
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

RT-CRM: Real-Time Channel-based
Reflective Memory

Chia Shen, Ichiro Mizunuma

TR97-01 April 1997

Abstract

In this paper, we propose and present Real-Time Channel-based Reflective Memory (RT-CRM) –
a useful programming model and middleware communication service for constructing distributed
real-time industrial monitoring and control applications on commercially available open systems.
RT-CRM provides remote real-time data reflection abstraction using a simple writer-push model.
This writer-push approach enables us to easily decouple the QoS characteristics of the writers
from that of the readers. This decoupling is crucial in supporting different kinds of remote data
transfer and access needs that one often finds in distributed industrial systems. We will describe
the design of RT-CRM, along with a set of easy-to-use API to access the RT-CRM service.
We have implemented RT-CRM as part of a larger real-time middleware project, MidART. We
address many of the important implementation issues including buffer management and QoS
support. We demonstrate the feasiblity of RT-CRM through a discussion of our application
programming support and preliminary performance data.

Proc. IEEE Third Real-Time Technology and Applications Symposium (RTAS9́7), Montreal,
Canada, June 9-11, 1997

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1997
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

RT-CRM: Real-Time Channel-based Reective Memory

Chia Shen Ichiro Mizunuma

MERL - A Mitsubishi Electric Reseach Lab. Industrial Electronics and Systems Lab.

201 Broadway Mitsubishi Electric Corp.

Cambridge, Massachusetts 02139 8-1-1, Tsukaguchi-honmachi

USA Amagasaki, Hyogo, 661, Japan

Abstract

In this paper, we propose and present Real-Time
Channel-based Reective Memory (RT-CRM) { a use-
ful programming model and middleware communica-
tion service for constructing distributed real-time in-
dustrial monitoring and control applications on com-
mercially available open systems. RT-CRM provides
remote real-time data reection abstraction using a
simple writer-push model. This writer-push approach
enables us to easily decouple the QoS characteristics
of the writers from that of the readers. This decou-
pling is crucial in supporting di�erent kinds of remote
data transfer and access needs that one often �nds in
distributed industrial systems. We will describe the
design of RT-CRM, along with a set of easy-to-use
API to access the RT-CRM service. We have imple-
mented RT-CRM as part of a larger real-time middle-
ware project, MidART. We address many of the im-
portant implementation issues including bu�er man-
agement and QoS support. We demonstrate the fea-
siblity of RT-CRM through a discussion of our appli-
cation programming support and preliminary perfor-
mance data.

1 Introduction

The availability of high speed networks, such as
ATM which can support QoS sensitive real-time com-
munication [12], and the availability of real-time op-
erating systems on PCs and workstations, such as
Lynx or QNX, as well as real-time scheduling support
in general purpose operating systems, such as those
found in IRIX and Solaris, have lead to increased in-
terest in both industry and academia to design dis-
tributed real-time systems using open, standard, com-
mercially available computers and networks. Mean-
while, to facilitate the construction of distributed real-
time applications on such open systems, we must
�rst provide easy-to-use real-time programming mod-
els and services to the real-time application design-

ers. In this paper, we propose and present Real-Time
Channel-based Reective Memory (RT-CRM)1 | a
useful programming model and middleware commu-
nication service [11] for constructing distributed real-
time industrial monitoring and control applications on
such commercially available open systems. We have
designed and implemented RT-CRM as part of an
ongoing project MidART { Middleware and network
Architecture for distributed Real-Time industrial sys-
tems [7]. MidART provides a set of real-time client-
server computing facilities for building industrial ap-
plications.

Figure 1 is an example of the application environ-
ment we are considering. The characteristics of the
class of distributed industrial applications for which
RT-CRM is designed for, and their implications for
the requirements of the underlying real-time system
and communication support are:

(1) Data sharing and communication patterns are of-
ten unidirectional. E.g., plant data is sent from
the plant controller to the operator stations, and
control data is sent from the operator stations to
the plant controllers. Therefore, interaction be-
tween the operators and the controlled system can
be decoupled.

(2) Not all the data need to be periodically broad-
casted to all the nodes in the network all the time.
Typically, there are many producers/writers, each
producing their respective separate plant data or
video, while a consumer/reader will need data
from a subset of these producers. The members
of this subset are not �xed and will change from
time to time whenever a reader requests to do so.
In general, a LAN-based industrial plant has hun-
dreds of plant control sensors (i.e., writers), but

1RT-CRM actually should be read as Real-Time and

Channel-based Reective Memory, and is not based on real-
time channels [4], although real-time channels can be one of the
underlying communication support to implement RT-CRM.

only a handful, usually 5 to 10, operator stations
(i.e., readers). Therefore, the dominant type of
data distribution can be viewed as many-to-one in
nature,instead of the common one-to-many mul-
ticast model.

(3) Historical data are often requested by the oper-
ators. This data enable the operators to review
past plant activities, e.g., in the form of a trend
graph of temperature sensoring data. This plant
history data should be retrieved in real-time and
with response time small enough to support in-
teractive display of past and present sensory in-
formation. This characteristic has two important
implications. The �rst is that this kind of history
data is needed only for the recent past, but may
be requested very frequently, thus the main mem-
ory should be used for storing the history data.
The second implication is that since the sensory
data are not immediately \consumed", we need to
support both the constant data generation from
the controllers and the frequent reviewing of his-
torical data simultaneously.

(4) QoS (Quality of Service) in terms of bounded
message delay on plant data updates and control
message delivery are required. The delay bound
requirements usually range from a few millisec-
onds to a couple hundreds of milliseconds.

(5) Plant controllers are simple computers with lim-
ited computation and storage capacity, while op-
erator stations (OPS), data loggers and multi-
media servers have the capability to perform so-
phisticated functions, and have more memory and
disk capacity.

While most of the current research focuses on
real-time message communication, as exampli�ed in
[4, 6, 10], after analyzing the characteristics of dis-
tributed industrial applications, we have approached
the problem from a memory-to-memory data transfer
perspective. This enabled us to devise a useful real-
time distributed programming model, and to provide
a set of intuitive middleware services. The concept of
RT-CRM is based on four principles:

� To provide data reection with guaranteed time-
liness to distributed real-time applications. We
de�ne data reection as the memory-to-memory
data transfer between remote hosts in a net-
worked environment.

� To provide exibility in how and when data are
reected.

� To keep the servers (let it be an industrial plant
controller, or a multimedia server) as simple as
possible | only to perform the necessary data
reection.

