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Abstract

Stochastic approaches to natural language processing have often been preferred to rule-based
approaches because of their robustness and their automatic training capabilities. This was the
case for part-of-speech tagging until Brill showed how state of the art part-of-speech tagging
can be achieved by inferring a rule-based part-of-speech tagger from a training corpus. However
current implementations of Brillś tagger run more slowly than previous approaches. In this paper,
we present a finite-state tagger inspired by Brillś work which operates in optimal time in the sense
that the time to assign tags to a sentence corresponds to the time required to deterministically
follow a single path in a deterministic finite state machine. This result is achieved by encoding
the application of the rules found in Brillś tagger as a non-deterministic finite state transducer
and then turning it into a deterministic transducer. The resulting deterministic transducer yields
a part-of-speech tagger whose speed is dominated by the access time of mass storage devices.
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1 Introduction

Finite-state devices have important applications to many areas of computer
science, including pattern matching, databases and compiler technology. Al-
though their linguistic adequacy to natural language processing has been
questioned in the past (Chomsky, 1964), there has recently been a dramatic
renewal of interest in the application of �nite-state devices to several as-
pects of natural language processing. This renewal of interest is due to the
speed and the compactness of �nite-state representations. This e�ciency
is explained by two properties: �nite-state devices can be made determin-
istic, and they can be turned into a minimal form. Such representations
have been successfully applied to di�erent aspects of natural language pro-
cessing, such as morphological analysis and generation (Karttunen, Kaplan,
and Zaenen, 1992; Clemenceau, 1993), parsing (Roche, 1993; Tapanainen
and Voutilainen, 1993), phonology (Laporte, 1993; Kaplan and Kay, 1994)
and speech recognition (Pereira, Riley, and Sproat, 1994). Although �nite-
state machines have been used for part-of-speech tagging (Tapanainen and
Voutilainen, 1993; Silberztein, 1993), none of these approaches has the same

exibility as stochastic techniques. Unlike stochastic approaches to part-of-
speech tagging (Church, 1988; Kupiec, 1992; Cutting et al., 1992; Merialdo,
1990; DeRose, 1988; Weischedel et al., 1993), up to now the knowledge found
in �nite-state taggers has been handcrafted and cannot be automatically
acquired.

Recently, Brill (1992) described a rule-based tagger which performs as
well as taggers based upon probabilistic models and which overcomes the
limitations common in rule-based approaches to language processing: it is
robust and the rules are automatically acquired. In addition, the tagger
requires drastically less space than stochastic taggers. However, current im-
plementations of Brill's tagger are considerably slower than the ones based
on probabilistic models since it may require RCn elementary steps to tag an
input of n words with R rules requiring at most C tokens of context.

Although the speed of current part-of-speech taggers is acceptable for
interactive systems where a sentence at a time is being processed, it is not
adequate for applications where large bodies of text need to be tagged, such
as in information retrieval, indexing applications and grammar checking sys-
tems. Furthermore, the space required for part-of-speech taggers is also an
issue in commercial personal computer applications such as grammar check-
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ing systems. In addition, part-of-speech taggers are often being coupled with
a syntactic analysis module. Usually these two modules are written in dif-
ferent frameworks, making it very di�cult to integrate interactions between
the two modules.

In this paper, we design a tagger that requires n steps to tag a sentence
of length n, independent of the number of rules and the length of the con-
text they require. The tagger is represented by a �nite-state transducer, a
framework which can also be the basis for syntactic analysis. This �nite-state
tagger will also be found useful combined with other language components
since it can be naturally extended by composing it with �nite-state trans-
ducers which could encode other aspects of natural language syntax.

Relying on algorithms and formal characterization described in later sec-
tions, we explain how each rule in Brill's tagger can be viewed as a non-
deterministic �nite-state transducer. We also show how the application
of all rules in Brill's tagger is achieved by composing each of these non-
deterministic transducers and why non-determinism arises in this transducer.
We then prove the correctness of the general algorithm for determinizing
(whenever possible) �nite-state transducers and we successfully apply this
algorithm to the previously obtained non-deterministic transducer. The re-
sulting deterministic transducer yields a part-of-speech tagger which operates
in optimal time in the sense that the time to assign tags to a sentence cor-
responds to the time required to follow a single path in this deterministic
�nite-state machine. We also show how the lexicon used by the tagger can
be optimally encoded using a �nite-state machine.

The techniques used for the construction of the �nite-state tagger are
then formalized and mathematically proven correct. We introduce a proof
of soundness and completeness with a worst case complexity analysis for an
algorithm for determinizing �nite-state transducers.

We conclude by proving how the method can be applied to the class of
transformation-based error-driven systems.

2 Overview of Brill's Tagger

Brill's tagger is comprised of three parts, each of which is inferred from a
training corpus: a lexical tagger, an unknown word tagger and a contextual
tagger. For purposes of exposition, we will postpone the discussion of the
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unknown word tagger and focus mainly on the contextual rule tagger, which
is the core of the tagger.

The lexical tagger initially tags each word with its most likely tag, esti-
mated by examining a large tagged corpus, without regard to context. For
example, assuming that vbn is the most likely tag for the word \killed" and
vbd for \shot", the lexical tagger might assign the following part-of-speech
tags:1

(1) Chapman/np killed/vbn John/np Lennon/np
(2) John/np Lennon/np was/bedz shot/vbd by/by Chapman/np
(3) He/pps witnessed/vbd Lennon/np killed/vbn by/by Chapman/np

Since the lexical tagger does not use any contextual information, many
words can be tagged incorrectly. For example, in (1), the word \killed" is
erroneously tagged as a verb in past participle form, and in (2), \shot" is
incorrectly tagged as a verb in past tense.

Given the initial tagging obtained by the lexical tagger, the contextual
tagger applies a sequence of rules in order and attempts to remedy the errors
made by the initial tagging. For example, the rules in Figure 1 might be
found in a contextual tagger.

