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Abstract

In many vision problems, we want to infer two (or
more) hidden factors which interact to produce our ob-
servations. We may want to disentangle illuminant
and object colors in color constancy; rendering condi-
tions from surface shape in shape-from-shading; face
identity and head pose in face recognition; or font and
letter class in character recognition. We refer to these
two factors generically as \style" and \content".

Bilinear models o�er a powerful framework for ex-
tracting the two-factor structure of a set of observa-
tions, and are familiar in computational vision from
several well-known lines of research. This paper shows
how bilinear models can be used to learn the style-
content structure of a pattern analysis or synthesis
problem, which can then be generalized to solve related
tasks using di�erent styles and/or content. We fo-
cus on three kinds of tasks: extrapolating the style of
data to unseen content classes, classifying data with
known content under a novel style, and translating
two sets of data, generated in di�erent styles and with
distinct content, into each other's styles. We show
examples from color constancy, face pose estimation,
shape-from-shading, typography and speech.

1 Introduction

A set of observations is often in
uenced by two or
more independent factors. For example, in typogra-
phy, character and font combine to yield the rendered
letter, Fig. 1. We may think of one factor as \content"
(the character) and the other as \style" (the font).

Many estimation problems �t this form (see also
[10, 15]). In speech recognition, the speaker's ac-
cent modulates words to produce sounds. In face
recognition, a person's image is modulated by both
their identity and by the orientation of their head.
In shape-from-shading, both the shape of the object
and the lighting conditions in
uence the image. In
color perception, the unknown illumination color can
be thought of as a style which modulates the unknown
object surface re
ectances to produce the observed eye

Domain Content Style
typography character font

char. # 1 Chicago
Not observed

Observed

Figure 1: Example problem with two-factor struc-

ture. The observed letter is a function of two un-

seen factors, the character (content) and the font

(style).

cone responses. We will generically refer to the two
factors as \style" and \content".

In these problems, and others, we want to make
inferences about the factors underlying the observa-
tions. We want to perceive the true shapes, colors,
or faces, independent of the rendering conditions, or
want to recognize the speaker's words independent of
the accent.

This style/content factorization is an essential
problem in vision, and many researchers have ad-
dressed related issues (e.g., [10, 22, 4, 13]). A key
feature of the style-content factorization, which has
not been addressed in these previous papers, is that it
is well-suited to learning the structure of analysis or
synthesis problems, as we describe below. We demon-
strate competency in a vision task by being able to
predict how observations would change were the style
or content class changed, or in classifying by content
observations in a new style. We explore the learning
issues, and emphasize the problems that a learning
approach lets you solve.

Learning the model parameters is analogous to
learning from observations over the course of one's vi-
sual experience. We see how content-class data change
when observed under di�erent styles. We describe in
the next section standard techniques for �tting our
model parameters to obesrvation data in the complete
matrix form.

We use a bi-linear model which explicitly represents
the problem's factorial structure, and �t the model
parameters to the observations. We then use the �t-
ted models to solve a particular task. We identify and
solve 3 example tasks for two-factor problems: extrap-
olation, classi�cation, and translation.



In the next section, we describe those canonical
tasks. Following that, we present our models, show
how to learn the model parameters, and present solved
examples for each task.

2 Tasks: extrapolation, classi�cation,

and translation

The �rst of our three problem tasks is extrapo-
lation. Given some examples of previously observed
content-classes in a new style, extrapolate to synthe-
size other content-classes in that new style. Referring
to Fig. 2, this involves analyzing the style common to
the letters of the bottom row, �nding what the letters
of a column have in common, and synthesizing that
letter in that font. We apply our bilinear model to
this example in Section 5.1.

The second task is classi�cation. We observe exam-
ples of a new style, but with no content-class labels,
Fig. 3. An example of this is listening to speech by
a speaker with an unusual accent. We need to de-
velop a model for how observations change within a
style (accent), and how they change across styles for
a given content-class (word). This information can
improve classi�cation performance, as we show in the
examples of Section 6.

We call the third task translation, and it is the most
di�cult, although the most useful. We observe new
content-classes in a new style, Fig. 4, and we want
to translate those observations to a known style, or,
holding style constant, to known content classes. To
solve this problem, we have to build a model not only
for style and content independent of each other, but for
the problem itself, independent of style and content.
We show two examples of this task in Section 7.