Plant Controllers

ATM switch

ATM switch
ATM switch

Management

Data logger

Maintenance

Servers

MM

Sensors

and Actuators

OPS
OPS

OPS

ATM switch

Figure 1: An Example Industrial Plant System with
ATM Networks. OPS = Operator Stations.

� To enable the construction of a distributed in-
dustrial system in a plug-and-play fashion, and to
give the application designer an easy-to-use inter-
face.

RT-CRM supports these principles based on two
key properties: (a) a 'writer-push' data reection
model, and (b) the decoupling of writers' and readers'
QoS. The simplicity of a writer-push data reection
model makes it easier to provide predictability with
exibility in the fashion (e.g., synchronous vs. asyn-
chronous) in which the data are reected onto remote
nodes. This should be attractive to industrial applica-
tions. Moreover, it also supports video transmission
naturally. One should be able to use RT-CRM for
both traditional data/control communication, as well
as multimedia (video, audio, image) communication.
The writer-push model also enables many higher level
functions, such as displaying the history of plant mon-
itoring data or setting control values, to have simple
designs where most of the computation only occurs on
the reader's node.

There has been a lot of real-time research address-
ing the issue of providing end-to-end delay guaran-
tee. End-to-end in a networked environment can
mean many things to an application. We classify
end-to-end into three di�erent levels { Application-
to-application (AtA), memory-to-memory (MtM), and
network interface-to-network interface (NtN). AtA is
where the guarantee is provided from the moment the
sending application generates the data to the moment
the receiving application retrieves the data. MtM is
where the guarantee is provided from the moment
when the data is taken from the sending host memory

to the moment when the data is deposited into the
receiving host memory, regardless of when the data
is generated by the sending application and when the
receiving application actually retrieves the data. NtN
is simply the network guarantee from when the data
is transmitted from the sending network interface to
when the data is entirely received by the receiving
network interface. We have discovered that di�erent
application scenarios require di�erent levels of end-to-
end guarantee. We have designed RT-CRM to allow
the application to choose between AtA and MtM ac-
cording to its own requirement2.

We have implemented the �rst prototype of RT-
CRM over an ATM LAN with one FORE Systems
ATM switch connecting PCs running QNX as the op-
erator workstations and plant controllers. Our pre-
liminary performance tests show that RT-CRM incurs
very little overhead and is a feasible solution for real-
time plant monitoring and control applications.

The rest of the paper is organized as follows. We
discuss related remote memory systems and their lim-
itations in Section 2. Section 3 gives the detailed ar-
chitecture design of RT-CRM. We have implemented
a set of API which provide programming access to the
RT-CRM middleware service. These APIs and ap-
plication programming support are also described in
Section 3. In Section 4 we address important imple-
mentation issues of RT-CRM. These include (1) con-
currency control and synchronization, and (2) bu�er
management schemes and a proof for the minimum
number of bu�ers needed to avoid locking for readers
of the reective memory. Section 5 discusses QoS and
network interface support issues that are both closely
related to the design and implementation of RT-CRM.
Performance comparisons with IP via socket interface
are shown in Section 6. The paper concludes in Sec-
tion 7.

2 Related Work on Remote Memory

Systems

In this section, we discuss existing remote memory
systems3. In particular, we point out their limitations
for supporting the type of industrial applications un-
der consideration.

2Note that with a good network interface hardware technol-
ogy such as those found in [8], one can narrow the gap between
MtM and NtN. However, this is beyond the scope of our work
reported here.

3DSM, Reective Memory and Memory Channels, at some
level, are all systems and protocols which allow reads and writes
on physically distance memories in a networked environment.
Thus we call them Remote Memory Systems. DSM is a higher
level protocol than both Reective Memory and Memory Chan-
nels, but still provides remote memory services.

2.1 Why Not Distributed Shared Mem-
ory?

Distributed shared memory provides transparent
reads and writes of shared data in a networked envi-
ronment. However, we do not need the full semantics
of a DSM system such as those in TreadMarks DSM
system described in [2]. Most of the functionalities
of a DSM system are built to provide an illusion of
a global virtual memory and to support concurrent
writes on di�erent nodes, e.g., a read must return the
value that is last written. Thus, a DSM system must
implement functions to deal with (1) managing local
process page faults while the physical page last writ-
ten is on a remote site, (2) coherency protocols, such
as invalidation for replicated copies, (3) consistency
model, e.g., sequential consistency, eager or lazy re-
lease consistency.

The distributed industrial plant control application
domain does not require this full set of DSM semantic
support. For example, we do not need the invalidation
process at all. Our data in general is updated either
periodically, or upon a change of value. In either case,
the reader usually can read the latest copy on its local
processor. Synchronization only needs to occur when
the local copy is being actually updated. More im-
portantly, full DSM support will magnify many worst
case delay bounds for data updates where multiple
writers/multiple readers issue writes and reads. In a
real-time system, we must consider this worst case de-
lay.

2.2 Why Not Reective Memory?

Hardware supported reective memory, such as
what is provided by SCRAMNet or VME Microsys-
tems, Inc. [13], replicates (or reects) data in all
nodes of the network in a bounded amount of time
(e.g., 1usec/node latency). These reective memory
systems are based on a ring topology, can only sup-
port a limited physical memory size, typically 1 to 16
MByte, and a limited number of nodes (up to 256).
These hardware reective memory systems are very
expensive. Since we do not need to distribute data
to all the nodes all the time, reective memory will
greatly limit the amount of actual memory we can
support. For example, for a N -node system, we need
K �N system memory assuming each node needs to
reect data of size K.

2.3 Why Not Memory Channels?

Memory Channel is a hardware-software combined
technology from Digital Equipment Corp., originally
licensed from Encore Computer Corp [5]. It is de-
signed for low latency high performance clustered
parallel computing and is in the middle ground as

far as performance and scalability are concerned be-
tween symmetric multiprocessors and ATM. A Mem-
ory Channel is shared. Reads and writes on a Mem-
ory Channel are supported directly by DEC's PCI-MC
adaptors. For writes, the adaptor can send writes to
a single node, or multiple nodes, on per page basis.
Reads are supported via non-swappable physical mem-
ory | the adaptor can DMA incoming data with a
known shared address space map into the correspond-
ing physical memory.

Memory Channel can only support a limited num-
ber of nodes (up to 8 AlphaServers), and a limited dis-
tance (3-meter link from the Memory Channel Hub to
a server). Although Memory Channel is a useful con-
cept, we need to support potentially up to hundreds
of nodes in a network, and we need data updates (i.e.,
data reection) with speci�able time bounds and fre-
quency.