1. vbn vbd PREVTAG np
2. vbd vbn NEXTTAG by

Figure 1: Sample rules

The �rst rule says to change tag vbn to vbd if the previous tag is np. The
second rule says to change vbd to tag vbn if the next tag is by. Once the �rst
rule is applied, the tag for \killed" in (1) and (3) is changed from vbn to vbd
and the following tagged sentences are obtained:

(4) Chapman/np killed/vbd John/np Lennon/np

1The notation for part-of-speech tags is adapted from the one used in the Brown Corpus
(Francis and Ku�cera, 1982): pps stands for third singular nominative pronoun, vbd for verb
in past tense, np for proper noun, vbn for verb in past participle form, by for the word
\by", at for determiner, nn for singular noun and bedz for the word \was".
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(5) John/np Lennon/np was/bedz shot/vbd by/by Chapman/np
(6) He/pps witnessed/vbd Lennon/np killed/vbd by/by Chapman/np

And once the second rule is applied, the tag for \shot" in (5) is changed
from vbd to vbn, resulting in (8) and the tag for \killed" in (6) is changed
back from vbd to vbn, resulting in (9):

(7) Chapman/np killed/vbd John/np Lennon/np
(8) John/np Lennon/np was/bedz shot/vbn by/by Chapman/np
(9) He/pps witnessed/vbd Lennon/np killed/vbn by/by Chapman/np

It is relevant to our following discussion to note that the application of
the NEXTTAG rule must look ahead one token in the sentence before it
can be applied and that the application of two rules may perform a series
of operations resulting in no net change. As we will see in the next section,
these two aspects are the source of local non-determinism in Brill's tagger.

The sequence of contextual rules is automatically inferred from a training
corpus. A list of tagging errors (with their counts) is compiled by comparing
the output of the lexical tagger to the correct part-of-speech assignment.
Then, for each error, it is determined which instantiation of a set of rule
templates results in the greatest error reduction. Then the set of new errors
caused by applying the rule is computed and the process is repeated until
the error reduction drops below a given threshold.

After training on the Brown Corpus, using the set of contextual rule tem-
plates shown in Figure 2, 280 contextual rules are obtained. The resulting
rule-based tagger performs as well as the state-of-the-art taggers based upon
probabilistic models. It also overcomes the limitations common in rule-based
approaches to language processing: it is robust, and the rules are automat-
ically acquired. In addition, the tagger requires drastically less space than
stochastic taggers. However, as we will see in the next section, Brill's tagger
is inherently slow.

3 Complexity of Brill's Tagger

Once the lexical assignment is performed, in Brill's algorithm, each contex-
tual rule acquired during the training phase is applied to each sentence to be
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A B PREVTAG C change A to B if previous tag is C
A B PREV1OR2OR3TAG C change A to B if previous one or two or three tag is C
A B PREV1OR2TAG C change A to B ifprevious one or two tag is C
A B NEXT1OR2TAG C change A to B if next one or two tag is C
A B NEXTTAG C change A to B if next tag is C
A B SURROUNDTAG C D change A to B if surrounding tags are C and D
A B NEXTBIGRAM C D change A to B if next bigram tag is C D
A B PREVBIGRAM C D change A to B if previous bigram tag is C D

Figure 2: Contextual Rule Templates

tagged. For each individual rule, the algorithm scans the input from left to
right while attempting to match the rule.

This simple algorithm is computationally ine�cient for two reasons. The
�rst reason for ine�ciency is the fact that an individual rule is matched
at each token of the input, regardless of the fact that some of the current
tokens may have been previously examined when matching the same rule at
a previous position. The algorithm treats each rule as a template of tags and
slides it along the input, one word at a time. Consider, for example, the rule
A B PREVBIGRAM C C that changes tag A to tag B if the previous two
tags are C.

C D CC A

CC A

C D CC A

CC A

C D CC A

CC A

(1) (2) (3)

↔

* *

↔ ↔ ↔

Figure 3: Partial matches of A B PREVBIGRAM C C on the input C D C
C A.

When applied to the input CDCCA, the pattern CCA is matched three
times, as shown in Figure 3. At each step no record of previous partial
matches or mismatches is remembered. In this example, C is compared with
the second input token D during the �rst and second steps, and therefore, the
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second step could have been skipped by remembering the comparisons from
the �rst step. This method is similar to a naive pattern matching algorithm.

The second reason for ine�ciency is the potential interaction between
rules. For example, when the rules in Figure 1 are applied to sentence (3), the
�rst rule results in a change (6) which is undone by the second rule as shown
in (9). The algorithm may therefore perform unnecessary computation.

In summary, Brill's algorithm for implementing the contextual tagger may
require RCn elementary steps to tag an input of n words with R contextual
rules requiring at most C tokens of context.

4 Construction of the Finite-State Tagger

We show how the function represented by each contextual rule can be repre-
sented as a non-deterministic �nite-state transducer and how the sequential
application of each contextual rule also corresponds to a non-deterministic
�nite-state transducer being the result of the composition of each individual
transducer. We will then turn the non-deterministic transducer into a deter-
ministic transducer. The resulting part-of-speech tagger operates in linear
time independent of the number of rules and the length of the context. The
new tagger operates in optimal time in the sense that the time to assign tags
to a sentence corresponds to the time required to follow a single path in the
resulting deterministic �nite-state machine.

Our work relies on two central notions: the notion of a �nite-state trans-
ducer and the notion of a subsequential transducer. Informally speaking, a
�nite-state transducer is a �nite-state automaton whose transitions are la-
beled by pairs of symbols. The �rst symbol is the input and the second is
the output. Applying a �nite-state transducer to an input consists of follow-
ing a path according to the input symbols while storing the output symbols,
the result being the sequence of output symbols stored. Section 8.1 formally
de�nes the notion of transducer.

Finite-state transducers can be composed, intersected, merged with the
union operation and sometimes determinized. Basically, one can manipulate
�nite-state transducers as easily as �nite-state automata. However, whereas
every �nite-state automaton is equivalent to some deterministic �nite-state
automaton, there are �nite-state transducers that are not equivalent to any
deterministic �nite-state transducer. Transductions that can be computed by
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some deterministic �nite-state transducer are called subsequential functions.
We will see that the �nal step of the compilation of our tagger consists
of transforming a �nite-state transducer into an equivalent subsequential
transducer.