Figure 2: The extrapolation problem.

3 Bilinear models

We write an observation vector in the style s and
content class c as ysc, and let K be its dimension.
We seek to �t these observations with some model
ysc = f(as; bc;W ), where asand bcare parameter vec-
tors describing style s and content c, and W is a set
of parameters for the rendering function f that deter-
mines the mapping from the style and content spaces
to the observation space.

There are many reasons to choose a bilinear form
for f :

Figure 3: The classi�cation problem.

� Linear models have been successfully applied to
many vision problems [23, 7, 24, 2, 13, 14, 19, 16].
These studies suggest that many data sets pro-
duced by varying a single style or content factor
(with all other factors held constant) can be rep-
resented exactly or approximately by linear mod-
els. Since a bilinear mapping from style and con-
tent to observations is linear in the style com-
ponent for a �xed content class, and vice versa,
bilinear models are thus naturally promising can-
didates for modeling data produced by the inter-
action of individually linear factors.

� Bilinear models inherit many convenient features
of linear models: the are easy to �t (either with
closed form solutions or e�cient iterative solu-
tions with guarantees of convergence [12]. They
can be embedded in a probabilistic model with
gaussian noise to yield tractable maximum likeli-
hood estimation with missing information, as de-
scribed in [21] and applied here in Section 4.

� The models extend easily to multiple factors,
yielding multilinear models.

� Bilinear models are simple, yet seem capable of
modeling real image data, so we want to take this
approach as far as we can.

Figure 4: The translation problem.



We assume f is a bilinearmapping, given as follows:

ysck =
X

ij

Wijka
s
i b

c
j (1)

The Wijkparameters represent a set of basis functions
independent of style and content, which characterize
the interaction between these two factors. Observa-
tions in style s and content c are generated by mix-
ing these basis functions with coe�cients given by the
(tensor) product of asiand bcjvectors. These represent

(respectively) style independently of content and con-
tent independently of style. In general, the dimen-
sionalities of the style and content vectors, denoted I
and J , should be less than or equal to the numbers
of styles Ns and content classes Nc respectively; the
model is capable of perfectly reproducing the observa-
tions when I = Ns and J = Nc, and �nds increasingly
compact (and hence more generalizable) representa-
tions of style and content as the dimensionality is de-
creased. We call this the symmetric model, because it
treats the two factors symmetrically.

Note that the symmetric bilinear model can reduce
the dimensionality of both style and content, so that
assuming the basis functions Wijkhave been learned
from experience, there may be fewer unknown degrees
of freedom in style and content than there are con-
straints given by one high-dimensional image. Thus it
is possible to do translation problems such as shape-
from-shading and color constancy, where both the ren-
dering conditions and the content classes of the new
observation are unknown1.

In many situations, it may be impractical or un-
necessary to represent both style and content factors
with low-dimensional parameter vectors. For instance,
we may observe only a small sample of widely varying
styles, which could in principle be expressed as linear
combinations of some basis styles given a much larger
sample of styles from which to learn this basis, but
which cannot be so compactly represented given only
the limited sample available. We can obtain a more

exible bilinear model which still preserves separable
style and content representations by letting the basis
functions depend on style or content, instead of being
independent of both factors. For example, if the basis
functions are allowed to depend on style, the bilinear
model from Eq. (1) becomes ysck =

P
ijWijk

sasib
c
j ,

which simpli�es, without loss of generality, to the fol-
lowing form by summing out the i index,

ysck =
X
j

As
jkb

c
j : (2)

Style s is now completely represented by the J�K ma-
trix As

jk. Alternatively, if the basis functions depend

on content, then we have content class c represented

1It can be shown that if a symmetric bilinear model �ts the

observations, then, given the appropriate W , there is a unique

solution for asand bcas long as K � I + J .

as an I �K matrix Bc
ik, according to

ysck =
X
i

Bc
ika

s
i : (3)

