing.
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