We will use the following notation when pictorially describing a �nite-
state transducer: �nal states are depicted with two concentric circles; � rep-
resents the empty string; on a transition from state i to state j, a=b indicates
a transition on input symbol a and output symbol(s) b;2 a question mark (?)
on an arc transition (for example labeled ?=b) originating at state i stands for
any input symbol that does not appear as an input symbol on any other out-
going arc from i. In this document, each depicted �nite-state transducer will
be assumed to have a single initial state, namely the leftmost state appearing
in the �gures (usually labeled 0).

We are now ready to construct the tagger. Given a set of rules, the tagger
is constructed in four steps.

The �rst step consists of turning each contextual rule found in Brill's
tagger into a �nite-state transducer. Following the example discussed in
Section 2, the functionality of the rule vbn vbd PREVTAG np is represented
by the transducer shown in Figure 4 on the left.

np/np
0

vbn/vbd
1 2

?/?

np/np
0

?/?

vbn/vbd

np/np

1

Figure 4: Left: transducer T1 representing the contextual rule
vbn vbd PREVTAG np. Right: local extension LocExt(T1) of T1

2When multiple output symbols are emitted, a comma symbolizes the concatenation
of the output symbols.
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Each of the contextual rules is de�ned locally; that is, the transformation
it describes must be applied at each position of the input sequence. For
instance, the rule A B PREV1OR2TAG C, that changes A into B if the
previous tag or the one before is C, must be applied twice on C A A (resulting
in the output C B B). As we have seen in the previous section, this method
is not e�cient.

The second step consists of turning the transducers produced by the pre-
ceding step into transducers that operate globally on the input in one pass.
This transformation is performed for each transducer associated with each
rule. Given a function f1 that transforms, say, a into b (i.e. f1(a) = b), we
want to extend it to a function f2 such that f2(w) = w0 where w0 is the word
built from the word w where each occurrence of a has been replaced by b.
We say that f2 is the local extension3 of f1 and we write f2 = LocExt(f1).
Section 8.2 formally de�nes this notion and gives an algorithm for computing
the local extension.

Referring to the example of Section 2, the local extension of the trans-
ducer for the rule vbn vbd PREVTAG np is shown to the right of Figure 4.
Similarly, the transducer for the contextual rule vbd vbn NEXTTAG by and
its local extension are shown in Figure 5.

vbd/vbn0
by/by

1 2

?/?

vbd/vbd

vbd/vbn

0

by/by

1

?/?

by/by

vbd/vbn

vbd/vbd

2 3

Figure 5: Left: transducer T2 representing vbd vbn NEXTTAG by. Right:
local extension LocExt(T2) of T2

The transducers obtained in the previous step still need to be applied
one after the other. The third step combines all transducers into one single

3This notion was introduced by Roche (1993).
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transducer. This corresponds to the formal operation of composition de�ned
on transducers. The formalization of this notion and an algorithm for com-
puting the composed transducer are well-known and are described originally
by Elgot and Mezei (1965).

Returning to our running example of Section 2, the transducer obtained
by composing the local extension of T2 (right in Figure 5) with the local
extension of T1 (right in Figure 4) is shown in Figure 6.

np/np

vbd/vbn

vbd/vbd

?/?

0

vbn/vbn

vbn/vbd

vbd/vbn

vbd/vbd?/?

np/np

1

by/by
2

vbd/vbd

vbd/vbn

np/np

by/by

?/?

3

4

Figure 6: Composition T3 = LocExt(T1) � LocExt(T2)

The fourth and �nal step consists of transforming the �nite-state trans-
ducer obtained in the previous step into an equivalent subsequential (de-
terministic) transducer. The transducer obtained in the previous step may
contain some non-determinism. The fourth step tries to turn it into a deter-
ministic machine. This determinization is not always possible for any given
�nite-state transducer. For example, the transducer shown in Figure 7 is
not equivalent to any subsequential transducer. Intuitively speaking, such
a transducer has to look ahead an unbounded distance in order to correctly
generate the output. This intuition will be formalized in Section 9.2.

However, as proven in Section 10, the rules inferred in Brill's tagger can
always be turned into a deterministic machine. Section 9.1 describes an al-
gorithm for determinizing �nite-state transducers. This algorithm will not
terminate when applied to transducers representing non-subsequential func-
tions.
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a:a

a:b

0

a:a

b:b1

2a:a

c:c3

Figure 7: Example of a transducer not equivalent to any subsequential trans-
ducer.

In our running example, the transducer in Figure 6 has some non-deterministic
paths. For example, from state 0 on input symbol vbd, two possible emissions
are possible: vbn (from 0 to 2) and vbd (from 0 to 3). This non-determinism is
due to the rule vbd vbd NEXTTAG by, since this rule has to read the second
symbol before it can know which symbol must be emitted. The deterministic
version of the transducer T3 is shown in Figure 8. Whenever non-determinism
arises in T3, the deterministic machine emits the empty symbol �, and post-
pones the emission of the output symbol. For example, from the start state
0, the empty string is emitted on input vbd, while the current state is set to
2. If the following word is by, the two token string vbn by is emitted (from 2
to 0), otherwise vbd is emitted (depending on the input from 2 to 2 or from
2 to 0).

Using an appropriate implementation for �nite-state transducers (see Sec-
tion 11), the resulting part-of-speech tagger operates in linear time, indepen-
dent of the number of rules and the length of the context. The new tagger
therefore operates in optimal time.

We have shown how the contextual rules can be implemented very ef-
�ciently. We now turn our attention to lexical assignment, the step that
precedes the application of the contextual transducer. This step can also be
made very e�cient.
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?/?

vbd/ε

np/np
0

?/?

np/np

vbn/ε

vbd/ε
1

np/vbd,np

?/vbd,?

by/vbn,by

vbd/vbd

2

Figure 8: Subsequential form for T3

5 Lexical Tagger

The �rst step of the tagging process consists of looking up each word in a
dictionary. Since the dictionary is the largest part of the tagger in terms of
space, a compact representation is crucial. Moreover, the lookup process has
to be very fast too, otherwise the improvement in speed of the contextual
manipulations would be of little practical interest.