In summary, our Real-Time Channel-based Reec-
tive Memory is much more exible compared with ei-
ther hardware supported reective memory and mem-
ory channels, or software supported distributed shared
memory. In hardware supported reective memory,
the data is reected immediately in a bounded amount
of time to other nodes as soon as the writer application
deposits its new data. In distributed shared memory,
the new data is made available to other readers or writ-
ers with one of two methods: either upon data release,
or upon data acquisition. There is no time constraint
guarantee associated with either of these methods. In
RT-CRM, we allow the reader applications to specify
when it wants the data to be reected and we guaran-
tee the timeliness of this reection using a real-time
writer-push model.

3 RT-CRM: Design, API and Applica-

tion Programming Support
3.1 Overview of RT-CRM

In Real-Time Channel-based Reective Memory
(RT-CRM), we combine the bene�ts from (1) Reec-
tive Memory (i.e., updates propagated in bounded
amount of time), (2) Memory Channel (i.e., hardware
assisted, virtual connection based memory to memory
transfer of data), and (3) open standard ATM net-
works. The unidirectional access pattern and bounded
update reection time of the applications require re-
ective, rather than, shared memory semantics. To
eliminate the lack of scalability problem in traditional
Reective Memory, we use the concept of channels.
Speci�cally, ATM enables us to provide exibility in
channel establishment and cost reduction.

In a distributed real-time monitoring and control
system, we require applications to specify, at memory

Reflective

ATM

Writer’s
thread Reader’s thread i

DPA-thread_0

iDPA-thread

Writer’s Node Reader’s Node

area
memroy

Reflective

(local copy)
memory area

Figure 2: RT-CRM High Level Architecture
channel establishment time, (1) who needs the data,
and (2) when or how often a reader needs the data.
The schedulability or admissibility of read and write
operations can be determined. This allows RT-CRM
to use a writer-push (vs. a reader-pull) underlying
model in which data produced remotely will be ac-
tively pushed through the network and written into a
reader's memory without the reader explicitly request-
ing the data at run time.

Figure 2 depicts the high level architecture of RT-
CRM. RT-CRM is an association between a writer's
memory and a reader's memory on two di�erent nodes
in a network with a set of protocols for memory chan-
nel establishment and data update transfer. A writer
has a memory area where it stores its current data,
while a reader establishes a similar memory area on its
own local node to receive the data reected from the
writer. Data reection is accomplished by a data push
agent thread, a DPA-thread, residing on the writer's
node and sharing the writer's memory area. This
agent thread represents the reader's QoS and data
reection requirements. A virtual channel is estab-
lished between the agent thread and the reader's mem-
ory area, through which the writer's data is actively
transmitted and written into the reader's local mem-
ory area. In this architecture, we support the following
features:
� A reader memory area may be connected to mul-
tiple remote writer memory areas simultaneously.
However, at any moment only one writer is per-
mitted to write into the reader's memory area via
the associated agent thread.

� A writer memory area may be connected to
many remote reader memory areas simultane-
ously. There can be many data push agent
threads representing many readers associated
with the same writer memory area.

These features enable us to satisfy the application
requirements described in Section 1, yet minimize the
complexity of the design on the writer's node. The
writer only needs to deposit its data into the desig-
nated memory area, while all the other more compli-

r

i

GCACLCAC

QoS Mapper

GCACLCAC

QoS Mapper

T

Local ReMA

RT-CRM Components

Writer’s
thread

Writer’s Node Reader’s Node

Reader’s thread
iDPA-thread

RT-CRM
Server

Create DPA_threads

RT-CRM
receiver thread

connect

Attachment

Detachreader idssizew_nameid

Creation

Global reflective memory area definition table

QoS

ReMA sem

Figure 3: Reected memory area, threads, and system
tables in RT-CRM.

cated operations and QoS support are handled by the
data push agent threads and the readers. In essence,
RT-CRM is a distributed programming service pro-
vided in MidART. Many other more sophisticated or
useful application functions, such as histories of data,
continuous video and video alarm, can be built on top
of this service.

3.2 Detailed Design of RT-CRM

Figure 3 illustrates the key components and opera-
tions of RT-CRM. Discussions throughout this section
will refer to the �gure. A RT-CRM consists of:

(1) a reective memory area (ReMA) owned by the
writer node,

(2) a set of QoS parameters,

(3) a semaphore (sem) with priority inheritance,

(4) a writer thread that updates the reective mem-
ory area periodically according to the writer's
QoS,

(5) one or more data push agent threads,
DPA threads, one for each reader connection, de-
�ned by readers QoS parameters, and

(6) a set of one or more readers, each has a local copy
of the ReMA.

Creation

We allow a ReMA to be created by either a writer
or a reader. This exibility is necessary to support a
LAN based industrial environment where nodes may
join and leave dynamically, and new plant data may
be requested to be added into the system by any node.
At creation time, each reective memory area is asso-
ciated with a global id, a size, QoS in terms of update

period/frequency and a semaphore for read-write con-
ict resolution on the writer's node. This information
is initialized in the reective memory area de�nition
table. The table is a network-wide global table, allow-
ing all potential readers and writers to know what is
the QoS/period of the writer for this reective memory
area4. DPA-threads are created when readers request
attachment to this reective memory area. In the case
when a ReMA is created by a reader, the QoS will be
replaced by a writer's QoS later. The global de�nition
table will be updated when other information regard-
ing a particular ReMA becomes available.
Mapping and Attachment

Once created, a reader can \attach" itself to a
ReMA by allocating a corresponding reective mem-
ory area on the reader's local node and associat-
ing these two remote reective memory areas. The
reader's real-time data reection requirement is spec-
i�ed as (a) periodic (with or without a deadline), (b)
upon every data update, or (c) conditional (i.e., when
some condition X becomes true). The reader's period
or minimum interarrival time must be greater than or
equal to the update period of the writer's reective
memory area. The attachment to an ReMA includes
the following actions:
(1) The reader speci�es its data reection QoS re-

quirement (i.e., type (a), (b), or (c) as described
above).

(2) The reader also speci�es the number of past data
copies (i.e., history) H it requires.