Often, there is a natural intuitive interpretation of
these bilinear models, which we call asymmetric. For
example, in our typography example, Eq. (2) provides
font-speci�c basis functions As

jk(look ahead to Fig. 7

for an illustration), which are combined according to
letter-speci�c coe�cients bcj . In other situations, such

as speech recognition, it may be natural to see the
style of an observation as a modulation of its underly-
ing content, which is represented as a linear transfor-
mation of the content vector in Eq. (2). The disad-
vantages of the asymmetric models over the symmetric
model of Eq. (1) are: (1) there is no explicit parame-
terization of the rendering function f independent of
style and content, so a model trained on observations
from a �xed set of styles and content classes may be
of no use in analyzing new data generated from novel
settings of both factors; (2) the matrix style model in
Eq. (2) or the matrix content model in Eq. (3) may be
too 
exible and over�t the training data. Note that of
the three tasks described in Section 2, only translation
requires an explicit parameterization of the abstract
rendering function independent of both style and con-
tent; classi�cation and extrapolation do not. So for
these tasks, if over�tting can be controlled by some
appropriate kind of regularization, an asymmetric bi-
linear model of style and content can be just as useful
as the symmetric version, and can often be applied
when much less data is available for training, and/or
when one of the factors cannot be reduced to a linear
combination of basis elements.

4 Fitting bilinear models
Our applications involve two phases: an initial

training phase and a subsequent testing phase. In the
training phase, we �t a bilinear model to a complete
matrix of observations in Ns styles and Nc content
classes. This gives explicit representations of style in-
dependent of content, content independent of style,
and, for the symmetric bilinear model, the interaction
of style and content. In the testing phase (Figs. 2,
3 and 4), the same model is �t to a new sample of
observations which is assumed to have something in
common with the training set, in content, in style, or
at least in the interaction between content and style.
During testing, the parameters (as, bc, or W ) corre-
sponding to the assumed commonalities are clamped
to their values learned during training. This enables
better performance on a classi�cation, extrapolation,
or translation task with the test data than would have
been possible without the initial training on the set of
related observations.

Singular value decomposition (SVD) can be used
to �t the parameters of the asymmetric model [12,
13, 10, 21]. This technique works the same regardless
of whether we have one or more observations for each
style-content pair, as long as we have the same number
of observations for each pair.



Let the K-dimensional column vector �ysc denote
the mean of the observed data generated by the style-
content pair fAs; bcg, and stack these vectors into a
single (K�Ns)�Nc-dimensional measurement matrix

Y =

2
64

�y11 � � � �y1Nc

...
. . .

�yNs1 �yNsNc

3
75 : (4)

We compute the SVD of Y = USV T , and de�ne the

(K � Ns) � J-dimensional matrix Â to be the �rst J

columns of U , and the J�Nc-dimensional matrix B̂ to
be the �rst J rows of SV T . The model dimensionality
J can be chosen in various ways: by a priori consider-
ations, by requiring a su�ciently good approximation
to the data (as measured by mean squared error or
some more subjective metric), or by looking for a gap
in the singular value spectrum. Finally, we can iden-

tify Â and B̂ as the desired parameter estimates in
stacked form,

A =

2
64

A1

...
ANs

3
75 ; B =

�
b1 � � �bNc

�
; (5)

where each As; 1 � s � N s; corresponds to the style
matrix As

jkand each bc; 1 � c � N c; corresponds to

the content vector bcjin Eq. (2).

Note that this is formally identical to the Tomasi
and Kanade's use of the SVD to solve the structure-
from-motion problem under orthographic projection,
but instead of camera motion and shape matrices re-
placed by style and content matrices respectively.

See [21] for how to �t model to more complicated
data patterns (e.g. varying numbers of observations
per style and content, uncertain assignment of obser-
vations to styles or content classes).

For the symmetric model, there is an iterative pro-
cedure for �tting model parameters to the data which
converges to the least squares model �t [12, 13]. The
algorithm iteratively applies SVD as in the asymmet-
ric case, repeatedly re-ordering the observation matrix
elements to alternate the roles of the style and content
factors. We refer the reader to the pseudo-code in Ma-
rimont and Wandell [13].

5 Extrapolation
5.1 Typography

To show that the bilinear models can analyze and
synthesize something like style even for a very non-
linear problem, we apply these models to typography.
The extrapolation task is to synthesize letters in a new
font, given a set of examples of letters in that font.