To achieve high speed for this procedure, the dictionary is represented
by a deterministic �nite-state automaton with both low access time and
small storage space. Suppose one wants to encode the sample dictionary
of Figure 9. The algorithm, as described in (Revuz, 1991), consists of �rst
building a tree whose branches are labeled by letters and whose leaves are
labeled by a list of tags (such as nn vb) , and then minimizing it into a
directed acyclic graph (DAG). The result of applying this procedure to the
sample dictionary of Figure 9 is the DAG of Figure 10. When a dictionary
is represented as a DAG, looking up a word in it consists simply of following
one path in the DAG. The complexity of the lookup procedure depends only
on the length of the word; in particular, it is independent of the size of the
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dictionary.

ads nns
bag nn vb
bagged vbn vbd
bayed vbn vbd
bids nns

Figure 9: Sample Dictionary

a

d s

b a
g g

y
e d

(nns)

(nn,vb)

(vbd,vbn)

i

Figure 10: DAG representation of the dictionary found in Figure 9.

The lexicon used in our system encodes 54; 000 words. The corresponding
DAG takes 360 Kbytes of space and it provides an access time of 12; 000 words
per second.4

6 Tagging unknown words

The rule-based system described by Brill (1992) contains a module that op-
erates after all the known words | that is, words listed in the dictionary |
have been tagged with their most frequent tag, and before the set of contex-
tual rules are applied. This module guesses a tag for a word according to its
su�x (e.g. a word with an \ing" su�x is likely to be a verb), its pre�x (e.g.
a word starting with an uppercase character is likely to be a proper noun)
and other relevant properties.

This module basically follows the same techniques as the ones used to
implement the lexicon. Due to the similarity of the methods used, we do not
provide further details about this module.

4The size of the dictionary in ASCII form is 742KB.
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7 Empirical Evaluation

The tagger we constructed has an accuracy identical5 to Brill's tagger or the
one of statistical-based methods, however it runs at a much higher speed.
The tagger runs nearly ten times faster than the fastest of the other sys-
tems. Moreover, the �nite-state tagger inherits from the rule-based system
its compactness compared to a stochastic tagger. In fact, whereas stochastic
taggers have to store word-tag, bigram and trigram probabilities, the rule-
based tagger and therefore the �nite-state one only have to encode a small
number of rules (between 200 and 300).

We empirically compared our tagger with Eric Brill's implementation of
his tagger, and with our implementation of a trigram tagger adapted from the
work of Church (1988) that we previously implemented for another purpose.
We ran the three programs on large �les and piped their output into a �le. In
the times reported, we included the time spent reading the input and writing
the output. Figure 11 summarizes the results. All taggers were trained on a
portion of the Brown corpus. The experiments were run on an HP720 with
32Mbytes of memory. In order to conduct a fair comparison, the dictionary
lookup part of the stochastic tagger has also been implemented using the
techniques described in Section 5. All three taggers have approximately the
same precision (95% of the tags are correct)6. By design, the �nite-state
tagger produces the same output as the rule-based tagger. The rule-based
tagger | and the �nite-state tagger | do not always produce the exact same
tagging as the stochastic tagger (they don't make the same errors); however,
no signi�cant di�erence in performance between the systems was detected.7

Independently, Cutting et al. (1992) quote a performance of 800 words/second
for their part-of-speech tagger based on hidden Markov models.

The space required by the �nite-state tagger (815KB) is decomposed as
follows: 363KB for the dictionary, 440KB for the subsequential transducer
and 12KB for the module for unknown words.

5Our current implementation is functionally equivalent to the tagger as described by
Brill (1992). However, the tagger could be extended to include recent improvements de-
scribed in more recent papers (Brill, 1994).

6For evaluation purposes, we randomly selected 90% of the Brown corpus for training
purposes and 10% for testing. We used the Brown corpus set of part-of-speech tags.

7An extended discussion of the precision of the rule-based tagger can be found in (Brill,
1992).
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Stochastic Tagger Rule-Based Tagger Finite-State Tagger
Speed 1,200 w/s 500 w/s 10,800 w/s
Space 2,158KB 379KB 815KB

Figure 11: Overall performance comparison.

The speed of our system is decomposed in Figure 12.8

dictionary lookup unknown words contextual
Speed 12,800 w/s 16,600 w/s 125,100 w/s
Percent of the time 85% 6.5% 8.5%

Figure 12: Speed of the di�erent parts of the program

Our system reaches a performance level in speed for which other very
low level factors (such as storage access) may dominate the computation.
At such speeds, the time spent reading the input �le, breaking the �le into
sentences, and sentences into words, and writing the result into a �le is no
longer negligible.

8 Finite-State Transducers

The methods used in the construction of the �nite-state tagger described
in the previous sections were described informally. In the following section,
the notions of �nite-state transducers and the notion of local extension are
de�ned. We also provide an algorithm for computing the local extension of
a �nite-state transducer. Issues related to the determinization of �nite-state
transducers are discussed in the section following this one.

8In Figure 12, the dictionary lookup includes reading the �le, splitting it into sentences,
looking up each word in the dictionary and writing the �nal result to a �le. The dictionary
lookup and the tagging of unknown words take roughly the same amount of time, but since
the second procedure only applies on unknown words (around 10% in our experiments)
the percentage of time it takes is much smaller.
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8.1 De�nition of Finite-State Transducers

A �nite-State transducer T is a 5-tuple (�; Q; i; F;E) where: � is a �nite
alphabet; Q is the set of states or vertices; i 2 Q is the initial state; F � Q
is the set of �nal states; E � Q � � [ f�g � �� � Q is the set of edges or
transitions.