(3) Upon receiving a reader's request, the following
must be done:
(3.1) The schedulability on both the reader's and

writer's nodes must be examined by LCAC
and GCAC (Local and Global Connection
Admission Control). LCAC on the reader's
node examines whether the data reection
QoS requested by the reader can be sched-
uled on the reader's local CPU. Similarly,
the LCAC on the writer's node must check
the schedulability of the DPA-thread with
the QoS requested by the reader on the
writer's CPU. The reader's QoS must be
equal to or less strict than that of the
writer's. Meanwhile GCAC examines the
schedulability of the data reection QoS re-
quirements on the network. The attachment

4This network-wide global table is only a logical design. To
address bottleneck and reliability issues, the actual implemen-
tation can be distributed | One option is for each node to keep
a local copy of the table and a separate control channel is set
up such that table updates can be broadcast to all nodes. Since
table updates do not occur frequently, this will not result in
wasted usage of network bandwidth.

of a reader to a ReMA can be admitted
into the system only when both LCAC and
GCAC are successful. We discuss the algo-
rithms used for LCAC and GCAC in Sec-
tion 5.

(3.2) Sets up a connection between the reader and
the writer according to the reader's QoS.

(3.3) Allocates a circular bu�er area of size = N *
the size of one reective memory area. This
circular bu�er is shared (or mapped to) be-
tween the application and the network inter-
face (where the network interface supports
direct memory access [8] by the interface
card), or between the application and a RT-
CRM receiving thread (where the network
interface does not support direct memory ac-
cess by the interface card). Note that this
set of N bu�ers is allocated on the reader's
machine. (How to determine the minimum
value of N will be described in Section 4.2.)

(3.4) Creates a data push agent thread,
DPA thread, on the writer's node on behalf
of the reader. This thread will either be a pe-
riodic thread or a thread waiting on a signal.
Once activated (either periodically, or upon
an update signal), this DPA thread will lock
and read the reective memory area, unlock,
and transmit the data over the established
VC.

Similarly, a writer can \map" itself to a ReMA. If
the ReMA has been created by a reader, this mapping
includes allocating a corresponding reective memory
area on its own node.

Since a reader's real-time data reection require-
ment can be speci�ed as (a) periodic, (b) upon ev-
ery data update, or (c) conditional (i.e., when some
condition X becomes true), DPA threads can also
be of three types respectively. DPA threads of type
(a) are asynchronous with respect to the writer's
thread, while DPA threads of type (b) and (c) are
synchronous. If the reader requires data reection of
types (b) or (c), the corresponding DPA thread may
be signalled whenever the writer thread completes a
write operation in the reective memory area. Since
the periodic writer thread is an application thread,
it should only do the write operation in a critical
section and then releases the lock. Whether the
writer thread should evaluate conditions to activate
any DPA threads (for type (c) data reection) de-
pends on the speci�c application. For example, if the
writer is associated with an operator's command task,

then the writer thread should wake up the DPA thread
to transmit the operator's commands. On the other
hand, if the writer is a periodic sensor, there may
be many DPA threads reading/waiting on the asso-
ciated reective memory area. Then we do not want
to force the writer's thread to take the responsibility
of evaluating conditions and signalling all the waiting
DPA threads.

3.3 Support for Application Program-
ming

Our design of the RT-CRM with an underlying
writer-push model and the DPA-threads allows us to
decouple how data is updated on the writer's node
from how the data is reected to the reader. Given
a reective memory area, since a DPA-thread is a
separate thread of control from the writer's applica-
tion thread, the DPA-thread can either push the data
to the reader's node synchronously or asynchronously
with respect to the write operations conducted by
the writer's thread. In particular, RT-CRM supports
the following types of data push and read operation
modes:

� Data Push Operations:

{ Synchronous Data Push: Pushes are trig-
gered by application writes.

When the writer's application thread does
a write in the reective memory area,
the DPA-thread sends/pushes the con-
tents of the reective memory area to the
reader/receiver immediately or condition-
ally. This can be implemented with a signal
to the DPA-thread from the writer's thread.

{ Asynchronous Data Push: Pushes are per-
formed periodically.

The DPA-thread sends the contents of the
reective memory area to the reader peri-
odically, i.e. with independent timing from
that of the writer's application.

� Read operations:

{ Blocking Read: Application reads block
while awaiting the arrival of a data update
from the writer's node. When the new data
is received, the reader application thread is
signalled.

{ Non-Blocking Read: Application reads re-
turn the current contents of the reective
memory area. That is, the reader's appli-
cation thread will not be noti�ed upon the
arrival of data update messages.

With this set of data push and read operation
modes, we can support at least four combinations for
application programming as listed in Table 1. In the
table, the Combination column lists the possible data-
push and read operation mode. With respect to each
type of Combination, Data Transmission shows the
corresponding tra�c that will be generated into the
network, Delay Bounds de�nes what level end-to-end
QoS guarantee RT-CRM must provide, and Applica-
tion Example gives the potential usage of the Com-
bination. For example, to implement remote opera-
tor command issuing, one can use the combination of
SB, i.e., as soon as the operator enters a control com-
mand, the corresponding DPA-thread will be signaled
to push the command data to the appropriate plant
controller, while blocking read is used on the plant
controller computer to receive the remote command.
This combination provide Application-to-Application
delay guarantee. On the other hand, one can imag-
ine situations where only Memory-to-Memory delay
guarantee is required. In these cases, the application
designer can choose the non-blocking read mode.

3.4 Application Programming Interface

We provide sixteen basic interface functions for ap-
plications to access RT-CRM services. Table 2 lists
the API of RT-CRM. Most of the API are intuitive.
Below we discuss a few that contain special features.

CRM Create creates a reective memory area entry
in the global reective memory area de�nition table.
A globally unique id for this reective memory area is
returned in m id. The value of m mode can be either
shared or exclusive. If m mode is set to shared, more
than one local thread can map this reective mem-
ory area into its address space and thus become the
writer of the reective memory area. To allow di�erent
threads to map to the same memory area will allow the
application threads to be upgraded/modi�ed/replaced
at any time without having to re-establish network
connections, or to re-create DPA-threads. In this
way, RT-CRM can become the plug-and-play inter-
face points. Also, allowing more than one local asyn-
chronous threads to access/write into the same mem-
ory area provide exibility to writer applications. If
two application threads want to reect their values to
the same reader, they can do so. On the other hand,
there might be applications that would like to restrict
the number of writers of a reective memory area to
be only one for security or safety reason. Then the
value of m mode should be set to exclusive.

