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1 Introduction

Computers have become an indispensable tool in modeling and simulation. As
computational power increases, users and applications are demanding ever in-
creasing levels of realism in these domains. This trend is particularly apparent
in computer graphics where more sophisticated geometric shapes and physical
objects are being modeled in the context of complex physical environments.

In particular, the ability to model and manipulate deformable objects is
essential to many applications. Approaches for modeling object deformation
range from non-physical methods|where individual or groups of control points
or shape parameters are manually adjusted for shape editing and design|to
methods based on continuum mechanics|which account for the e�ects of ma-
terial properties, external forces, and environmental constraints on object de-
formation.

Deformable object modeling has been studied in computer graphics for more
than two decades, across a range of applications. In computer-aided design and
computer drawing applications, deformable models are used to create and edit
complex curves, surfaces, and solids. Computer aided apparel design uses de-
formable models to simulate fabric draping and folding. In image analysis,
deformable models have been used to segment images and to �t curved surfaces
to noisy image data. Deformable models have been used in animation and com-
puter graphics, particularly for the animation of clothing, facial expression, and
human or animal characters. Finally, surgical simulation and training systems
demand both real-time and physically realistic modeling of complex, non-linear,
deformable tissues. For summaries of the use of deformable models in image
analysis and cloth modeling applications, the reader is referred to [MT96] and
[NG96], respectively. This survey focuses on mathematical and computational
techniques used for modeling deformable objects in computer graphics applica-
tions.

2 Non-physical models

Most of the models discussed in this paper use some sort of physical principles
to compute the shapes or motions of deformable objects. However, many appli-
cations, particularly in design, employ purely geometric techniques. Generally,
these techniques are computationally e�cient, and they rely on the skill of the
designer rather than on physical principles.

2.1 Splines and patches

Many early e�orts in modeling deformable objects arose in the �eld of computer
aided geometric design (CAGD). Designers needed ways to numerically specify
curves and surfaces, and intuitive ways to modify and re�ne these objects. From
this need came Bezier curves, and subsequently many other methods of specify-
ing curves with a small vector of numbers, including: double-quadratic curves,
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B-splines, rational B-splines, non-uniform rational B-splines (NURBS), and �-
splines. These methods can represent both planar and 3D curves and have
related 2D patches for specifying surfaces.

In these representations, the curve or surface is represented by a set of control
points. The designer adjusts the shape of the objects by moving control points
to new positions, by adding or deleting control points, or by changing their
weights. For example, consider the cubic spline curve of Figure 1. The curve is
speci�ed mathematically by the locations of its four control points. The curve
interpolates the control points a and d, and is tangent to two of the sides of the
control polygon. Moving the control points changes the curve in a predictable
manner.

a

b

c

d

Figure 1: A cubic spline curve. The shape of the curve is edited by moving
control points a, b, c, or d.

This parameter-based object representation is computationally e�cient and
supports interactive modi�cation. It also a�ords subtle control of object shape
when objects are represented by many control points. However, this level of
control is sometimes a disadvantage: precise speci�cation or modi�cation of
curves or surfaces can be laborious. Even a perceptually simple change may
require adjustment of many control points.

Textbooks by Bartels et. al. and Farin provide comprehensive coverage of
curve and surface modeling with splines [BBB87, Far90]. Extensive research
results have been reported in journals devoted to computer aided design and
CAGD. Some examples include [JV84, Pie89a, Pie89b, HM90, CR94, GP89].
Parent and Allen et. al. present methods that move local neighbors of a selected
point together with point itself, based on some measure of proximity [Par77,
AWW89]. Bartels and Beaty describe ways to edit the shape by directly moving
points on a B-spline curve, rather than by manipulating control points [BB89].
Finkelstein and Salesin devised a multi-resolution wavelet-based representation
for cubic B-spline curves. By selectively choosing which wavelet components
are a�ected, the designer speci�es whether control point modi�cations change
the curve sweep (overall shape) or the curve character (local texture) [FS94].
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2.2 Free-form deformation

Free-form deformation (FFD) is a general method for deforming objects that
provides a higher and more powerful level of control than adjusting individual
control points. FFD's change the shape of an object by deforming the space in
which the object lies. This technique can be applied to many di�erent graphical
representations, including: points, polygons, splines, parametric patches, and
implicit surfaces.

Barr's early work in this area examined deformation in terms of geometric
mappings of three-dimensional space. For example, consider the map f : <3 !
<3 given by:

f(p) =

2
4 cos pz � sin pz 0

sin pz cos pz 0
0 0 1

3
5
2
4 px

py
pz

3
5 :

This mapping causes objects to twist about the z-axis. Related mappings gen-
erate rigid motion, tapering, bending, and so on. More complex deformations
can be constructed by composing mappings. Barr studied the transformation of
surface tangent and normal vectors under such mappings, and the hierarchical
arrangement of such mappings [Bar84].

Barr's space-warping method provides a powerful design tool, but the pos-
sible regions and types of deformations are limited, and the user's control of
deformation is not very intuitive. Sederberg and Parry, who introduced the
term free-form deformation, generalized Barr's approach by embedding an ob-
ject in a lattice of grid points of some standard geometry, such as a cube or
cylinder. Manipulating nodes of the grid induces deformations on the space
inside the grid, and these deformations transform the underlying graphics prim-
itives that form the object. If fUig is the set of three-dimensional cells de�ned
by the grid, a free-form deformation can be thought of as a collection of map-
pings of the form fi : Ui ! <3. The fi mappings de�ne how di�erent object
representations are a�ected by the deformation. For example, vertex or control
points are directly mapped to new positions, enabling planes to be moved and
warped. Splines and spline patches are modi�ed by mapping control points and
their derivatives. For parametric and implicit surfaces, the map de�nes a change
of variables so that the represented objects are moved and warped while still
remaining parametric and implicit respectively. Sederberg and Parry advocate
the use of trivariate Bernstein polynomials for the fi, which provide for intuitive
manipulation through the control point mesh. These maps have convenient up-
per and lower bounds on the determinants of their Jacobians, which measure
local volume changes [SP86].

The basic FFD method has been extended by several others. Coquillart
provides a toolkit of lattices with di�erent sizes, resolutions and geometries
that can be positioned over the object for selective control of sub-regions of the
surface [Coq90]. Hsu et. al. allow direct manipulation of surface or curve points
by converting the desired movement of these points to equivalent grid point
movement. This underconstrained problem is solved by choosing the grid point
movement with the minimum least-squares energy that produces the desired
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object manipulation [HHK92]. MacCracken and Joy perform FFD on lattices
with arbitrary topology, using a subdivision algorithm to re�ne the lattice and
provide the desired shape. Special lattice points along sharp edges and corners
are handled separately [MJ96].