The letter representation is important. We need
to represent shapes of di�erent topologies in compa-
rable forms. This motivates using a particle model to
represent shape [20]. Further, we want the letters in
our representation to behave like a linear vector space,

where linear combinations of letters also look like let-
ters. Beymer and Poggio [3] advocate a dense warp
map for related problems. Combining the above, we
chose to represent shape by the set of displacements
that a set of particles would have to undergo from a
reference shape to form the target shape.

With identical particles, there are many possible
such warp maps. For our models to work well, we
want similar warps to represent similarly shaped let-
ters. To accomplish this, we use a physical model (in
the spirit of [17, 18], but with the goal of dense cor-
respondence, rather than modal representation). We
give each particle of the reference shape (taken to be
the full rectangular bitmap) unit positive charge, and
each pixel of the target letter negative charge propor-
tional to its grey level intensity. The total charge of
the target letter is set equal to the total charge of the
reference shape. We track the electrostatic force lines
from each particle of the reference shape to where it
would intersect the plane of the target letter, set to
be in front of and parallel to the reference shape. The
force lines therefore land in a uniform density over
the target letter, resulting in a smooth, dense warp
map from each pixel of the reference shape to the let-
ter. The electrostatic forces are easily calculated from
Coulomb's law. We call a \Coulomb warp" represen-
tation.

Figure 5 shows two simple shapes of di�erent
topologies, and the average of the two shapes in a
pixel representation and in a Coulomb warp represen-
tation. Averaging the shapes in a pixel representation
yields a simple \double-exposure" of the two images;
averaging in a Coulomb warp representation results in
a shape that looks like a shape in between the two.

To render a warp map representation of a shape, we
�rst translate each particle of the reference shape, us-
ing a grid at four times the linear pixel resolution. We
blur that, then sub-sample to the original font resolu-
tion. By allowing non-integer charge values and sub-
pixel translations, we can preserve font anti-aliasing
information.

shapes

C
ou

lo
m

b
w

ar
p

pi
xe

l

averages
Figure 5: Behavior of the Coulomb warp repre-

sentation under averaging, compared with a pixel

representation.



We applied the asymmetric bilinear model, in the
representation above, to the extrapolation task of
Fig. 2. Our shape representation allowed us to work
with familiar and natural fonts, in contrast to ear-
lier work on extrapolation in typography [6, 8] We
digitized 62 letters (uppercase letters, lowercase let-
ters, digits 0-9) of six fonts at 38 � 38 pixels using
Adobe Photoshop (uppercase letters shown in the �rst
5 columns and last column of Fig. 6). We trained
the asymmetric model to learn separate Ai models for
the �rst 5 fonts (Chicago, Zaph, Times, Mistral and
TimesBold) and Bj models for all 62 letters. Fig. 7)
shows the style-speci�c basis functions for each font.
To generate a letter in two di�erent fonts, we use the
same linear combination of basis warps, applied to the
appropriate basis for each font. Note that the charac-
ter of the warp basis functions re
ects the character of
the font: slanted, italic, upright, etc. For the testing
phase, we are presented with the letters of a 6th font,
Monaco, with the �rst third of the upper case letters
omitted. The extrapolation task is to synthesize the
missing letters in the Monaco font.

For this very non-linear task, we chose a high model
dimensionality of 60. To control such a high dimen-
sional model and avoid over-�tting, we added a prior
model for the font style. The target prior was the
optimum style from the symmetric model: the linear
combination of training styles Ai which �t the Monaco
font the best, As

jkOLC
. We then used a gradient de-

scent procedure to �nd the font-speci�c style matrix
A which optimized

(1� �)(ysck �
X

j

As
jkb

c
j)
2 + �(As

jk � As
jkOLC

)2: (6)

We set � = 0:99995, which controlled over�tting to
give the best results.

The next to last column of Fig. 6 shows the results.
The model has succeeded in learning the style of the
new font. Each letter looks more like Monaco than any
of the other fonts. Even partially succeeds in gener-
ating the extended crossbars of the \I", characteristic
of the Monaco font, even though none of the example
\I"s in the training set have such a stylistic feature.

6 Classi�cation
6.1 Face Pose Estimation

We collected a face database of 11 subjects viewed
in 15 di�erent poses, Fig. 10. The poses span a grid
of three vertical positions (up, level, down) and �ve
horizontal positions (extreme-left, left, straight-ahead,
right, extreme-right). The pictures were shifted to
align the nose tip position, found manually. The im-
ages were blurred and cropped to 22 x 32 pixels.