If the reective memory area has not been created
yet (this would be the case if the ReMA has been cre-
ated by a reader), CRM Map creates a reective mem-

//* Creates a reective memory area by making an entry
in the global reective memory area de�nition table. *//
CRM Create(int m size; int m w period; void

*m addr; int m mode; int m id)

//* Removes the reective memory area identi�ed by m id.
It also terminates all of the DPA-threads and the net-
work channel connections to the readers associated with
this memory area. *//
CRM Destroy(int m id; void *m addr)

//* Allocates a reective memory area of m H bu�ers. Maps
the reective memory area pointed to by *m addr to the
calling thread. This memory area must have been created
with the the value of m mode equal to shared. *//
CRM Map(int m id; void *m addr; int m H)

//* Tears down the mapping between the calling thread
and the reective memory area. *//
CRM Unmap(int m id)

//* Allocates a reective memory area ofm H number of
bu�ers if *m addr is null. Attaches a reader's thread to the
reective memory area and establish network connections
with the writer's ReMA. *//
CRM Attach(int m id; int m H; int m r period; int

m deadline; void *m addr; int DR-FLAG)

//* Detaches a reader thread from the reective memory
area by removing the associated DPA-thread and its con-
nection. *//
CRM Detach(int m id)

//* Activates the associated DPA-thread on the writer's
node for the calling reader thread. *//
CRM Start(int m id)

//* Fills the reader's bu�ers with existing data from the
writer's bu�ers. *//
CRM StartInitH(int m id; void *m addr)

//* Halts the reection of the memory area by suspending
the associated DPA-thread. *//
CRM Stop(int m id)

//* Read a single memory bu�er. By de�nition, it will be
the most recent available data. *//
CRM Read(int m id; void *m addr)

//* Read h bu�ers counting back from the most recently
updated bu�er. *//
CRM ReadH(int m id; void *m addr; int h)

//* Read all available data in the bu�ers. howmany returns
the number of data bu�ers read. *//
CRM ReadAll(int m id; void *m addr; int howmany)

//* Writes the data pointed to by *m data into the memory
area pointed to by *m addr. *//
CRM Write(int m id; void *m addr; void *m data)

//* Locks the memory area for exclusive use. Priority
Inheritance must be enforced here. *//
CRM Lock(int m id)

//* Releases the lock of the memory area after exclusive
use. *//
CRM UnLock(int m id)

//* Resets all the contents of the reective memory area.
*//

CRM Reset(int m id)

Table 2: RT-CRM Application Programming Inter-
face

Combination Data Transmission Delay Bound Required Application Example

SB Sporadic AtA Command issuing
AB Periodic AtA Trend graph
SN Sporadic MtM Plant data
AN Periodic or Sporadic MtM Video or �le transfer

Table 1: S = Synch., A = Async., B = Blocking, N = Non-blocking, AtA = Application-to-Application, MtM =
Memory-to-Memory.

ory area of m H bu�ers with each bu�er equal to the
size speci�ed in the global reective memory area def-
inition table, then maps the reective memory area
pointed to by *m addr to the calling thread. If the
reective memory area already exists, then the calling
thread must reside on the local node where the reec-
tive memory area is allocated, and this memory area
must have been created with the the value of m mode

equal to shared. With this library function, we allow
a reective memory area to have more than one local
writer threads.

As we described at the beginning of the paper, usu-
ally an operator station would like to be able to moni-
tor a subset of the plant controllers, and at times oper-
ators switch the membership of this subset. In partic-
ular, to optimize the usage of memory, we would like
to use the same memory bu�er on the reader's node
to potentially receive data reected from di�erent
writers. The API functions CRM Attach, CRM Start,
CRM Stop, and CRM StartInitH support this exibil-
ity. With CRM Attach, a reader can use the same local
memory area to attach to di�erent remote reective
memory areas. When the reader needs to switch from
the data reected from one writer to that of another,
CRM Stop will halt the reection of a memory area by
suspending the associated DPA-thread on the current
writer's node, and CRM Start will activate the asso-
ciated DPA-thread on the other writer's node for the
calling reader thread. Then CRM StartInitH will �ll
the reader's bu�ers with existing data from the new
writer's reective memory area.

4 Implementation Issues

In this section, we address a few important imple-
mentation issues. These include concurrency control
for read and write operations to the same reective
memory area, bu�er management schemes and QoS
guarantees.

4.1 Concurrency Control and Synchro-
nization

For predictability, we strictly impose writer-push
for updates. Reective memory has always been
writer-pushed. This also is useful for video transmis-
sion. All locks/semaphores are local. All read opera-

tions are local in nature even though the writer/owner
of the reective memory area is remote. That is, we
do not need to deal with remote reads and page faults.
Each reader has an agent thread on the writer's ma-
chine representing the reader, called the data push
agent thread (DPA-thread). This thread performs the
read locally on the writer's machine, and then sends
the read value via the network into the reader's ad-
dress space on the reader's machine.

On a writer's node, we use lock-based concurrency
control between the writer's thread and all the read-
ers' DPA-threads for potential read-write conicts.
One single semaphore is used for one-writer-multiple-
reader access of a particular reective memory area
on the writer's machine. The semaphore state should
be set to priority inheritance to avoid unbounded wait
of the writer when one or more readers are waiting si-
multaneously for the semaphore. This way, we can en-
sure that the writer will not be blocked more than one
reader's critical section since the writer has a higher
priority than all the other reader threads. For scal-
ability, reads with the same QoS should be grouped
together as one read operation. On the reader's node,
no locking is needed. Concurrency control is done via
su�cient bu�er replication as described below.

4.2 Bu�er Management on Reader Nodes

In this section, we describe the details of how the
bu�er space on the reader's node is managed in RT-
CRM for correct and e�cient data reection.

4.2.1 Overview

Upon a reader's request to attach to a speci�c reec-
tive memory area D, we allocate a circular bu�er area
of size = N �DS that is shared (or mapped) between
the reader application and the network interface (or a
message receiving thread), where DS is the size of the
reective memory area D. (See Figure 4.) This set of
N bu�ers is allocated on the reader's machine. Among
the set of QoS parameters provided by the reader for
its reective memory area attachment, the amount of
past data history required by the reader is speci�ed by
H . The value N is calculated from H . If the reader
needs a maximum H of past data, N will be equal to

r

i
C

r
i P

r
i

P i
u

M i
k

M i
k

T
DPA-thread

ATM

Writer’s
thread

Writer’s Node Reader’s Node

write-pointer

read-pointer

DPA-thread_0

()
()

Reader’s thread

size = DS
data area

N = H + 2 buffers

data area local copy

Each buffer size = DS

i

Figure 4: Terminology Illustration for Bu�er Manage-
ment.