For instance, Figure 13 is the graphical representation of the transducer:

T1 = (fa; b; c; d; eg,f0; 1; 2; 3g,0,f3g,f(0; a; b; 1),(0; a; c; 2),(1; d; d; 3),(2; e; e; 3)g).

A �nite-state transducer T also de�nes a function on words in the follow-
ing way: the extended set of edges Ê, the transitive closure of E, is de�ned
by the following recursive relation:

� if e 2 E then e 2 Ê

� if (q; a; b; q0); (q0; a0; b0; q00) 2 Ê then (q; aa0; bb0; q00) 2 Ê.

Then the function f from �� to �� de�ned by f(w) = w0 i� 9q 2 F such that
(i; w;w0; q) 2 Ê is the function de�ned by T . One says that T represents f
and writes f = jT j. The functions on words that are represented by �nite-
state transducers are called rational functions. If, for some input w, more
than one output is allowed (e.g. f(w) = fw1; w2; � � �g) then f is called a
rational transduction.

In the example of Figure 13, T1 is de�ned by jT1j(ad) = bd and jT1j(ae) =
ce.

a/b

a/c e/e

h/h

0

1

2

3

Figure 13: T1: Example of Finite-State Transducer

Given a �nite-state transducer T = (�; Q; i; F;E), the following addi-
tional notions are useful: its state transition function d that mapsQ�� [ f�g
into 2Q de�ned by d(q; ag) = fq0 2 Qj9w0 2 �� and (q; a; w0; q0) 2 Eg;
and its emission function � that maps Q� � [ f�g �Q into 2�

�
de�ned by

�(q; a; q0) = fw0 2 ��j(q; a; w;0 ; q0) 2 Eg.
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A �nite-state transducer could be seen as a �nite-state automaton, each
of whose label is a pair. In this respect, T1 would be deterministic; how-
ever, since transducers are generally used to compute a function, a more
relevant de�nition of determinism consists of saying that both the transi-
tion function d and the emission function � lead to sets containing at most
one element, that is, jd(q; a)j � 1 and j�(q; a; q0)j � 1. With this notion,
if a �nite-state transducer is deterministic, one can apply the function to a
given word by deterministically following a single path in the transducer. De-
terministic transducers are called subsequential transducers (Sch}utzenberger,
1977)9. Given a deterministic transducer, we can de�ne the partial functions
q
a = q0 i� d(q; a) = fq0g and q �a = w0 i� 9q0 2 Q such that q
a = q0 and
�(q; a; q0) = fw0g. This leads to the de�nition of subsequential transducers: a
subsequential transducer T 0 is a 7-tuple (�; Q; i; F;
; �; �) where: �; Q; i; F
are de�ned as above; 
 is the deterministic state transition function that
maps Q � � on Q, one writes q 
 a = q0; � is the deterministic emission
function that maps Q�� on ��, one writes q �a = w0; and the �nal emission
function � maps F on ��, one writes �(q) = w.

For instance, T1 is not deterministic because d(1; a) = fa; bg, but it is
equivalent to T2 represented Figure 14 in the sense that they represent the
same function, i.e jT1j = jT2j. T2 is de�ned by T2 = (fa; b; c; h; eg; f0; 1; 2g; 0; f2g;
; �; �)
where 0 
 a = 1, 0 � a = �, 1 
 h = 2, 1 � h = bh, 1 
 e = 2, 1 � e = ce and
where �(2) = �.

a/ε

e/ce

h/bh

0 1 2

Figure 14: Subsequential Transducer T2

8.2 Local Extension

In this section, we will see how a function which needs to be applied at
all input positions can be transformed into a global function that needs to
be applied once on the input. For instance, consider T3 of Figure 15. It

9A sequential transducer is a deterministic transducer for which all states are �nal.
Sequential transducers are also called generalized sequential machines (Eilenberg, 1974).
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represents the function f3 = jT3j such that f3(ab) = bc and f3(bca) = dca.
We want to build the function that, given a word w, each time w contains ab
(i.e. ab is a factor of the word) (resp. bca), this factor is transformed into its
image bc (resp. dca). Suppose for instance that the input word is w = aabcab,
as shown on Figure 16, and that the factors that are in dom(f3)10 can be
found according to two di�erent factorizations: i.e. w1 = a �w2 �c �w2

11 where
w2 = ab and w1 = aa � w3 � b where w3 = bca. The local extension of f3 will
be the function that takes each possible factorization and transforms each
factor according to f3, i.e. f3(w2) = bc and f3(w3) = dca, and leaves the
other parts unchanged; here this leads to two outputs: abccbc according to
the �rst factorization, and aadcab according to the second factorization.

a/b

b/d

b/c

0

1

2
c/c a/a43

Figure 15: T3: a �nite-state transducer to be extended

a a b c a b

a a b c a b
b c b c

a a b c a b
d c a

Figure 16: Top: input Middle: �rst factorization Bottom: second factoriza-
tion

The notion of local extension is formalized through the following de�ni-
tion.

10dom(f) denotes the domain of f , that is, the set of words that have at least one output
through f .

11If w1; w2 2 ��, w1 �w2 denotes the concatenation of w1 and w2. It can also be written
w1w2.
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De�nition 1 If f is a rational transduction from �� to ��, the local ex-
tension F = LocExt(f) is the rational transduction from �� on �� de-
�ned in the following way: if u = a1b1a2b2 � � � anbnan+1 2 �� then v =
a1b

0
1a2b

0
2 � � � anb

0
nan+1 2 F (u) if ai 2 �� � (�� � dom(f) � ��), bi 2 dom(f)

and b0i 2 f(bi).12

Intuitively, if F = LocExt(f) and w 2 ��, each factor of w in dom(f) is
transformed into its image by f and the remaining part of w is left unchanged.
If f is represented by a �nite-state transducer T and LocExt(f) is represented
by a �nite-state transducer T 0, one writes T 0 = LocExt(T ).

It could also be seen that if 
T is the identity function on ���(���dom(T )�
��), then LocExt(T ) = 
T � (T � 
T )�.13 Figure 20 gives an algorithm that
computes the local extension directly.