3 Mass-spring models

Non-physical methods for modeling deformation are limited by the expertise
and patience of the user. Deformations must be explicitly speci�ed and the
system has no knowledge about the nature of the objects being manipulated.
Using these tools alone, modeling an object as complex as the human face,
for example, is a daunting task. As desktop computing power and graphics
capabilities increased during the 1980's, the graphics community began explor-
ing physically based methods for animation and modeling. These methods use
physical principles and computational power for realistic simulation of complex
physical processes that would be di�cult or impossible to model with purely
geometric techniques.

Mass-spring systems are one physically based technique that has been used
widely and e�ectively for modeling deformable objects. An object is modeled
as a collection of point masses connected by springs in a lattice structure (Fig-
ure 2). The spring forces are often linear (Hookean), but nonlinear springs can

m

k

Figure 2: A portion of a mass-spring model. Springs connecting point masses
exert forces on neighboring points when a mass is displaced from its rest posi-
tions.

be used to model tissues such as human skin that exhibit inelastic behavior. In
a dynamic system, Newton's Second Law governs the motion of a single mass
point in the lattice:

mi�xi = �
i _xi +
X
j

gij + f i:

Here, mi is the mass of the point, xi 2 <
3 is its position, and the terms on the
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right-hand side are forces acting on the mass point. The �rst right-hand term
is a velocity-dependent damping force, gij is the force exerted on mass i by the
spring between masses i and j, and f i is the sum of other external forces, (e.g.
gravity or user applied forces), acting on mass i.

The equations of motion for the entire system are assembled from the mo-
tions of all of the mass points in the lattice. Concatenating the position vectors
of the N individual masses into a single 3N-dimensional position vector x, one
obtains:

M�x+C _x+Kx = f : (1)

Here, M, C and K are the 3N � 3N mass, damping, and sti�ness matrices,
respectively. Although large, these matrices are typically quite sparse. M and
C are diagonal matrices andK is banded because it encodes spring forces which
are functions of distances between neighboring mass points only. The vector f
is a 3N -dimensional vector representing the total external forces on the mass
points. The system is evolved forward through time by re-expressing (1) as a
system of �rst-order di�erential equations:

_v = M�1 (�Cv �Kx+ f)

_x = v

where v is the velocity vector of the system of mass points. A variety of nu-
merical integration techniques are available to compute x and v as functions of
time.

3.1 Applications

Mass-spring systems have been used widely in facial animation. The goal of
these applications is to model subtle human facial expressions, in applications
ranging from computerized expression of American Sign Language to story-
telling. Early work of Platt and Badler used tension nets, static versions of
mass-spring systems, which essentially solve the static system:

Kx = f :

The face is modeled as a two-dimensional mesh of points warped around an
ovoid and connected by linear springs. Muscle actions are represented by the
application of a force to a particular region of nodes, inducing node displace-
ments that propagate outward to adjacent nodes [PB81]. This approach was
expanded by Waters, who developed more sophisticated models for node dis-
placements in response to muscle forces. In Water's approach, muscles directly
displaced nodes within zones of in
uence which were parameterized by radius,
fall-o� coe�cients, and other parameters [Wat87].

Terzopoulos and Waters were the �rst to apply dynamic mass-spring systems
to facial modeling [TW90]. They constructed a three-layer mesh of mass points
based on three anatomically distinct layers of facial tissue: the dermis, a layer of
subcutaneous fatty tissue, and the muscle layer. The upper surface of the dermal
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layer forms the epidermis, and the muscles are attached to rigid bone below and
to the fascia above (Figure 3). Like the earlier work in facial modeling, the
actuating muscles correspond to actual muscles in the human face.

epidermis

rigid bone

fascia

dermal layer

fatty tissue layer

muscle layer

Figure 3: The three-layer skin mesh used by Terzopoulos and Waters.

Di�erent spring constants were used to model the di�erent layers based on
tissues properties. Because some of the tissues are incompressible, and because
the standard mass-spring model cannot easily enforce this constraint, additional
forces are applied to mass points in order to maintain constant volume. These
forces are computed by comparing the volumes of the regions between the nodes
to their rest volumes. A second-order Runge-Kutta method is used to integrate
the equations of motion. The facial model has 6500 springs, and is animated at
interactive rates.

The previously mentioned work uses hand-crafted models of a generic face.
Waters and Terzopoulos later developed a technique to generate facial models
for particular individuals from a radial laser-scanned image data. The scanned
data provides a texture map for the top layer of the mesh and the initial ge-
ometry of the mesh. A preprocessing step adjusts spring constants to increase
the node density over image features with high information content. Real-time
animation is achieved with a simpli�ed two-layer skin model and a Euler inte-
gration method [WT91]. Later, Waters used computer tomography (CT) data
to generate the three-dimensional facial model [Wat92]. Lee, Terzopoulos, and
Waters used a mesh adaptation algorithm that tailors a generic mesh to the indi-
vidual's features by locating these features in a laser-scanned depth image. For
improved realism, their formulation also includes constraint forces to prevent
muscles and fascia nodes from penetrating the skull [LTW93, LTW95].

Koch et. al. use a mass spring model of facial tissue to predict the post-
operative appearance of patients whose underlying bone structure has been
changed during cranio-facial surgery. Spring sti�nesses for the system are de-
rived from tissue densities recorded by 3D Computed Tomography (CT) imag-
ing.

Mass-spring systems have been used extensively for animation. Chadwick
et. al. combined mass-spring models with free form deformations to animated
muscles in human character animation. The muscles are embedded in a lattice
of 8-node mass-spring elements and deformed by applying forces to the lattice
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node points. The dynamic deformation of the muscle model is calculated by
interpolating the motion of the lattice points [CHP89].

Terzopoulos et. al. describe a mass-spring model for deformable bodies that
experience state transitions from solid to liquid [TPF89]. Nodes are connected
by springs in a hexahedral lattice. Each node has an associated temperature as
well as a position, and the spring sti�nesses between nodes are dependent on
temperature. A discretized form of the heat equation is used to compute the
di�usion of heat through the material, and the changes in nodal temperatures.
Increased temperatures decrease the spring sti�nesses; when the melting point
is reached, the sti�ness is set to 0, severing the bond. When all bonds between
a node and its neighbors are severed, it becomes an independent \glop" of 
uid.
Glops are simulated using a discrete 
uid model.

Tu and Terzopoulos have used mass-spring systems with full dynamics to
generate \arti�cial �sh." The �sh model comprises 23 mass points and 91
springs. Muscles actuate the body, creating hydrodynamic forces that propel
the �sh. An implicit Euler integration method is used for added stability in
the presence of large forces. Aquatic plants are also modeled with mass-spring
systems [TT94].