H + 2. For example, if the reader only needs a single
copy of the reective memory area (i.e., the most re-
cent available data), N will be equal to 3. This bu�er
allocation scheme simpli�es the design { we do not
need locking on the reader's node. A write-pointer is
used that points to the next bu�er area in the circular
bu�er that the next new incoming data will be writ-
ten into. Then the reader application can always read
the bu�er area until it reaches the bu�er just before
the write-pointer. This design also supports history
or other types of higher level applications (e.g., video
transmission) that need to read more than one bu�er
at a time.

The design of the bu�er management for RT-CRM
includes a proof of the minimum value for N , and a
concrete design that uses only the minimum numberN
of bu�ers, including the speci�cation of a set of prim-
itive operations for reading and writing the bu�ers,
and the implementation details of a set of basic API.
These are described in the following sections.

4.2.2 Minimum Value of N

Locking restricts concurrency and also is an expensive
operation, especially if it is required for every read and
update operation. Thus we would like to avoid using
locks as much as possible in our design. In this section,
we prove that N = H + 2 is the minimum number of
bu�ers that is necessary and su�cient to avoid locking
each bu�er for concurrent reads and/or updates on the
reader's machine under the assumptions discussed be-
low. Since MidART is a distributed real-time system,
to prove the minimum value for N , we must reason
about the worst case scenario between the reads and
updates, taken into consideration the minimum inter-
arrival time of the reads and the updates, as well as
the worst case network jitter that the update messages
will incur.
Terminology, Assumptions and the Worst Case

Scenario

DPA threadi is a thread on the writer's machine

to reect data to the reader according to the reader's
QoS. Thus DPA threadi will transmit a data update
messageMk

i
to the reader's node either periodically, or

with a minimum interarrival time. Let P u

i
be the pe-

riod or the minimum interarrival time of the messages
from DPA threadi for an application reader thread
T r
i
. Remember that P u

i
has already been guaranteed

for DPA threadi when DPA threadi was created at
the time the reader attached itself to the reective
memory area. Let Cr

i
be the worst case computation

time of the operations in thread T r
i
that (1) calculate

the index to a bu�er to be read next, and (2) read
the bu�er. Thus, with respect to the particular circu-
lar bu�er used by T r

i
on the reader's node, P u

i
is the

period of the writes.

We assume that Cr

i
< P u

i
. This is a very reason-

able assumption since reading the contents of a local
data bu�er should require less time than the time re-
quired to (1) transmit the same amount of data over
the network, and (2) writing the data into the data
bu�er.

Due to network queueing and cell scheduling jitter,
any data update messageMk

i
from DPA threadi can

experience a maximum network delay of Dmax

Mk

i

and a

minimum network delay of Dmin

Mk

i

. IfMk

i
incurs Dmax

Mk

i

,

and Mk+1

i
only incurs Dmin

Mk

i

, then the two updates

from Mk

i
and Mk+1

i
will be back-to-back, i.e., Mk

i
will

update the data bu�er at the end of the current P u
i

while Mk+1

i
will update the next data bu�er at the

beginning of the next P u

i
. This is the worst case sce-

nario we must guard against when a reader is reading
a bu�er to avoid race conditions.

We prove the following theorem for the minimum
number of bu�ers needed to allow concurrent reads
and writes into the circular bu�er without locking.

Theorem 1:

N = H + 2 bu�ers are necessary and su�cient
to ensure that concurrent reads and writes are not
issued to the same bu�er.
Proof

We will prove for the case of H = 1 since it
implies the general case of for all H > 1. That is,
we will prove for N = 3.
Necessary : Since we need at least two bu�ers to
accommodate the worst case when updates from
two messages Mk

i
and Mk+1

i
arrive back-to-back

from the network in any two consecutive P u

i
peri-

ods, we must have a third bu�er for reading con-
currently. Thus the necessary part is obvious.
Su�cient : Let the bu�ers be indexed by I =
f1; 2; 3g, and a write-pointer always points to the

bu�er that is either currently being updated, or is
the next bu�er to be updated if no update op-
eration is in progress. Assume that reads and
writes always proceed from bu�er I to bu�er
(I + 1) mod 3. In this protocol, the read starts
at (write-pointer + 2) mod3.

Suppose that the current write-pointer is point-
ing to bu�er 1, and a read starts in bu�er 3. Since
we know that Cr

i
< P u

i
, then even in the worst

case when a back-to-back update occurs | as soon
as the read starts, the write into bu�er 1 completes
and the write-pointer is incremented to bu�er 2 |
we are still guaranteed that the read in bu�er 3
will �nish before the write to bu�er 2 can com-
plete. Thus N = 3 is su�cient.

2

4.2.3 A Design with N = H + 2 Bu�ers

In this section, we �rst give a concrete design of a
circular bu�er with a set of associated primitive oper-
ations. Then we will show how to use the design to
implement the associated API functions in RT-CRM.

We de�ne a circular bu�er area as a memory area
allocated on the reader's node and consisting of (see
Figure 5):
� N reective memory area bu�ers, each reective
memory area bu�er is of size DS, where N � 3,

� an index I for each bu�er, where I = f1; 2; :::; Ng,

� a write-pointer that always points to the bu�er
which is either currently being written into (i.e.,
being refreshed), or is the bu�er to be written into
next if there is no write operations in progress,
and

� a read-pointer that points to the bu�er that is
currently being read.

Below is the set of protocols for primitive read and
write operations that must be followed.

� All read and write operations are always per-
formed in the direction of increasing values of
I mod N .

� Start read

{ If I is the index of the bu�er that the write-
pointer is pointing to, then the start read
operation will return the bu�er indexed by
I 0 where

I 0 � (I + 2) mod N if N > 3
I 0 = (I + 2) mod N if N = 3

� Stop read

The read operation always stops at the bu�er in-
dexed by I 00 = (I�1) mod N where I is the bu�er
pointed to by the write-pointer.

Algorithm M Read
begin
Read write-pointer I;
Read bu�er ((I-1) mod N);
end

N = H + 2

CRM_Read

Implementation
of

Start read =Stop read

write-pointer

writer’s direction

6

5

4

3

2

1

Figure 5: Reading the most recent reective memory
area.

Algorithm M Read History
begin
Read write-pointer I;
I' = ((I + 2) mod N) + (H-h);
for i = 1 to h do
Read bu�er I';
I' = I' + 1;
end

N = H + 2

write-pointer(t_e) Reader’s direction

(Suppose h = H)
Start read(t_0)

writer’s direction

write-pointer(t_0)

Stop read(t_e)

Implementation

of
CRM_ReadH

1

3

2

4

5

67

Figure 6: Reading a history of size h.