The idea is that an input word is processed non-deterministically from
left to right. Suppose for instance that we have the initial transducer T4 of
Figure 17 and that we want to build its local extension T5 of Figure 18. When
the input is read, if a current input letter cannot be transformed at the �rst
state of T4 (the letter c for instance), it is left unchanged: this is expressed
by the looping transition on the initial state 0 of T5 labeled ?=?.14 On the
other hand, if the input symbol, say a, can be processed at the initial state of
T4, one doesn't know yet whether a will be the beginning of a word that can
be transformed (e.g. ab) or whether it will be followed by a sequence which
makes it impossible to apply the transformation (e.g. ac). Hence one has to
entertain two possibilities, namely (1) we are processing the input according
to T4 and the transitions should be a=b, or (2) we are within the identity
and the transition should be a=a. This leads to two kind of states: the
transduction states (marked transduction in the algorithm) and the identity
states (marked identity in the algorithm). It can be seen in Figure 18 that
this leads to a transducer that has a copy of the initial transducer and an
additional part that processes the identity while making sure it could not

12The dot `�' stands for the concatenation operation on strings.
13In this last formula, the concatenation � stands for the concatenation of the graph of

the function, that is for the concatenation of the transducers viewed as automata whose
labels are of the form a=b.

14As explained before, a transition labeled by the symbol ? stands for all the transitions
labeled with a letter that doesn't appear on any outgoing arc from this state. A transition
labeled ?=? stands for all the diagonal pairs (a; a) s.t. a is not an input symbol on any
outgoing arc from this state.
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have been transformed. In other words, the algorithm consists of building a
copy of the original transducer and at the same time the identity function
that operates on �� � �� � dom(T ) � ��.

Let us now see how the algorithm of Figure 20 applies step by step to the
transducer T4 of Figure 17, producing the transducer T5 of Figure 18.

In Figure 20, C 0[0] = (fig; identity) of line 1 states that the state 0 of the
transducer to be built is of type identity and refers to the initial state i = 0 of
T4. q represents the current state and n the current number of states. In the
loop dof� � �gwhile(q < n), one builds the transitions of each state one after
the other: if the transition points to a state not already built, a new state is
added, thus incrementing n. The program stops when all states have been
inspected and when no additional state is created. The number of iterations
is bounded by 2kTk�2, where kTk = jQj is the number of states of the original
transducer15. Line 3 says that the current state within the loop will be q and
that this state refers to the set of states S and is marked by the type type.
In our example, at the �rst occurrence of this line, S is instantiated to f0g
and type = identity. Line 5 adds the current identity state to the set of �nal
states and a transition to the initial state for all letters that do not appear
on any outgoing arc from this state. Lines 6 to 11 build the transitions from
and to the identity states, keeping track of where this leads in the original
transducer. For instance, a is a label that veri�es the conditions of line 6.
Thus a transition a=a is to be added to the identity state 2 which refers to
1 (because of the transition a=b of T4) and to i = 0 (because it is possible to
start the transduction T4 from any place of the identity). Line 7 checks that
this state doesn't already exist and adds it if necessary. e = n + + means
that the arrival state for this transition, i.e. d(q; w), will be the last added
state and that the number of states being built has to be incremented. Line
11 actually builds the transition between 0 and e = 2 labeled a=a. Line 12
through 17 describe the fact that it is possible to start a transduction from
any identity state. Here one transition is added to one new state, i.e. a=b to
3. The next state to be considered is 2 and it is built like state 0 except that
the symbol b should block the current output. In fact, the state 1 means that
we already read a with a as output, thus if one reads b, this means that ab is
at the current point, and since ab should be transformed into bc, the current
identity transformation (that is a! a) should be blocked: this is expressed

15In fact, Q0 � 2Q�ftransduction;identityg. Thus, q � 22jQj.
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by the transition b=b that leads to state 1 (this state is a \trash" state; that
is, it has no outgoing transition and it is not �nal).

The following state is 3, which is marked as being of type transduction,
which means that lines 19 through 27 should be applied. This consists simply
of copying the transitions of the original transducer. If the original state was
�nal, as for 4 = (f2g; transduction), an �=� transition to the original state is
added (to get the behavior of T+).

The transducer T6 = LocExt(T3) of Figure 19 gives a more complete (and
slightly more complex) example of applying this algorithm.

a/b

b/d

b/c

0

1

2

Figure 17: Sample Transducer T4

a/b

a/a

{0}

identity

{1}

transd.

{2}

transd.

{0,1}
identity

a/b
b/c

ε/ε

b/d

0

1

3

4

?/?

a/a

b/b

{}

transd.

2

?/?

Figure 18: Local Extension T5 of T4: T5 = LocExt(T4)
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a/b

a/a

{0}

identity

{1}

transd.

{2}
transd.

{0,1}
identity

a/b

b/c

ε/ε

{3}

transd.

{4}
transd.

{0,3}
identity

{0,4}
identity

b/d
c/c

c/c
b/b

b/d

a/b

a/a

a/b

b/d
?/?

?/?

?/?

0

2

3

4

78

?/?

1

{}

transd.

5

6

a/a

b/b

a/a
b/b

b/b

a/a

Figure 19: Local Extension T6 of T3: T6 = LocExt(T3)
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LocalExtension(T 0 = (�; Q0; i0; F 0; E 0); T = (�; Q; i; F;E))
1 C 0[0] = (fig; identity); q = 0; i0 = 0;F 0 = ;;E0 = ;;Q0 = ;;C 0[1] = (;; transduction);n = 2;
2 do f
3 (S; type) = C 0[q];Q0 = Q0 [ fqg;
4 if (type == identity)
5 F 0 = F 0 [ fqg;E0 = E0 [ f(q; ?; ?; i0)g;
6 for each w 2 � [ f�g s.t. 9x 2 S, d(x;w) 6= ; and 8y 2 S, d(y;w) \ F = ;
7 if (9r 2 [0; n� 1] such that C 0[r] == (fig [

[

x2S

d(x;w); identity)