Christensen et. al. also embedded objects in a cubic, 8-node mass-spring lat-
tice and used dynamic simulation and FFD's to animate the embedded objects
[CMN97]. By changing the spring sti�ness matrix to correspond to vibrational
modes such as twisting, scaling, and shearing at speci�c times in the animation
sequence, they obtain whimsical but physical behavior of the animated objects.

3.2 Advantages and limitations

Mass-spring systems are a simple physical model with well understood dynamics.
They are easy to construct, and can be animated at rates not possible with
some of the continuum methods discussed below. Interactive and even real-
time simulation of mass-spring systems is possible with today's desktop systems.
Mass-spring systems are well suited to parallel computation as well, due to the
local nature of the interactions between nodes. They have demonstrated their
utility in animating deformable objects that would be very di�cult to animate
by hand.

Mass-spring systems have some drawbacks. The discrete model is a sig-
ni�cant approximation of the true physics that occurs in a continuous body.
The lattice is tuned through its spring constants, and proper values for these
constants are not always easy to derive from measured material properties. In
addition, certain constraints are not naturally expressed in the model. For ex-
ample, incompressible volumetric objects or thin surfaces that are resistant to
bending are di�cult to model as mass-spring systems. These and other phe-
nomena can sometimes be modeled using additional springs with an increase in
computational cost.

Finally, mass-spring systems sometimes exhibit a problem referred to as
\sti�ness" which can occur when spring constants are large. Large spring
constants are used to model objects that are nearly rigid, or to model hard
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constraints due to physical interactions, such as a non-penetration constraint
between a deformable object and a rigid object. Sti� systems are problem-
atic because they have poor stability, requiring the numerical integrator to take
small time steps, even when the interesting modes of motion occur over much
longer time intervals. The result is a slow simulation. A good description of
this problem is in [BW92].

4 Continuum models and �nite element meth-

ods

Mass-spring models start with a discrete object model. More accurate physical
models treat deformable objects as a continuum: solid bodies with mass and
energies distributed throughout. In making this distinction, it is important to
separate the model from the method used to solve it. Models can be discrete
or continuous but the computational methods used for solving the models in
computer simulations are ultimately discrete. In the analysis of dynamic sys-
tems, numerical integration techniques approximate the system at discrete time
steps. Furthermore, even a continuum model must be parameterized by a �nite
state vector. For deformable object modeling, this state vector often comprises
the positions and velocities of representative points within the material. How-
ever, unlike the discrete mass-spring models, continuum models are derived from
equations of continuum mechanics.

The full continuum model of a deformable object considers the equilibrium
of a general body acted on by external forces. The object deformation is a
function of these acting forces and the object's material properties. The object
reaches equilibrium when its potential energy is at a minimum.

The total potential energy of a deformable system is denoted by �, and is
given by:

� = ��W; (2)

where � is the total strain energy of the deformable object, and W is the work
done by external loads on the deformable object.1 The strain energy is the
energy stored in the body as material deformation. The work done by applied
loads is due to three sources: concentrated loads applied at discrete points, loads
distributed over the body, such as gravitational forces, and loads distributed over
the surface of the object, such as pressure forces.

In order to determine the equilibrium shape of the object, both � and W
are expressed in terms of the object deformation, which is represented by a
function of the material displacement over the object. The system potential
energy reaches a minimum when the derivative of � with respect to the material

1The �W term in (2) deserves some explanation. The deformable system comprises the
deformable object, plus the loads that act on it. Work that a load does on the deformable
object decreases the load's own potential energy and must be subtracted from the total po-
tential energy of the system. Some of this energy may be recouped as strain energy in the
deformable object, as when a weight suspended from a spring stretches the spring.
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displacement function is zero. This approach leads to a continuous di�erential
equilibrium equation that must be solved for the material displacement.

Because is not always possible to �nd a closed-form analytic solution of this
di�erential equation, a number of numerical methods are used to approximate
the object deformation. As discussed previously, mass-spring methods approxi-
mate the object as a �nite mesh of points and discretize the equilibrium equation
at the mesh points. Finite element methods, FEM, divide the object into a set
of elements and approximate the continuous equilibrium equation over each el-
ement. In the following, a general approach to FEM is presented. The reader
is referred to textbooks such as [Bat96] or [Seg84] for more detailed treatment.

4.1 General �nite element methods

FEM is used to �nd an approximation for a continuous function that satis�es
some equilibrium expression such as the deformation equilibrium expression
described above. In FEM, the continuum, or object, is divided into elements
joined at discrete node points. A function that solves the equilibrium equation is
found for each element. The solution is subject to constraints at the node points
and the element boundaries so that continuity between the elements is achieved.
Unlike mass-spring methods, where the equilibrium equation is discretized and
solved at �nite mass points, in FEM, the system is discretized by representing
the desired function within each element as a �nite sum of element-speci�c
interpolation, or shape, functions.

In the case when the desired function is a scalar function �(x; y; z), the value
of � at the point (x; y; z) is approximated by:

�(x; y; z) �
X
i

hi(x; y; z)�i;

where the hi are the interpolation functions for the element containing (x; y; z),
and the �i are the values of �(x; y; z) at the element's node points. Solving
the equilibrium equation becomes a matter of determining the �nite set of node
values �i that minimize the total potential energy in the body.

4.2 Displacement-based �nite element methods

In displacement-based FEM, an equilibrium equation is derived from the goal
of minimizing the system potential energy of (2), with respect to the material
displacement over the object. Unlike the scalar function in the example above,
material displacement is a 3D vector function over the object. However, the
same discretizing method is applied. The basic steps in using FEM to compute
object deformations are:

1. Derive an equilibrium equation from the potential energy equation of (2)
in terms of material displacement over the continuum.

2. Select appropriate �nite elements and corresponding interpolation func-
tions for the problem. Subdivide the object into elements.
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3. For each element, re-express the components of the equilibrium equation in
terms of the interpolation functions and the element's node displacements.

4. Combine the set of equilibrium equations for all of the elements in the
object into a single system. Solve the system for the node displacements
over the whole object.

5. Use the node displacements and the interpolation functions of a particular
element to calculate displacements or other quantities of interest (such as
internal stress or strain) for points within the element.

4.2.1 Expressing the equilibrium equation in terms of object defor-

mation

From (2), the potential energy of a body is the sum of the total strain energy
and the work done on the body by external forces. In order to determine the
object deformation that will minimize �, � and W are expanded in terms of
the material displacements.

The strain energy � is derived from an integral expression over the volume
of the material stress, �, and strain, ", components:

� =
1

2

Z
V

�T" dV =
1

2

Z
V

"TD" dV; (3)

where D is the linear matrix which relates the stress and strain components for
an elastic system (from the generalized Hooke's law), and �T = (�xx; �yy; �zz ; �yz; �zx; �xy)
and "T = ("xx; "yy; "zz; "yz; "zx; "xy) are vectors of the stress and strain compo-
nents. In an elastic system, the material strain " is related to the displacement
vector u = (u; v; w)T by a set of di�erential equations:

"xx = @u
@x

"yy = @v
@y

"zz = @w
@z

"yz = @v
@z

+ @w
@y

"zx = @w
@x

+ @u
@z

"xy = @u
@y

+ @v
@x

(4)

These strain relationships are used to expand (3) in terms of material displace-
ment. This is done explicitly once the interpolation functions have been chosen.