Note that if only the most recent data is to be
read, then Start read will be the same as Stop
read. In the case of N = 3, one should notice
that (I+2) mod N is the same as (I�1) mod N .
Thus for N = 3, we always read the bu�er that is
two away from the write-pointer. However, when
N > 3, we must use the calculation in Stop read
for reading only the most recent data bu�er.

� Write

{ Write the new data into the bu�er I pointed
to by the write-pointer, and move the write-
pointer forward such that I = (I + 1) mod
N .

Algorithm M Read All
begin
Read write-pointer I;
I' = (I + 2) mod N;
while I' not equal to ((I - 1) mod N) do
Read bu�er I';
I' = I' + 1;
end

N = H + 2

Implementation

of

CRM_ReadAll

Stop read(t_e)
(Return avail = H + 3)

reader’s direction

Start read(t_0)

writer’s direction

write-pointer(t_0)

1

2

3

4

5

67

write-pointer(t_e)

Figure 7: Reading all available history up to now.

Algorithms
M Read, M Read History, and M Read All imple-
ment the API functions CRM Read(),CRM ReadH(),
and CRM ReadAll() respectively. The algorithms are
presented in pseudo code shown in Figures 5, 6, and
7. In Figures 6 and 7, t 0 is the time when the read
operations start, and t e is when the read operations
complete.

5 Discussion
Although we do not directly address the problem

of network interface design, and the problem of QoS
guarantee algorithms for the host system and the net-
work in this paper, these are issues that closely inu-
ence how RT-CRM achieves its goals.

5.1 Network Interface Support

The RT-CRM architecture on the reader side can
be implemented in two ways depending on the type of
network interface hardware and software available.
(1) With direct memory deposit capability from the

network interface such as those discussed in [8],
we do not need a receiving thread in the middle-
ware on the reader's node. Upon receiving a mes-
sage with the newly updated data from a DPA-
thread, we can identify the memory area/bu�er
address where the data update message should be
written into, and do the correct calculation for the
circular bu�er indexes as described in Section 4.2.
This will no doubt provide a much more e�cient
and low latency data reection path.

(2) Without any direct memory deposit facility from
the network interface, we will need to create a re-
ceiving daemon or driver thread on the reader's

node. This daemon thread will be mapped into
the same data area circular bu�er memory as our
application reader's thread. This is our current
implementation since we do not yet have any net-
work interface with direct memory deposit capa-
bility available.

5.2 End-to-End QoS Support

Although real-time task scheduling in the host sys-
tem as well as network message transmission schedul-
ing are orthogonal to the issues that RT-CRM ad-
dresses, RT-CRM relies on these underlying end-to-
end scheduling mechanisms to guarantee the timeli-
ness of the data push operations. There is a large body
of research results on the subject of real-time task
scheduling and real-time message communication. In
particular, since the �rst target network for RT-CRM
is ATM, we use ATM tra�c class CBR which provides
a constant cell rate service and bounded cell delay
variation. Real-time communication can be supported
by this tra�c class with appropriate network switch
scheduling [1, 14]. For scheduling the DPA-threads,
writers as well as readers in the host systems, we use
rate-monotonic scheduling algorithms [3, 9] with op-
erating system support on QNX.

Moreover, in scheduling a writer thread and the
DPA-threads associated with the same writer's reec-
tive memory area, we use a Writer-QoS based correct-
ness model | the writer has higher priority over read-
ers (i.e., the DPA-threads). This is because the writer
is usually constrained by either the physical plant con-
trol components (e.g., sensor sensing rate), or the op-
erator's command issuing timing constraints. In either
case, it does not make sense to give the writer a lower
priority than the readers.

6 Performance
We have implemented the �rst version of RT-CRM

on an ATM-based LAN environment. The host sys-
tems are Digital's VENTURIS FX (Pentium 133Mhz,
PCI bus) PCs running QNX real-time operating sys-
tem version 4.23. Since our version of QNX does not
support POSIX threads, we implemented all the DPA-
threads as processes. The network interface cards on
the PCs are FORE Systems PCA-200ePC for PCI
bus. We used one ATM switch, FORE Systems ASX-
200BX, to connect the host systems. Since current
ATM software does not support CBR and rt-VBR
tra�ce classes in switched virtual channels, our im-
plementation used PVCs. We would like to eventually
implement RT-CRM using native ATM, but again cur-
rently for the �rst version, we must live with available
commercial ATM software which only supports IP in-
terface.

Tasks Period (sec) Priority Mode

writer #1 1.00 19
writer #2 0.50 21
writer #3 0.20 23
writer #4 0.10 25
writer #5 0.05 27
DPA #1 1.00 20 ADP
DPA #2 0.50 22 ADP
DPA #3 0.20 24 ADP
DPA #4 0.10 26 ADP
DPA #5 28 SDP
reader #1 1.00 19 NBR
reader #2 0.50 19 NBR
reader #3 0.20 19 NBR
reader #4 0.10 19 NBR
reader #5 19 BR
receiver 29

Table 3: Task Parameters. (ADP = Async data push.
SDP = Sync data push. NBR = Non-blk read. BR =
Blocking read.)

We focused our performance tests on two aspects of
RT-CRM. One is how much overhead RT-CRM really
incurs compared with raw UDP/IP. The other is the
delay in switching from one writer's ReMA to another
writer's ReMA for a reader. Table 3 lists the tasks and
their parameters we used in all of our experiments re-
ported here. All the writer tasks and the DPA tasks
reside on one host, while all the reader tasks reside
on a remote host. The priorities of tasks are such
that a higher number indicates a lower priority. Since
it is very di�cult to measure the overhead for one-
way communication in a LAN environment without
sychronized clocks, our measurements are all round-
trip times. To do this, we must use synchronous data
push operation mode and blocking read as described
in Section 3.3. In particular, our overhead measure-
ments were all done with respect to writer #5, DPA
#5 and reader #5 in Table 3. In the performance
results shown below, for each data message size, we
did 100 runs on an unloaded system and network, and
extracted the minimum, maximum and the average
latencies.

Table 4 shows the performance of round-trip la-
tency RTT. To compare the round-trip latency of RT-
CRM with that of raw UDP/IP, each measurement
includes the time executing the following steps:

� Writer #5 starts a timer and writes into the
ReMA on its own local node.

� Writer #5 signals DPA #5.
� DPA #5 sends data to the reader host.
� A receiver task on the reader host receives the
data and deposits into the ReMA.

� Reader #5 reads the data and sends an acknowl-
edgement back to the writer's host to stop the
timer.

