
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

DART: A LAN Interface for Low Overhead
Communication

Randy Osborne

TR94-09v2 December 1994

Abstract

This article presents a low level protocol and network interface architecture for low overhead
communication in a distributed memory computing environment — such as workstations and
PCs connected via a high speed LAN. We use both sender information and destination informa-
tion to demultiplex messages directly to where they are needed. The network interface filters
incoming messages, separating data delivery from synchronization so as to enable the optimiza-
tion of simple data delivery while leaving more difficult synchronization to the host processor.
To perform this filtering the interface has a small set of simple operations and a small amount
of state. We have designed an interface architecture called DART which specializes these ideas
to ATM networks. We have built an in-kernel software implementation of this interface with
stock workstation and ATM interface cards. This implementation currently achieves a best case
application to application latency of 24.5 usec. With a hardware version of DART, we expect to
achieve latencies of under 10 usec for a 155Mbps ATM LAN and under 3 usec for a 622Mbps
ATM LAN in the workstation LAN environment.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1994
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

1. First printing, short abtract, May 19, 1994
2. Second printing, �nal version, July 31, 1994

1

1 Introduction

This article presents a low level protocol and network interface architecture for low over-
head communication in a distributed memory computing environment | such as workstations
and PCs connected via a high speed LAN (or perhaps computing nodes in a tightly coupled
multiprocessor). By low overhead communication we mean both low latency and low impact
on the host processor. We regard high bandwidth in this environment as a solved problem
(see e.g. [Dav93, BP93, TS93]). Our objective is a low cost interface to support applications
in parallel, distributed, and real-time computing. Low latency is essential for parallel com-
puting. In distributed computing, low latency can help improve the performance of remote
procedure call (RPC) based applications and increases the exibility in structuring a system.
Low latency can also be useful for real-time computing, but low impact is far more important
to insulate real-time tasks on the host processor from unrelated asynchronous communication
events.

There are two key ideas in this article. The �rst is to use both sender information and
destination information to demultiplex messages directly to where they are needed without
intermediate copying. This idea exploits the sender's knowledge, shifting more of the burden
to the sender, in order to simplify the message processing at the destination. In e�ect, the
sender uses its knowledge to pre-demultiplex the messages. [Se93] termed a sender-based
subset of this idea the \deposit" model. In our case, the deposit action (address and interrupt
generation) is a function of both sender and destination information, so we call our scheme a
\hybrid deposit" model. Our variation also supports protected, user level communication. We
present a low level hybrid deposit protocol and show how it has exibility for a wide range of
application requirements.

The second key idea is to use the network interface to �lter incoming messages. Completely
isolating the host processor from all communication events by using a second processor as in
the Intel Paragon is expensive and having the host processor handle all communication as
in the Thinking Machines CM-5 (at user level and with Active Messages [von92]) impacts
the host processor performance signi�cantly. We take an intermediate position and use the
interface to separate events by their need for the host processor. Events, such as data delivery,
that do not require the host processor are handled directly e.g. by depositing data directly
into user memory. Events | chiey synchronization | that do require the host processor are
divided into immediate actions that require service immediately and delayable actions that
are accumulated and processed when convenient for the host processor (thereby turning them
into synchronous events). This separation arises from two observations. First, the interrupt
handling cost for mainstream microprocessors is likely to be signi�cant for the foreseeable
future. Second, even if the interrupt handling cost was small, it is not appropriate for the host
processor, sitting atop an expensive memory hierarchy, to be involved in all messages. Our
idea then, is for the interface to �lter incoming messages and direct them to the appropriate
level in the hierarchy. Since a design constraint is to stick to stock processor architectures
as much as possible, we approximate the memory hierarchy by directly depositing in main
memory and interrupting the host processor to deliver data to the top of the hierarchy. Other
interface architectures also do this, but either just do simple DMA or are expensive like the
high speed MAGIC interface in FLASH [Ke94b]. We are aiming for a minimalist approach to

MERL-TR-94-09v2 July 1994

2

Deposit to
specified address
(random access)

net

and mapping
Connection state

interrupt

and mapping
Connection state

deposit

operating
system

application 1

application 2

endpoint

header
e.g. offset

operand

data

operation system
operating

endpoint

application 1

application 2

processor
processor

interface interface
net

Figure 1: Hybrid deposit operational model

keep the cost low. Thus we endow the interface with a small set of simple operations and a
small amount of state.

2 The Hybrid Deposit Model

Figure 1 shows the main idea of the interface: messages originating in a source endpoint
can bypass the conventional operating system and host processor route to the network and
either be delivered directly to any location in a destination endpoint or conditionally delivered
to the destination operating system. The destination address and interrupt generation are a
function of both sender and destination state.

Messages contain an ID describing the destination endpoint, control information consisting
of an operation (or a pointer to the operation at the destination) and some operands, and
data. Each operand is an address, immediate data, or the name of some destination state.
Addresses are encoded as an o�set from the destination endpoint. The destination end of
each communication \connection" has some state, contained in specially addressable locations
called \address registers", which message operands can name. Thus message actions are a
function of an operation speci�ed by the sender, operands representing sender state, and the
contents of the address registers.