The work done by an external force f(x; y; z) is computed as the dot product
of the applied force and the material displacement u integrated over the object
volume:

W =

Z
V

u � f dV (5)

The forces applied to a deformable body include: distributed body forces, such
as gravity; distributed surface forces, such as pressure or viscous drag; and
concentrated loads. This leads to the expansion of (5) to yield:

W =

Z
V

u � f b dV +

Z
�

u � fs dS +
X
i

ui � pi; (6)
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where: f b(x; y; z) are body forces applied to the object volume V , fs(x; y; z) are
surface forces applied to the object surface �, and pi are concentrated loads
acting at the points (xi; yi; zi).

4.2.2 Choosing the element and interpolation functions

Once the object geometry and the required accuracy are known, an appropri-
ate set of elements and interpolation functions are chosen. The best choices of
elements and interpolation functions depend on the object shape, convergence
requirements, degrees of freedom, and trade-o�s between accuracy and com-
putational requirements. In general, using elements that have more nodes and
more complex interpolation functions require fewer elements for the same degree
of accuracy. However, because higher order interpolation functions require more
sophisticated numerical integration techniques, they require more computation
per element. Figure 4 illustrates some common 2D and 3D elements and their
node points.

A B

C D

E F

Figure 4: Some common 2D and 3D elements used in FEM: (A) linear triangular
element with 3 nodes, (B) linear rectangular element with 4 nodes, (C) quadratic
triangular element with 6 nodes, (D) Lagrangian element with 9 nodes, (E)
tetrahedral element with 4 nodes, and (F) 20-node brick element.

Each element has an interpolation equation that describes how quantities
vary continuously within the element. Usually, the interpolation equation is
polynomial. The interpolation equation must satisfy speci�ed values at each of
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the element'sM nodes, so if it is polynomial, it must have at leastM coe�cients
to provide the necessary degrees of freedom. The order of the polynomial is
chosen to be the lowest one possible that provides enough coe�cients. For
example, the linear triangular element is planar, and therefore uses a polynomial
in x and y for its interpolation equation. Since there are three nodes, the general
�rst order polynomial, with three undetermined coe�cients, provides su�cient
degrees of freedom:

� = a1 + a2x+ a3y:

To derive the interpolation functions from the interpolation equation, one
constrains the interpolated value of � at each node point (xi; yi) to equal the
node value �i. For the linear triangular element,

�1 = a1 + a2x1 + a3y1

�2 = a1 + a2x2 + a3y2

�3 = a1 + a2x3 + a3y3:

Solving this system for the coe�cients ai yields:

a1 = [(x2y3 � x3y2)�1 + (x3y1 � x1y3)�2 + (x1y2 � x2y1)�3]=2A

a2 = [(x2 � x3)�1 + (x3 � x1)�2 + (x1 � x2)�3]=2A

a3 = [(x3 � x1)�1 + (x1 � x3)�2 + (x2 � x1)�3]=2A

where A is the area of the triangular element. Finally, substituting a1; a2; and
a3 back into the interpolation equation and rearranging, the unknown value
�(x; y) can be expressed in terms of the node values �1;�2; and �3, and the
interpolation functions, h1; h2; and h3:

� = h1�1 + h2�2 + h3�3;

where the interpolation functions are:

h1 = [(x2y3 � x3y2) + (y2 � y3)x+ (x3 � x2)y]=2A

h2 = [(x3y1 � x1y3) + (y3 � y1)x+ (x1 � x3)y]=2A (7)

h3 = [(x1y2 � x2y1) + (y1 � y2)x+ (x2 � x1)y]=2A

In general, as exhibited in (7), interpolation functions have the following prop-
erties:

� They are locally applied only to the given element and are treated as zero
outside of the element.

� Each interpolation function has a value of one at its corresponding node,
and vanishes at the other nodes in the element.

� They sum to one everywhere within the element.

� They have the same order or form as the interpolation equation.

Examples of common 2D and 3D elements, their interpolation equations, and
some interpolation functions are shown in Table 1.
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element type # nodes interpolation equation interpolation functions

linear triangular
area A

3 � = a1 + a2x+ a3y
h1 = [(x2y3�x3y2) + (y2� y3)x+(x3 �x2)y]=2A
h2 = [(x3y1�x1y3) + (y3� y1)x+(x1 �x3)y]=2A
h3 = [(x1y2�x2y1) + (y1� y2)x+(x2 �x1)y]=2A

bilinear rectangular
width w
height h
area A

4 � = a1 + a2x+ a3y + a4xy

h1 = (w + x1 � x)(h + y1 � y)=A
h2 = (x� x1)(h+ y1� y)=A
h3 = (w + x1 � x)(y � y1)=A
h4 = (x� x1)(y � y1)=A

quadratic
triangular

6
� = a1 + a2x+ a3y
+a4xy + a5x

2 + a6y
2 see FEM text

Lagrangian 9
� = a1 + a2x+ a3y
+a4xy + a5x

2 + a6y
2

+a7x
2y + a8y

2x+ a9x
2y2

see FEM text

tetrahedral 4 � = a1 + a2x+ a3y + a4z see FEM text

20-node brick 20 see FEM text see FEM text

Table 1: Some common 2D and 3D elements and their interpolation functions.

4.2.3 Expressing the potential energy as a function of node displace-

ments

In the previous section, the interpolation functions were derived for a 2D trian-
gular element. These functions express the value � at an element point (x; y) in
terms of the values at the element nodes. For displacement-based FEM the same
approach is used to express the 3D displacement vector u of a point (x; y; z) as a
linear combination of interpolation functions applied to the node displacements:

u =

2
4 u

v
w

3
5 =HU; (8)

where
U = (u1; v1; w1; u2; v2; w2; : : : ; uN ; vN ; wN )

T :

N is the number of nodes in the element, H is matrix of dimension 3 � 3N
composed from the interpolation functions, and U is the composite vector of
the node displacements.2

The exact form of H depends on the choice of the element and interpolation
functions. However, from (7), the interpolation functions are a function (often
polynomial) of the point location, (x; y; z). By applying the di�erential stress
strain relationships of (4) to (8), the strain " at (x; y; z), can be expressed in
terms of the node displacements and the interpolation functions. The general
form of the result is:

" = BU;

2The use of a capital, boldface U to indicate this composite vector is commonly used in
FEM to distinguish the 3N � 1 composite vector from the 3 � 1 node displacement vectors.
This notation is also adopted here.
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where B is 6� 3N . According to (4), the �rst row of B is obtained by di�er-
entiating the equation for u from (8) with respect to x, the second row of B is
obtained by di�erentiating the equation for v from (8) with respect to y, and
so on.