We tested the model's usefulness for classi�cation
by training on the face images of 10 subjects viewed
in all 15 poses, and then using the learned pose mod-
els to classify the 15 images of the remaining subject's
face into the appropriate pose category. For training,
we took as input the face database with each face la-
beled according to pose and subject identity, and with
one subject removed for later testing. We then �t the

asymmetric bilinear model in Eq. (3) to this training
data using the SVD procedure described in Section 4,
yielding models of subject c's head, Bc

ik, and pose s,
asi . The model dimensionality I = 6 was chosen as the
minimum dimensionality giving an adequate �t to the
training data.

For testing, we take as input the 15 images of the re-
maining subject c� in di�erent poses, but without pose
labels. The goal is now to classify these images into
the appropriate pose category, using the pose mod-
els asi learned during the training phase. Now, if we

had a model Bc�

ik of the new subject's head, we could
simply combine this head model with the known pose
models and then assign each test image to the pose
that gives it the highest likelihood, assuming a gaus-
sian likelihood function with mean given by the model
predictions from Eq. (3). But we have been given nei-

ther Bc�

ik nor the appropriate pose labels for the test
subject, so we use the EM algorithm to solve this clus-
tering problem. EM iterates between estimating the

parameters of a new head model Bc�

ik (M-step), and
(soft) assigning each image to the appropriate pose
categories (E-step). For details of the EM algorithm
applied to classi�cation problems with a new style or
content, see [21].

Classi�cation performance is determined by the
percentage of test images for which the probability of
pose s, as given by EM, is greatest for the actual pose
class. We repeated the experiment 11 times, leaving
each of the 11 subjects out of the training set in turn.
The SMM achieved an average performance of 81%
correct. In fact, the performance distribution is some-
what skewed, with two or fewer errors on 8 out of 11
subjects, and six or more errors on 3 out of 11 subjects,
indicating that the bilinear model learns an essentially
faithful representation for most subjects' heads. For
comparison, a simple 1-nearest neighbor matching al-
gorithm yielded 53% correct, with no fewer than 5
errors on any test subject.

In this example, we found it most natural to think
of subject identity as the content factor, and pose as
the style factor, so this task becomes an example of
style classi�cation under varying content. Of course,
exactly the same techniques can be applied to clas-
sifying content under varying styles, and [21] reports
one example in the domain of speech recognition. A
bilinear model was trained on data from 8 speakers
(4 male, 4 female) uttering 11 di�erent vowels, and
then used to classify the utterances of 7 new speak-
ers (4 male, 3 female) into the correct vowel category,
using the same EM procedure described above. The
bilinear model with EM achieved 77% correct perfor-
mance, compared to 51% for a multi-layer perceptron
and 56% for 1-nearest neighbor, the best of many sta-
tistical techniques tested on the same dataset.

7 Translation
7.1 Color Constancy

Translation problems occur frequently in vision.
One example is the \color constancy" problem [4, 13,
10, 5]. The spectrum of light re
ecting o� an object
is a function of both the unknown illumination spec-



trum and the object's unknown re
ectance spectrum.
The color of the re
ected light may vary wildly under
di�erent illumination conditions, yet human observers
perceive colors to be relatively constant across illumi-
nants. They can e�ectively translate the observations
of unknown colors, viewed under an unknown illumi-
nant, to how they would appear under a canonical
illuminant. This is the translation problem of Fig. 4.
References [4, 13, 10] analyze the case of full training
information, but do not address the translation prob-
lem.

Our approach is to learn aWmatrix for the training
set. We then hold that �xed, and �t for both the a
and b parameters for the new observations. Then we
can translate across style or content, as desired.

In general, the color constancy problem is under-
determined [5]. Researchers have proposed using ad-
ditional constraints or visual cues, such as interre
ec-
tions or specular re
ections. A nice property of the
bilinear models is that these or other visual constaints
can be learned.

We show a synthetic example to illustrate this.
Methods which exploit specularities to achieve color
constancy typically require specularity levels large
enough to dominate image chromaticity histograms
[11, 9]. Here we show how small, random variations
in specularity may also be used to achieve color con-
stancy.