The worst-case and average round trip time RTT in
Table 4 is almost proportional to messsage size. And
more importantly, most of the RTT is the overhead of
IP/UDP itself. RT-CRM itself incurs very little extra
overhead.

Table 5 shows the total latency in switching from
one writer's ReMA to another writer's ReMA for a
reader. This switching incurs two round-trip over-
head cost. It requires a reader to send stop control
signal (using the CRM Stop call) to the current writer,
and upon receiving an acknowledgement, the reader
sends a start signal (i.e., CRM Start call) to a di�erent
writer. Only after receiving the newly reected data
from the second writer, we stop the timer for measure-
ment. This experiment tells us whether RT-CRM can
support interactive Rt-CRM memory channel switch
for plant operators. In this experiment, the reader
makes a request to switch from writer #4 to writer #5
every 1.01 sec. We used such a period in order to avoid
phasing problems between the switching requests and
write operations in the writer node. Strictly speaking,
the performance numbers show in Table 5 really in-
cludes the waiting time for the next period of writer
#5, and therefore we should expect a di�erence be-
tween the min and max of about 50 msec (i.e, the
period of writer #5). Thus the min values should be
very close to the pure switching time of RT-CRM. Re-
member that the latency requirement for this switch-
ing operation in our application domain is the actual
interactivity requirement of the human operator with
the machines. The min values are de�nitely su�cient
for human operator interactivity requirement.

msg size (byte) max min avg

1 59.103009 9.136029 34.579086
512 58.420803 10.168557 34.222680
1024 60.126318 10.242309 35.609863
1536 62.495601 10.306842 36.405831
2048 60.089442 11.035143 35.974197
2560 61.675110 11.579064 36.941271
3072 62.255907 12.252051 37.623661
3584 61.739643 12.288927 37.094951
4096 67.298700 12.740658 38.838356

Table 5: ReMA Switching Latency. (Time is in msec.)

7 Conclusion

We have described in detail the design, API, im-
plementation and preliminary performance results of

msg size (byte) UDP(avg) UDP(max) RT-CRM(avg) RT-CRM(max) ratio(avg) ratio(max)

1 2.710293 3.300402 2.977183 3.337278 1.10 1.01
512 3.172350 3.742914 3.545074 4.047141 1.12 1.08
1024 3.571846 4.572624 4.097753 5.319363 1.15 1.16
1536 3.895765 4.526529 4.516572 5.116545 1.16 1.13
2048 4.268332 5.678904 5.723155 7.153944 1.34 1.26
2560 4.660573 5.807970 5.806402 6.785184 1.25 1.17
3072 4.878141 6.075321 6.586975 8.121939 1.35 1.34
3584 5.190481 6.324234 6.737245 8.002092 1.30 1.27
4096 5674294 7.052535 7.611298 10.666383 1.34 1.51

Table 4: Round Trip Latency. (ratio = RT-CRM / UDP. Time is in msec.)

RT-CRM. We demonstrated how distributed indus-
trial plant applications can utilize RT-CRM to facili-
tate its remote data reection. Our preliminary per-
formance shows that RT-CRM incurs very little over-
head, and is a feasible solution for many application
environment.

There are still a lot of work to be done to fully ex-
plore the potential advantage and lessons of using RT-
CRM. First of all, since the high speed network tech-
nology is highly active and fastly evolving, we are ex-
amining whether RT-CRM is also applicable on other
open standard high speed networks such as Switched
Ethernet. Second, we believe that RT-CRM is a gen-
eral real-time programming model, besides our impl-
mentation on QNX, we are currently porting it onto
Lynx, Linux and IRIX as well.

References

[1] A. Raha and S. Kamat and W. Zhao. Admission
Control for Hard Real-Time Connections in ATM
LANs. Proceedings of the 15th IEEE INFOCOM,
March 1996.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher,
H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared Memory Computing on Net-
works of Workstations. IEEE Computer, pages
18{28, February 1996.

[3] C.L. Liu and J.W. Layland. Scheduling Algo-
rithm For Multiprogramming in a Hard-Real-
Time Environment. JACM, 20(1), January 1973.

[4] D. Ferrari and D. Verma. A Scheme for Real-
Time Channel Establishment in Wide-Area Net-
works. IEEE Journal on Selected Areas in Com-
munications, 8(3), April 1990.

[5] Digital Equiqment Corporation. Memory Chan-
nel Overview. www.unix.digital.com/bin/textit/
cluster/memchanl/memchanl.html, May 29 1996.

[6] A. Mehra, A. Indiresan, and K.G. Shin. Re-
source Management for Real-Time Communica-
tion: Making Theory Meet Practice. In IEEE
Real-Time Technology and Applications Sympo-
sium, June 1996.

[7] I. Mizunuma, C. Shen, and M. Takegaki. Mid-
dleware for Distributed Industrial Real-Time Sys-
tems on ATM Networks. In 17th IEEE Real-Time
Systems Symposium, December 1996.

[8] R. Osborne, Q. Zheng, J. Howard, R. Casley,
D. Hahn, and T. Nakabayashi. DART | A Low
Overhead ATM Network Interface Chip. In Hot
Interconnects 96, August 1996.

[9] R. Rajkumar. Synchronization in Real-Time Sys-
tems: A Priority Inheritance Approach. Kluwer
Academic Publishers, 101 Philip Drive, Assinippi
Park, Norwell, Massachusetts 02061 USA., 1991.

[10] R. Rajkuma, M. Gagliardi, and L. Sha. The Real-
Time Publisher/Subscriber Inter-Process Com-
munication Model for Distributed Real-Time Sys-
tems: Design and Implementation. In IEEE Real-
Time Technology and Applications Symposium,
May 1995.

[11] S. Bocking. Sockets++: A Uniform Application
Programming Interface for Basic-Level Commu-
nication Services. IEEE Communications Maga-
zine, 34(12), December 1996.

[12] C. Shen. On ATM Support for Distributed Real-
Time Applications. In IEEE Real-Time Technol-
ogy and Applications Symposium, June 1996.

[13] VME Microsystems International Corporation.
Reective Memory Network.White Paper, Febru-
ary 1996.

[14] Q. Zheng, T. Yokotani, T. Ichihashi, and
Y. Nemoto. Connection Admission Control for
Hard Real-Time Communication in ATM Net-
works. In Submitted to 17th International Con-
ference on Distributed Computing Systems, 1997.

	Title Page
	Title Page
	page 2

	RT-CRM: Real-Time Channel-based Reflective Memory
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13