Ignoring thermal strain and using (3), the strain energy in the element can
be written:

� =
1

2

Z
V

UTBTDBU dV

=
1

2
UT

�Z
V

BTDB dV

�
U (9)

Equation (9) expresses the element strain energy as a function of the node
displacements U. Similarly, using (8), the work term (6) is expanded in terms
of the displacements:

W =

Z
V

UTHT f b dV +

Z
�

UTHT fs dV +UTP

= UT

�Z
V

HT f b dV +

Z
�

HT fs +P

�
= UT (Fb +Fs +P) (10)

where P is a 3N � 1 vector derived from H and the concentrated loads pi, and
Fb and Fs are the 3N � 1 body and surface force vectors integrated over the
object volume and surface respectively.3 In general, the integral expressions for
Fb and Fs are approximated using numerical integration.

Substituting (9) and (10) into (2), the potential energy is:

� =
1

2
UT

�Z
V

BTDB dV

�
U+UT (Fb +Fs +P); (11)

which is a quadratic function of the node displacement vector, U. Minimizing
the potential energy with respect toU, by setting the partial derivatives @�=@Ui

equal to zero, yields a linear equation of the form: KU = F, where K, the
sti�ness matrix, is numerically integrated over the volume, and F is the sum of
the distributed body forces, surface forces, and concentrated loads.

The above analysis was performed for a single element. To model an ob-
ject consisting of many elements, the equilibrium expression is derived for each
element, and the resulting linear systems for all of the elements are assembled
in to a single large, but sparse, linear system of the same form. This linear
system can be solved by a number of methods, including Gaussian elimination,
or sparse matrix methods.

3
Fb;Fs; and P can be thought of as equivalent forces acting at the FEM node points. As

with U, the use of a capital, boldfaced vector representation indicates that the equivalent
force vectors are composited over all of the element nodes.
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4.3 Dynamic deformation systems

In the discussion of displacement-based �nite element methods, a static analysis
of the object was considered. The goal of the analysis was to �nd the new shape
of an object subject to a number of distributed and point forces. Animation
and other graphics applications often require the dynamic trajectory, that is,
the motion of the object as it moves towards its equilibrium shape. In this
case, the e�ects of inertial body forces and energy dissipation through velocity-
dependent damping forces are considered, resulting in second order di�erential
equation for the node displacements that is similar to Equation (1):

M �U+C _U+KU = F;

where M, C, and K are the mass, damping, and sti�ness matrices respectively
for the entire object, F is the composite vector of equivalent applied forces, and
U is the composite vector of node displacements.

The sti�ness matrix K is the assembled matrix of element sti�ness matri-
ces described at the end of the preceding section. Similarly, M is assembled
by compositing the mass matrices of individual elements. The mass matrix for
each element is de�ned by expressing the object density in terms of the interpo-
lating functions and integrating over the element volume as was done with the
distributed body forces in (10). The resultant mass matrix for a single element
is de�ned by:

M =

Z
V

�HTH dV:

The damping matrix C can be calculated similarly by assembling contri-
butions from element damping parameters. However, in general, it di�cult
to determine these damping parameters and the damping matrix is often con-
structed as a linear combination of theM andK matrices. The dynamic system
is usually solved using a numerical integrator.

4.4 Applications

The use of FEM in computer graphics has been limited because of the compu-
tational requirements. In particular, it has proven di�cult to apply FEM in
real-time systems. Because the force vectors and the mass and sti�ness ma-
tricies are computed by integrating over the object, they must, in theory, be
re-evaluated as the object deforms. This re-evaluation is very costly and is
frequently avoided by assuming that objects undergo only small deformations.

Celniker and Gossard applied FEM to shape editing in computer-aided de-
sign [CG91]. They used 2D triangular surface elements and Hermite polynomials
functions (3rd order cubic polynomials) as interpolation functions to model the
3D displacements of the triangle vertices for deforming surfaces. User-controlled
external forces are applied to edit the object shape.

Collier et. al. use a 
at shell element in fabric modeling [CCOS91]. The
element they use is a 4-node element with 5 degrees of freedom (position and
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in-plane rotation) at each node. This element has been used in material sciences
applications for modeling membranes with bending.

Gouret et. al. use FEM to model interactions between the soft tissues in
a human hand and a deformable object. They use 3D elements with linear
interpolation functions and a dynamic formulation to animate the interaction
[GMTT89].

Chen and Zeltzer [CZ92] use 20-node brick elements with parabolic interpo-
lation functions to model deformation of muscles and other objects. For muscles,
external forces are applied where tendons connect the muscles to rigid, moving
bones. Chen and Zeltzer use a small number of brick elements per object (2 ele-
ments per muscle, 4 elements for a plasticine head model) and embed the object
geometry into the rest state of the elements. When forces are applied, object
vertex displacements are calculated from the FEM node displacements. In order
to speed up the computation, Chen and Zeltzer use a modal decomposition of
the dynamic system as described in Section 6.1.

Essa et. al. use dynamic FEM to model shape �tting and motion tracking
in image analysis. They use a 27 node unit superquadric FEM element and
modal decomposition of the dynamic system to represent the object motion as
a function of the vibrational modes of the object [ESP92, ESP93].

Bro-Nielsen, Cotin et. al. apply FEM for modeling human tissue deforma-
tion for surgical simulation [BN97, BNC96, CDC+96, CDBN+96]. They use
a tetrahedral element with linear interpolation functions. In order to accom-
plish real-time simulation, they perform a number of pre-processing steps. Bro-
Nielsen partitions the problem into interior and surface points and solves for
deformations only at surface points. In addition, he inverts the sti�ness matrix
during pre-processing, and tailors the solution method to the assumption that
only a small number of contact loads are applied (so that most elements of the
composite force vector, F, are zero). Cotin et. al. assume superposition and
linearity of object deformations. For every surface node, they pre-calculate and
store the deformations of all node points and the re
ected force at the given node
when it is subjected to an in�nitesimal load. During the simulation, the applied
forces are expressed as linear sums of these in�nitesimal loads, and the stored
displacements and re
ected forces are superimposed to estimate the object de-
formation. The methods used by Bro-Nielsen and Cotin greatly improve the
speed of the simulation with the cost of signi�cant pre-processing and reduced

exibility for objects whose shape or topology change signi�cantly.