8 e = r;
9 else

10 C 0[e = n++] = (fig [
[

x2S

d(x;w); identity);

11 E 0 = E0 [ f(q; w;w; e)g;
12 for each (i; w;w0; x) 2 E
13 if (9r 2 [0; n� 1] such that C 0[r] == (fxg; transduction)
14 e = r;
15 else
16 C 0[e = n++] = (fxg; transduction);
17 E 0 = E0 [ f(q; w;w0; e)g;
18 for each w 2 � [ f�g s.t. 9x 2 S d(x;w) \ F 6= ; then E0 = E0 [ f(q; w;w; 1)g;
19 else if (type == transduction)
20 if 9x1 2 Q s.t. S == fx1g
21 if (x1 2 F ) then E0 = E0 [ f(q; �; �; 0)g;
22 for each (x1; w;w0; y) 2 E
23 if (9r 2 [0; n� 1] such that C 0[r] == (fyg; transduction)
24 e = r;
25 else
26 C 0[e = n++] = (fyg; transduction);
27 E0 = E0 [ f(q; w;w0; e)g;
28 q++;
29 gwhile(q < n);

Figure 20: Local Extension Algorithm.
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9 Determinization

The basic idea behind the determinization algorithm comes from Mehryar
Mohri16. In this section, after giving a formalization of the algorithm, we in-
troduce a proof of soundness and completeness with its worst case complexity
analysis.

9.1 Determinization Algorithm

In the following, for w1; w2 2 ��, w1 ^w2 denotes the longest common pre�x
of w1 and w2.

The �nite-state transducers we use in our system have the property that
they can be made deterministic; that is, there exists a subsequential trans-
ducer that represents the same function17. If T = (�; Q; i; F;E) is such a
�nite-state transducer, the subsequential transducer T 0 = (�; Q0; i0; F 0;
; �; �)
de�ned as follows will be later proved equivalent to T :

� Q0 � 2Q��
�
. In fact the determinization of the transducer is related to

the determinization of FSAs in the sense that it also involves a power
set construction. The di�erence is that one has to keep track of the
set of states of the original transducer one might be in and also of
the words whose emission have been postponed. For instance, a state
f(q1; w1); (q2; w2)g means that this state corresponds to a path that
leads to q1 and q2 in the original transducer and that the emission of
w1 (resp. w2) was delayed for q1 (resp. q2).

� i0 = f(i; �)g. There is no postponed emission at the initial state.

� the emission function is de�ned by:

S � a =
^

(q;u)2S

^

q02d(q;a)

u � �(q; a; q0)

This means that, for a given symbol, the set of possible emissions is
obtained by concatenating the postponed emissions with the emission

16Mohri (1994b) also gives a formalization of the algorithm.
17As opposed to automata, a large class of �nite-state transducers, don't have any

deterministic representation; they can't be determinized.
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at the current state. Since one wants the transition to be deterministic,
the actual emission is the longest common pre�x of this set.

� the state transition function is de�ned by:

S 
 a =
[

(q;u)2S

[

q02d(q;a)

f(q0; (S � a)�1 � u � �(q; a; q0))g

Given u; v 2 ��, u�v denotes the concatenation of u and v and u�1 �v =
w, if w is such that u � w = v, u�1 � v = ; if no such w exists.

� F 0 = fS 2 Q0j9(q; u) 2 S and q 2 Fg

� if S 2 F 0, �(S) = u s.t. 9q 2 F s.t. (q; u) 2 S. We will see in the proof
of correctness that � is properly de�ned.

The determinization algorithm of Figure 22 computes the above subse-
quential transducer.

Let us now apply the determinization algorithm of Figure 22 on the �nite-
state transducer T1 of Figure 13 and show how it builds the subsequential
transducer T5 of Figure 21. Line 1 of the algorithm builds the �rst state and
instantiates it with the pair f(0; �)g. q and n respectively denote the current
state and the number of states having been built so far. At line 5, one takes all
the possible input symbols w; here only a is possible. w0 of line 6 is the output
symbol, w0 = � � (

^

q02f1;2g

�(0; a; q0)), thus w0 = �(0; a; 1)^ �(0; a; 2) = b^ c = �.

Line 8 is then computed as follows: S0 =
[

q2f0g

[

q02f1;2g

fq0; ��1 � �(0; a; q0)g, thus

S0 = f(1; �(0; a; 1))g [ f(2; �(0; a; 2)g = f(1; b); (2; c)g. Since no r veri�es
the condition on line 9, a new state e is created to which the transition
labeled a=w = a=� points and n is incremented. On line 15, the program
goes to the construction of the transitions of state 1. On line 5, d and e are
then two possible symbols. The �rst symbol, h, at line 6, is such that w0 is
w0 =

^

q02d(1;h)=f2g

b � �(1; h; q0)) = bh. Henceforth, the computation of line 8

leads to S0 =
[

q2f1g

[

q02f2g

f(q0; (bh)�1 � b �h)g = f(2; �)g. State 2 labeled f(2; �)g

is thus added and a transition labeled h=bh that points to state 2 is also
added. The transition for the input symbol e is computed the same way.

MERL-TR-94-07. Version 3.0 March 1995



25

h/bh

a/ε

e/ce

(0,ε)
(1,b)
(2,c) (2,ε)

0 1 2

Figure 21: Subsequential transducer T5 such that jT5j = jT1j

DeterminizeTransducer(T 0 = (�; Q0; i0; F 0;
; �; �); T = (�; Q; i; F;E))
1 i0 = 0; q = 0;n = 1;C 0[0] = f(0; �)g;F 0 = ;;Q0 = ;;
2 do f
3 S = C 0[q];Q0 = Q0 [ fqg;
4 if 9(q; u) 2 S s.t. q 2 F then F 0 = F 0 [ fqg and �(q) = u;
5 foreach w such that 9(q; u) 2 S) and d(q; w) 6= ; f

6 w0 =
^

(q;u)2S

^

q02d(q;w)

u � �(q; w; q0)

7 q �w = w0;

8 S0 =
[

(q;u)2S

[

q02d(q;w)

f(q0; w0�1 � u � �(q; w; q0))g;

9 if 9r 2 [0; n� 1] such that C 0[r] == S0

10 e = r;
11 else
12 C 0[e = n ++] = S0;
13 q 
w = e;
14 g
15 q ++;
16 gwhile(q < n);

Figure 22: Determinization Algorithm
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The subsequential transducer generated by this algorithm could in turn
be minimized by an algorithm described in (Mohri, 1994a). However, in the
case of the part-of-speech tagger, the transducer is nearly minimal.