We assume that from a localized patch, we observe
three samples of light re
ected from the same object,
each with an unknown fractional specular re
ection,
uniformly distributed between 0 and 10%. (In a nat-
ural image, observations could consist of image values
and local �lter outputs. We have not yet undertaken
the calibrated studies to determine how well this tech-
nique works for natural scenes.)

Using a set of programs developed by Brainard [5],
we drew 30 random samples from a 3-dimensional lin-
ear model for surface re
ectances, and 9 random sam-
ples from another 3-dimensional linear model for il-
luminants. We rendered these, using the randomly
drawn specularity values, creating the full training
observation matrix corresponding. We �t this with
the symmetric bilinear model, using a 3-dimensional
model for illuminants and a 5-dimensional model for
surface color and the random fractional specularity.
This �tting stage also sets the Wmatrix.

We then drew 30 new color surfaces, viewed under a
new random draw of illumination, with small random
specularities added to each color observation. We use
the Wmatrix trained above, and used 10000 iterations
of the linear �tting to �t a and b values to the observa-
tions to describe the illuminant, surfaces, and specu-
larities. There is an ambiguity of scale between a and
b, so this approach can't �t absolute intensities, but it
�nds the chromaticities correctly. With the symmetric
bilinear model, we are able to predict the chromatici-
ties of the new surfaces under a canonical illuminant,
with an rms error of 0.07%. For comparison, the rms
di�erence in observation matrix chromaticities under
the two illuminants is 54%.

7.2 Face and lighting translation
We worked with the Weizmann database of face im-

ages under controlled variations in illumination (pro-
vided by Yael Moses). Images of 24 male faces under
four di�erent conditions of illumination were blurred
and cropped to 40 x 24 pixels, removing most non-
facial features (hair, clothing, etc.) from the images.

We tested the model's e�ectiveness for style and
content translation by training the symmetric bilinear
model on 23 of 24 faces viewed under 3 of 4 illumi-
nants, leaving out one subject under all illuminants
and one illuminant for all subjects. We then applied
the learned model to render the novel 24th face under
the 3 known illuminants and the 23 known faces under
the new illuminant. Thus this is another example of
style-content translation.

For training, we took as input the face database of
24 faces under 4 illuminants, minus one subject under
all illuminants and all subjects under illuminant. We
then �t the symmetric bilinear model ysicj = asiWbcj

to this training data using the iterated SVD procedure
described above, yielding models of the ith illuminant,
asi , the jth face, bcj , and the interaction between il-
luminant and face, W . The dimensionalities for face
and illuminant models were set equal to the maximum
values that still allow a unique solution (the number
of di�erent faces and illuminants respectively), in or-
der to give the models of face space and illumination
space the largest range possible.

For testing, input one image: the single unseen face
under the single unseen illuminant. The goal is now to
apply the illuminant-face interaction modelW learned
during training to recover appropriate face and illumi-
nant models as� and bc� for this new image which are
commensurable with the face and illuminant models
learned for the training set.

Figure 10 shows the results of rendering the novel
face under the three old illuminants, and rendering the
7 of the 23 known faces under the new illuminant. The
quality of the synthesized results demonstrates that
the style-content interaction model W learned during
the training phase is su�cient to allow good recovery
of both face shape and illuminant from a single image
during the test phase.

Atick [1] also showed that shape-from-shading from
a single image could be solved by assuming a low-
dimensional shape space. An explicit shape space is
learned directly from 3-D range maps and built into
a physical model of shading. In contrast, we learn an
implicit shape space, as well as a space of illuminants
and a model of the interaction between illuminant and
shape, only from the a set of 2-D images.

8 Summary
We address learning two-factor problems in vision.

We use both symmetric and asymmetric bilinear mod-
els to learn parameters describing both the style and
content-classes of a set of observations. We identify
and study the problems of extrapolation, classi�ca-
tion, and translation, illustrating these with exam-
ples from color constancy, face pose estimation, shape-
from-shading, typography, and speech.
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Figure 6: Example of style extrapolation in the

domain of typography. Training data included up-

per and lower case alphabets, and digits 0-9.

Figure 7: Warp bases.
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Figure 8: A subset of the face images used for

pose classi�cation.
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Basis images

Figure 9: A subset of the pose-speci�c basis faces.

Note that in the bilinear model, each basis face

plays the same role across poses.

Figure 10: An example of translation.
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