4.5 Advantages and limitations

Finite element methods provide a more physically realistic simulation than mass-
spring methods with fewer node points, hence requiring the solution of a smaller
linear system. However, applied forces must be converted to their equivalent
force vectors, which can require numerically integrating distributed forces over
the volume at each time step. Because mass and sti�ness matrices are de-
rived by numerical integration over the elements, this can lead to signi�cant
pre-processing time for �nite element methods. If the topology of the object
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changes during the simulation, or if the object shape changes beyond small de-
formation limits, the mass and sti�ness matrices must be re-evaluated during
the simulation.

The linear elastic theory used to derive the potential energy equation as-
sumes small deformations of the object. Traditional FEM is applied to materials
such as metals, where the amount of deformation is limited to less than 1% of
the object dimensions. In materials such as human tissue, object dimensions can
deform by more than 100% so that the small deformation assumption no longer
holds. In particular, as the object deforms, the volumes over which equivalent
force and the mass and sti�ness matrix integrations are performed, will change.
One method to address this problem is to consider a quasi-static system, where
it is assumed that mass and sti�ness matrices remain constant over a single
time interval but they are re-evaluated at each time step. While this provides
more physically realistic results, the amount of computation required at each
time step is greatly increased.

5 Approximate Continuum Models

The continuum models discussed in this section are termed approximate because
certain physical quantities, particularly the deformation energy, are formulated
to a�ord e�cient simulation algorithms or to achieve certain desired e�ects. The
models are physically motivated, but adhere less strictly to the laws of physics
than some the �nite element methods discussed above.

5.1 Snakes

Kass, Witkin, and Terzopoulos introduced active contour models, or \snakes"
for solving various problems in computer vision and image analysis [KWT87].
Snakes are one-dimensional deformable curves that are often used to deform
or de�ne edges or contours, or to track motion in a moving image. Snakes
respond interactively to internal forces that resist stretching and bending, to
local image-generated forces, and to user-applied forces.

If v(s) is the parameterized position of the snake, the internal deformation
energy of the snake is expressed as

V =
1

2

Z "
�(s)





dvds (s)





2

+ �(s)





d2vds2
(s)






2
#
ds:

The �rst and second derivative terms correspond to axial and bending deforma-
tions, respectively. The terms �(s) and �(s) are weighting parameters. Setting
�(s0) = 0 permits bending at s0, allowing the snake to develop a corner there.
Image energies are integrated over the length of the snake and attract the snake
towards features of interest. For example, an image force that attracts the snake
towards high gradients will �t the snake around image edges. User-applied ex-
ternal forces allow the user to move the snake interactively away from a local
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minima and towards a more desirable solution. If the user attaches a spring
from point v(s0) on the snake to point p in the image, a user-applied energy
term of the form kkv(s0)� pk2 is added to the energy equation.

For a numerical solution, the snake is discretized as a set of points fvig
along the parametrized curve. Deformation of the snake is simulated using both
implicit and explicit Euler integration techniques that minimize the total energy.
The derivatives in the energy equation are computed using �nite di�erences, a
general technique used often when discretizing continuum models:�

dv

ds

�
i

=
vi � vi�1

h�
d2v

ds2

�
i

=
vi+1 � 2vi + vi�1

h
:

2D snakes have been generalized to active surfaces and active volumes in
[CC89, CEO+93, BN95]. These extensions allow smooth surfaces or a 3D mesh
of grid points to be �t to 3D image data. These methods have been used for
segmentation, model �tting and motion tracking in medical imaging.

5.2 Discretized deformation energy

Terzopoulos et. al. developed continuum models for deformable curves, surfaces,
and solids for animation applications [TPBF87]. Their method uses a contin-
uum model for the potential energy due to deformation based on fundamental
forms. Consider a three-dimensional body parameterized by the coordinate
s = (s1; s2; s3), so r(s) is the actual position of a particular point of the body in
space. If s0 parameterizes a point on the body, and s1 = s0+ds parameterizes a
di�erentially displaced point, then the squared Euclidean distance between the
points is given by

kr(s0)� r(s1)k
2 = dsT G(s0) ds;

where the 3� 3 matrix G(s0) is de�ned by

Gij(s0) =
@r

@si
(s0) �

@r

@sj
(s0): (12)

G is called the �rst fundamental form or metric tensor of the solid. It is
de�ned at each point in the solid. If two solids have identical metric tensors
as functions of s, then the two solids have the same shape and di�er only by a
rigid body motion. Indeed, rigid-body motions can be de�ned as exactly those
transformations that preserve distance between all pairs of points. Hence, the
fundamental form is a way of parameterizing the deformation of an object.

Denoting the metric tensor of the undeformed shape by G0, the internal
potential energy due to deformation can be de�ned as the functional:

V (r) =

Z
kG�G0k2� ds1 ds2 ds3; (13)
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where � is a weighted matrix norm, and the integration is over the entire body.
This formulation of potential energy does not follow directly from physical prin-
ciples. Rather, it is a \reasonable" measure that is minimized when the body is
in its undeformed state; Terzopoulos et. al. were most interested in animation
applications, where complete physical accuracy is not required. Using tools of
variational calculus and some additional approximations, they use this form of
potential energy to derive expressions for the internal forces due to deformation.

In practice, the object is spatially discretized into a mesh of N points, with
3N degrees of freedom. At each point, the fundamental form is computed by
approximating (12) with �nite di�erences. The integral (13) becomes a �nite
sum, and the internal deformation forces are computed at each point. The
kinetic energy and damping forces are also computed in terms of these points,
which are assigned masses based on the object density. Ultimately, Equation (1)
is used to compute the dynamics; the main di�erence between this approach and
the mass-spring approaches is the method used to compute the internal forces.
This approach can also handle two-dimensional surfaces and one-dimensional
space curves. For these objects, there are additional terms in the potential
energy expression from other fundamental forms. See [TPBF87] for details.

5.3 Hybrid models

The discrete equations of motion derived from (13) become increasingly ill-
conditioned as the model becomes more rigid; this is similar to the sti�ness
problem with mass-spring systems. Another problem with many deformable
body representations is that the state vector is very large, making operations
such as shape recognition and pose estimation di�cult. Hybrid models combat
these problems by breaking a deformable object into two components, one rigid
and one deformable.

Terzopoulos and Witkin represented a deformable body by a rigid reference
body that captures the rigid-body motion, and a discretized displacement func-
tion that gives the location of the mesh nodes relative to their positions on the
undeformed reference body [TW88]. The reference body's motion is computed
from standard rigid-body dynamics. The reference body eliminates the need
to capture the reference shape in the potential energy functional (13) via G0.
Rather, a \reasonable" potential energy can be expressed as a weighted sum of
squared magnitudes of low order partial derivatives of the displacement function.
This potential energy functional is minimized when the displacement function is
identically zero, corresponding to no deformation, and increases monotonically
as deformation increases. Using this hybrid approach, the discrete equations of
motion become better conditioned as the rigidity of the object increases.