The allowable operations are composed of primitive actions that can be implemented sim-
ply, in one message time, without host processor or operating system intervention. The host
processor can process more complex actions via a software exception. We liken this to RISC
philosophy of processor architecture applied to communication.

Figure 2 shows an example set of primitive operations. The few primitive operations
in this example set allow a rich set of powerful and exible compound operations e.g. store
indirect with postincrement, priority queueing, and various atomic operations such as fetch-
and-increment, compare-and-swap, and barrier synchronization. More complex operations can
be achieved using multiple compound messages.

For further information on the hybrid deposit model see [Osb94].

MERL-TR-94-09v2 July 1994

3

Address e�addr= operand (direct addressing)
generation e�addr= < addregi > (indirect addressing)

e�addr= < addregi > + operand (indexed addressing)
Register addregi operand

operations addregi unary-op f < addregj > or operand g
addregi < addregi > binary-op f < addregj > or operand g

Conditional if (< addregi > compare-op operand) then generate interrupt at end
operations if (< addregi > compare-op < addregj >) then generate interrupt at end

Figure 2: Primitive operations

mask opcode

. . .

ATM header in VPI/VCI field

index
data0

data31

5 bytes

4 bytes
4 bytes
4 bytes

32 bytes of data

4 bytes

operation
operand

CRCunused

connection number encoded

Figure 3: Format of 53 byte ATM cell for hybrid deposit model

3 DART

We have designed an interface architecture called DART which specializes our ideas to ATM
networks. The 48 byte payload of an ATM cell contains 32 bytes of data | a size selected
to match memory and cache (sub)block sizes | and 16 bytes of control which includes the
operation, an immediate source operand (o�set or data), and an index �eld as shown in Figure
3. Destination operands are speci�ed via up to three separate register indices encoded in the
index �eld. Reads and writes occur in 32 byte blocks. The mask �eld can be used to deselect
the reading or writing of 4 byte words within such a block. There is also a multiple cell message
format for block transfer. In this format, the �rst cell is a \control" cell in the above format
and the following cells are standard AAL5 cells with 48 bytes of payload for data.

Figure 4 shows a block diagram of DART. The main features are protected, user level
interaction and virtual mapping of endpoint regions. The send and receive sides multiplex the
Connection and Operation Logic shown in Figure 5 (latches and control signals omitted for
clarity). The Connection Table indirects to an Endpoint Table, allowing multiple connections
to share the same endpoint. The Endpoint Table contains base and bound virtual addresses
pairs de�ning the contiguous region of each endpoint. Once an endpoint virtual address is
formed in any of a variety of ways, it is bounds checked, and then mapped to a physical address
by the TLB. Consequently, endpoints need not be pinned in main memory as is common in
other interface designs. Each connection has a \window" of address registers demarcated by
the base and bounds entry in the Connection Table. This scheme allows a variable number of
address registers per connection and allows the overlapping and nesting of register windows

MERL-TR-94-09v2 July 1994

4

control

encode

index

registers

send

map

VCI/VPI

rcv_operand

flow
control

& FIFO

VCI/VPI

map

flow

network
receive

network
send

control

decode

header

form

also traffic
shaping &
policing

header
split &
check

index

block

data
split &
check

connection

data

buffer

block

& FIFO
control

host memory

transfer transfer
send

control
receive
control

interrupt

code
condition

state&
opcode, operand

connection

Connection

Logic

and

Table

Operation

address controlcontrol

opcode

send_offset

Figure 4: DART block diagram

+

M

X

U
M

X

U

M

X

U

index

U
X

D

<M

ALU

+

address

<+
no

error
trap

bounds

RD WR

base

page offset

Endpoint

Table Translation cache

condition
code

physical
address

miss

trap
error

no

OS
trap to

rightsPA

page #

ep

epVA
registers

Address

value

conn#
<

max
conn#

no

replyep base bounds state conn

Registers

Connection

Table

ep reply
conn#

error
trap

state Operation Logic

rcv_operand

send_offset

Figure 5: Connection Table and Operation Logic

MERL-TR-94-09v2 July 1994

5

to provide exibility in sharing and protection between connections.

Each connection has a set of memory mapped Send Registers. To send a message from a
given endpoint, a user writes control information, the message's o�set from the endpoint base,
and the data size into the Send Registers for an appropriate connection for that endpoint.
The control information consists of an opcode, source operand, and address register indices
for depositing the message at the destination.

DART can execute up to four primitive operations per message received (one address
generation, two register operations, and one conditional). We clock the Operation Logic
through multiple primitive operations per message, feeding back immediate values as necessary
via the \value" path shown in Figure 5. A main opcode controls the selection and ordering
of the primitive operations. Example opcodes are read, read multiple (32 byte blocks), write,
write multiple, and software exception (which causes an interrupt to the host processor).
Remote reads are handled without the interrupting the host processor. Exceptions arising
due to error traps, TLB misses, and unimplemented operations cause an interrupt to the host
processor.