Terzopoulos and Fleischer generalized this approach to handle viscoelastic-
ity, plasticity, and fracture in deformable bodies. This is accomplished by using
more elaborate models for internal forces due to deformation. For viscous be-
havior, the internal forces depend on the time derivatives of the displacement
function, that is, the velocities of the mesh points, as well as on the spatial partial
derivatives. Plastic behavior considers the time history of the deformations, and
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fracture is modeled by breaking connections between mesh points by removing
interdependencies in the equations of motion. Details are in [TF88b, TF88a].

Terzopoulos and Metaxas proposed deformable superquadric ellipsoids as
useful models for image analysis [TM91, Met97]. They �rst parameterize the
shape of a (rigid) superquadric ellipsoid by six parameters: a scale parameter
a, aspect ratio parameters a1; a2, and a3, and squareness parameters "1 and
"2. The rigid portion of the representation also includes the standard rigid
body degrees of freedom. As in [TW88], the positions of model points are the
vector sum of their positions on the rigid body model, and an o�set described
by a displacement function. The complete state of a deformable superquadric
ellipsoid is thus given by a vector q = (qc;q�;qs;qd), where qc and q� are
the translational and rotational rigid body degrees of freedom, qs is the vector
of global shape parameters, and qd parameterizes the displacement function
in terms of a basis of functions. The kinetic and potential energies of the
object are expressed in terms of the generalized coordinates q. If d(u; v) is the
displacement function over the surface of the ellipsoid, then the potential energy
of deformation is approximated by a spline deformation energy functional:

V (d) =

Z "
w1

 �
@d

@u

�2

+

�
@d

@u

�2
!
+ w0d

2

#
du dv;

where w0 and w1 and are weighting functions that scale the energy terms due
to magnitude and variation of the deformation. Once the kinetic and potential
energies are speci�ed, the methods of Lagrangian dynamics (see, for example,
[Gol80]) generate the equations of motion of the system, in the form given by
(1). For computer vision and model �tting applications, the forces acting on
the dynamic model come from features of a two-dimensional image or three-
dimensional range map. Through dynamic simulation, the parameters of the
deformable superquadric ellipsoid evolve until they reach a minimum energy
state, �tting the deformable model to the data. Several example experiments
are presented in [TM91]. Metaxas and Terzopoulos extended this basic approach
by using Kalman �ltering methods in conjunction with the dynamic deformable
superquadric ellipsoids [MD91]. With the Kalman �ltering, it was possible to
track shapes in noisy, time-varying image data at interactive rates. Finally,
[MT92] describes how to add constraints to the basic model for animation ap-
plications.

6 Low degree of freedom models

Discretization of the physically based models discussed above leads to systems
with many degrees of freedom since the object's state is characterized by the
positions and velocities of a large number of node points. While these general
systems support a rich variety of deformations, the systems are slow to simulate,
limiting their use in interactive and real time settings. Alternative approximate
continuum models have been proposed that restrict the deformable object to
many fewer degrees of freedom, sacri�cing generality for speed.
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6.1 Modal analysis

Pentland and Williams developed a simpli�ed expression for the dynamics of
deformable bodies using modal analysis [PW89]. Given the mass, damping,
and sti�ness matricies, M, C and K of Equation (1), there exists a matrix �
and a diagonal matrix � such that

�� =M�1K�:

The columns of � are the generalized eigenvectors of M and K, and the
diagonal elements of � are the generalized eigenvalues. Because M and K are
normally symmetric positive de�nite, they can be simultaneously diagonalized
by �:

�TM� = ~M

�TK� = ~K

where ~M and ~K are diagonal. When C is a linear combination of M and
K, which is typical, it can also be diagonalized by �. Multiplying through
Equation (1) by �T , and using the transformation x = �~x, yields:

�TM��~x+ �TC� _~x+ �TK�~x = �T f ;

and de�ning ~f = �T f gives

~M�~x+ ~C _~x+ ~K~x = ~f :

In this form, the system equations are linearly independent and each equa-
tion describes a vibrational mode of the object. Each element of ~x is a modal
displacement corresponding to a combination of displacements in x. The diag-
onal elements of � are proportional to the resonant frequencies of the vibration
modes.

In 3D systems, 6 of the vibrational modes account for rigid body motion
(object position and orientation). Additional modes account for linear strain,
quadratic strain and higher order deformations. In most animation and com-
puter graphics applications, it is not necessary to simulate all of the vibrational
modes. Higher order modes generally have smaller displacement amplitudes
and their resonant frequencies can be higher than animation frame rates. In
order to reduce the number of degrees of freedom in the system to enable faster
simulation, one can often disregard higher frequency modes. It is also possible
to order the vibrational modes so that, in situations where speed is critical, only
the rigid body, linear strain, and quadratic strain modes are simulated, and, in
situations where accuracy is important, additional motion detail can be added
systematically by including more higher frequency modes in the analysis. Thus,
a modal representation is ideal for controlling level of detail in deformable object
simulation.
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6.2 Dynamic global deformations

Witkin and Welch developed a technique for animating and controlling de-
formable bodies that experience global deformations [WW90]. These defor-
mations are similar to Barr's space-warping functions (Section 2.2) in that they
are characterized by a map from <3 to <3. However, Witkin and Welch also in-
troduce a time dependence into the deformation in order to animate deformable
objects. Speci�cally, if x is the location of a point on the undeformed object,
the location of the point on the deformed object is

f(x; t) = R(t)p(x): (14)

The vector p is some function of the position coordinate x and does not depend
on time. An example is p(x) = (x1; x

2
1; x2x3; 1). The elements of the matrix R

form the generalized coordinates of the deformable object. These vary with time
and are what cause the object to move over time. If one expresses the object's
kinetic and potential energies in terms of these coordinates, the Lagrangian
formulation provides a straightforward method of computing the dynamics of
the object, that is, how the coordinates change over time. Details of the method
are in [Gol80].

The kinetic energy is simple to compute. Di�erentiating (14) with respect to
time gives the velocity _x of a point x, and summing the mik _xik

2=2 terms over
a set of discretized mass points gives an approximation of the kinetic energy.
The kinetic energy can also be computed exactly using an integral involving the
mass density and velocity of an arbitrary point.

The potential energy formulation is derived in a less formal manner, depend-
ing on what sort of behavior is desired; di�erent potential energy functions give
rise to di�erent deformation dynamics. Witkin and Welch give some examples
of potential energy functions that can be used when (14) is of a special form.
One example is a potential energy function that is zero when the deformation
is volume preserving.

Within restricted classes of deformation functions, the dynamics computa-
tions can be accelerated by precomputing certain quantities. There are also
ways to incorporate constraints into the formulation, which provide a high level
way to manipulating the objects. See [WW90] for details. Bara� and Witkin
used this basic approach in simulating combinations of rigid and deformable
bodies with non-penetration constraints [BW92].

6.3 Minimal Energy surfaces

Several researchers have explored ways to add physical behavior to the tradi-
tional geometric modeling primitives, particularly parametric surface patches.
This is done by minimizing an energy functional de�ned on the surface. If
w(u; v) is a parametric surface de�ned over the domain �, one reasonable en-
ergy functional based on local stretching and bending is
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E =

Z
�

(�11kwuk
2 + 2�12wu �wv + �22kwvk

2

+�11kwuuk
2 + 2�12kwuvk

2 + �22kwvvk
2 � 2f �w) du dv; (15)

where the �ij and �ij are weighting coe�cients, and the subscripts of w indicate
partial derivatives. The vector f encodes user-applied sculpting forces that
modify the surface in predictable ways. The user may also add constraints for
the surface to satisfy, such as a requirement that the surface interpolate certain
points or curves in space.

One restricts the surface to some class speci�ed by a �nite set of parameters,
such as control point locations and weights. These parameters form the state
vector x, and the methods of constrained optimization are used to �nd a state
vector that minimizes the energy functional while satisfying the constraints.
There are signi�cant computational advantages when the constraints are linear
in the state variables.

Celniker and Welch present a formulation that uses B-spline tensor product
surfaces. The constrained minimum of (15) occurs at the value of x that solves
an equation of the form Kx = f . This solution is the �nal equilibrium position
of the surface, however dynamic e�ects are easily incorporated by adding mass
and damping terms. Then one obtains Equation (1) with diagonal M and C

matrices. That equation can be numerically integrated to cause the surface
to evolve over time [CW92]. Welch and Witkin further developed this idea
by adding automatic re�nement to the algorithm. Nonuniform subdivision is
applied to the B-spline surface to ensure that the constraints are met, and to
enforce error bounds. The user manipulates a surface that appears \in�nitely
malleable" by de�ning control points and curves that the surface interpolates
[WW92]. Terzopoulos and Qin developed D-NURBS: physically based, dynamic
versions of NURBS curves and surfaces. Their approach also entails minimizing
surface energy in the presence of applied forces and constraints. D-NURBS
curves can be used to trim D-NURBS surfaces [TQ94].

7 Conclusions

This paper has presented many of the techniques that have been used in com-
puter graphics for modeling deformable objects. These techniques range from
the manual editing of individual vertex or control points, to �nite element meth-
ods that approximate the full continuum mechanics model of object deforma-
tion. These methods have been applied to many areas of computer graphics,
including: shape editing, cloth modeling, object and character animation, image
analysis, and surgical simulation. While signi�cant advances have been made,
there are a number of important areas for future work. These include: validation
of physically accurate deformation, achieving realistic real-time deformation of
complex objects, and integrating deformable modeling techniques into broader
contexts.
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Many papers have recognized the importance of obtaining realistic material
parameters and of validating the results of simulated deformations. While ap-
plications such as character animation may tolerate or even desire unrealistic
deformations, most applications require the best accuracy possible for the avail-
able computational power. In applications such as surgical simulation, where
it is envisioned that computer simulators will eventually replace animal models
for surgical training, it is especially important that tissue modeling be accurate.
However, it is often di�cult to obtain accurate material properties and it is even
more di�cult to conduct the kinds of experiments required to verify the accu-
racy of computer simulations. Material properties have been obtained in fabric
modeling by mechanical testing, for example by Breen et. al.[BHG92, BHW94].
Hunter et. al. acquire material properties of the eye for FEM using both mechan-
ical and light interference techniques [HDL+93]. In most of the work described
in the literature, careful validation was not performed, although there are ex-
ceptions. In apparel design, Okabe et. al. compare simulation results to the
shape of real draped fabric [OITN92]. Pinsky and Datye measure some mate-
rial properties of the eye and compare simulation results to the results predicted
by a number of surgeons [PD91]. Keeve et. al. compare the results of a surgical
simulation of the deformation of soft facial tissues after cranio-facial surgery to
actual post-operative appearance [KGPG96]. While such qualitative veri�cation
methods are useful, quantitative comparisons between simulation and reality are
necessary for evaluating and re�ning the various models for deformable objects.

Many computer graphics applications for deformable objects require real
time speeds. Applications such as surgical simulation also require highly accu-
rate deformation. Because human tissues often undergo large deformations and
their material properties are complex, continuum models that can handle non-
linear, large-scale deformation may be required. For this reason, there is need to
develop techniques for deformable object modeling that are fast and accurate.
As discussed in Section 4.4, Bro-Nielson and Cotin use several pre-processing
methods to enable real-time interaction with their 3D FEM models. Cotin has
reported obtaining user-controlled deformation of an 8000 node FEM system
at up to 15 frames per second4. However, many hours of pre-processing are
required to attain these rates. If the object topology changes (for example by
cutting the tissue), if the environmental constraints change, or if shape changes
are larger than small-deformation limits, then the system must be re-analyzed
and the pre-processing step must be repeated. Promising methods for improving
the speed of deformable modeling include parallel hardware systems, intelligent
model simpli�cation, and hierarchical techniques. Hierarchical techniques ap-
proximate the deformation from a coarse to �ne scale to improve convergence
or response time without sacri�cing too much realism. Examples of these hier-
archical techniques are: modal analysis [PW89, ESP92, CZ92]; multigrid �nite
element methods, where the object deformation is analyzed from a coarse to
�ne grid; and combined kinematic-dynamic models. An example of the latter
is Gibson's ChainMail algorithm, in which kinematic inequality constraints de-

4personal communication, March, 1997
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termine the coarse motion of a discretized deformable object, and a dynamic
mass-spring model is then used to re�ne the �nal shape of the object [Gib97].
The algorithm supports real-time deformation of an object with as many as
125,000 elements.

Finally, there is a need to integrate deformable objects into broader sim-
ulation contexts. While great strides have been made in deformable object
modeling, the deformable object is not an isolated system. In surgery, de-
formable tissue might be constrained by a rigid clamp. In engineering analysis,
a thin membrane might be deformed by a pressure di�erence. In reality, a de-
formable object might contact many other types of objects: other deformable
objects, virtually rigid objects, 
uids, and so on. Important problems exist at
the boundaries where these various objects meet. Collision detection is an im-
portant problem that is required for any type of interaction between objects;
e�cient collision detection algorithms are needed for deformable objects. Model-
ing forces between deformable objects and their environments also needs further
study. Some systems have taken initial steps toward solving these challenging
problems, for example [BW92, PW89, TT94], however, faster and more accurate
algorithms are still needed. The solutions to these problems will make existing
simulation systems more 
exible and powerful than they are today. The solu-
tions will also o�er the user new interaction modalities, signi�cantly enhancing
the computer's utility as a design and modeling tool for deformable objects.
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