A variant of DART interprets the operation �eld as an \instruction" pointer to an opcode
and operand at the destination (see [Osb94] for details). Many implementation details require
further evaluation before DART implementation can begin. We are targeting the PCI bus and
plan to use a cheap i960 embedded processor to implement the Operation Logic.

We have built a software implementation of the hybrid deposit model to simulate the inter-
face described above. This is an in-kernel implementation under Mach 3.0 on a DECStation
5000/240 with a 140Mbps Fore Systems TCA-100 ATM interface card. The best case latency
for a 32 byte application to application data transfer is 24.5�sec on DECStation 5000s con-
nected via a switchless ATM network and 30�sec on DECStations connected via a single Fore
Systems ASX-100 ATM switch. This is about 10 times faster than the fastest conventional
approach (using Fore System's AAL3/4 implementation) on the same hardware[Ke94a]. With
our DART interface, we expect to achieve latencies of under 10�sec for a 155Mbps ATM LAN
and under 3�sec for a 622Mbps ATM LAN in the workstation LAN environment (for one
transit of a fast ATM switch). We plan to use this software implementation to evaluate the
hybrid deposit model and DART for higher level protocols and applications.

4 Related Work

The per cell processing architecture of DART is similar in principle to the message-driven
processor (MDP) [De87]. However, we use DART in a �ltering role for depositing messages,
rather than for direct computation (i.e. it is not the main processor) and we provide full
protected, multiuser communication. SHRIMP [Be94] and Hamlyn [Wil92] adopt a similar
emphasis on increasing the participation of the sender to minimize the required functionality
at the destination. However both di�er from DART in some major ways: they both support
only direct addressing and both pin endpoint pages. In addition, Hamlyn supports only one
delayed action queue per node whereas there can be any number in DART. A simpler version
of SHRIMP has a limited form of hybrid addressing without indirection [DLM94]. MINI only

MERL-TR-94-09v2 July 1994

6

supports direct addressing [MBH94]. Like DART, Axon [SP90] has self describing packets for
direct deposit at the destination. However, Axon lacks hardware support for exible sender
and destination-based addressing, hybrid interrupt control, and register operations.

Acknowledgments

Development of the hybrid deposit model bene�ted from discussions with Peter Steenkiste
and Thomas Gross at CMU.

References

[Be94] M. Blumrich and et al. Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer.
In Intl Symposium on Computer Architecture, April 1994.

[BP93] D. Banks and M. Prudence. A High-Performance Network Architecture for a PA-RISC Workstation.
Journal of Selected Areas in Communications, pages 191{202, February 1993.

[Dav93] B. Davie. The Architecture and Implementation of a High-Speed Host Interface. Journal of Selected
Areas in Communications, pages 228{239, February 1993.

[De87] W. Dally and et al. Architecture of a Message-Driven Processor. In Intl Symposium on Computer

Architecture, 1987.

[DLM94] C. Dubnicki, K. Li, and M. Mesarina. Network Interface Support for User-Level Bu�er Management.
In Parallel Computer Routing and Comm. Workshop, Univ. of Washington, May 1994.

[Ke94a] P. Keleher and et al. TreadMarks: Distributed Shared Memory on Standard Workstations and
Operating Systems. In Proc. of Winter Usenix Conf., January 1994.

[Ke94b] J. Kuskin and et al. The Stanford FLASH Multiprocessor. In Intl Symposium on Computer Archi-

tecture, April 1994.

[MBH94] R. Minnich, D. Burns, and F. Hady. A 1.2Gbit/sec, 1 microsend latency ATM Interface. In Hot

Interconnects II, August 1994.

[Osb94] R. Osborne. A Hybrid Deposit Model for Low Overhead Communication in High Speed LANs. 4th
IFIP International Workshop on Protocols for High Speed Networks., August 1994.

[Se93] J. Subhlok and et al. Programming Task and Data Parallelism on a Multicomputer. In Proc. of ACM

Sympos. on Principles and Practice of Parallel Programming, pages 13{22, May 1993.

[SP90] J. Sterbenz and G. Parulka. Axon: A High Speed Communication Architecture for Distributed
Applications. In Proceedings of IEEE INFOCOM, 1990.

[TS93] C. Traw and J. Smith. Hardware/Software Organization of a High-Performance ATM Host Interface.
Journal of Selected Areas in Communications, pages 240{253, February 1993.

[von92] von Eicken et al. Active Messages: A Mechanism for Integrated Communication and Computation.
In Intl Symposium on Computer Architecture, pages 256{266, May 1992.

[Wil92] J. Wilkes. Hamlyn: An Interface for Sender-based Communication. Technical Report HPL-OSR-92-
13, HP Labs, November 1992.

MERL-TR-94-09v2 July 1994

	Title Page
	Title Page
	page 2

	DART: A LAN Interface for Low Overhead Communication
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