9.2 Proof of Correctness

Although it is decidable whether a function is subsequential or not (Cho�rut,
1977), the determinization algorithm described in the previous section does
not terminate when run on a non-subsequential function.

Two issues are addressed in this section. First, the proof of soundness:
the fact that if the algorithm terminates, then the output transducer is deter-
ministic and represents the same function. Second, the proof of completeness:
the algorithm terminates in the case of subsequential functions.

Soundness and completeness are a consequence of the main proposition
which states that if a transducer T represents a subsequential function f ,
then the algorithm DeterminizeTransducer described in the previous section
applied on T computes a subsequential transducer representing the same
function.

In order to simplify the proofs, we will only consider transducers that do
not have � input transitions, that is E � Q�� � �� �Q, and also without
loss of generality, transducers that are reduced and that are deterministic in
the sense of �nite-state automata18.

In order to prove this proposition, we need to establish some preliminary
notations and lemmas.

First we extend the de�nition of the transition function d, the emission
function �, the deterministic transition function 
 and the deterministic
emission function � on words in the classical way. We then have the following
properties:

d(q; ab) =
[

q02d(q;a)

d(q0; b)

�(q1; ab; q2) =
[

fq02d(q1;a)jq22d(q0;b)g

�(q1; a; q
0) � �(q0; b; q2)

q 
 ab = (q 
 a)
 b

q � ab = (q � a) � (q 
 a) � b

18A transducer de�nes an automaton whose labels are the pairs \input/output"; this
automaton is assumed to be deterministic.
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For the following, it useful to note that if jT j is a function, then � is a
function too.

The following lemma states an invariant that holds for each state S built
within the algorithm. The lemmawill later be used for the proof of soundness.

Lemma 1 Let I = C 0[0] be the initial state. At each iteration of the \do"
loop in DeterminizeTransducer, for each S = C 0[q] and for each w 2 �� such
that I 
 w = S, the following holds:

(i) I � w =
^

q2d(i;w)

�(i; w; q)

(ii) S = I 
 w = f(q; u)jq 2 d(i; w) and u = (I � w)�1 � �(i; w; q)g

Proof. (i) and (ii) are obviously true for S = I (since d(i; �) = i and
�(i; �; i) = �) and we will show that given some w 2 �� if it is true for
S = I 
 w then it is also true for S1 = S 
 a = I 
 wa for all a 2 �.

Assuming that (i) and (ii) hold for S and w, then for each a 2 �:
^

q2d(i;w);q02d(q;a)

�(i; w; q) � �(q; a; q0) = (I � w) �
^

q2d(i;w);q02d(q;a)

((I � w)�1 � �(i; w; q)) � �(q; a; q0)

= (I � w) �
^

(q;u)2S=I
w;q02d(q;a)

u � �(q; a; q0)

= (I � w) � (S � a)

= I � w � (I 
 w) � a

= I � wa

This proves (i).
We now turn to (ii). Assuming that (i) and (ii) hold for S and w, then

for each a 2 �, let S1 = S 
 a; the algorithm (line 8) is such that

S1 = f(q0; u0)j9(q; u) 2 S; q0 2 d(q; a) and u0 = (S � a)�1 � u � �(q; a; q0)g

Let

S2 = f(q0; u0)jq0 2 d(i; wa) and u0 = (I � wa)�1 � �(i; wa; q0)g

We show that S1 � S2. Let (q
0; u0) 2 S1, then 9(q; u) 2 S s.t. q0 2 d(q; a)

and u0 = (S � a)�1 � u � �(q; a; q0). Since u = (I � w)�1 � �(i; w; q), then
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u0 = (S�a)�1�(I�w)�1��(i; w; q)��(q; a; q0), that is, u0 = (I�wa)�1��(i; wa; q0).
Thus (q0; u0) 2 S2. Hence S1 � S2.

We now show that S2 � S1. Let (q0; u0) 2 S2, and let q 2 d(i; w) be
s.t. q0 2 d(q; a) and u = (I � w)�1 � �(i; w; q) then (q; u) 2 S and since
u0 = (I � wa)�1 � �(i; wa; q0) = (S � a)�1 � u � �(q; a; q0), (q0; u0) 2 S1

This concludes the proof of (ii). 2
The following lemma states a common property of the state S, which will

be used in the complexity analysis of the algorithm.

Lemma 2 Each S = C 0[q] built within the \do" loop is s.t. 8q 2 Q, there is
at most one pair (q; w) 2 S with q as �rst element.

Proof. Suppose (q; w1) 2 S and (q; w2) 2 S, and let w be s.t. I
w = S.
Then w1 = (I �w)�1 � �(i; w; q) and w2 = (I �w)�1 � �(i; w; q). Thus w1 = w2.
2

The following lemma will also be used for soundness. It states that the
�nal state emission function is indeed a function.

Lemma 3 For each S built in the algorithm, if (q; u); (q0; u0) 2 S, then q; q0 2
F ) u = u0

Proof. Let S be one state set built in line 8 of the algorithm. Suppose
(q; u); (q0; u0) 2 S and q, q0 2 F . According to (ii) of lemma 1, u = (I �
w)�1 � �(i; w; q) and u0 = (I � w)�1 � �(i; w; q0). Since jT j is a function and
f�(i; w; q); �(i; w; q0)g 2 jT j(w) then �(i; w; q) = �(i; w; q0), therefore u = u0.
2

The following lemma will be used for completeness.

Lemma 4 Given a transducer T representing a subsequential function, there
exists a bound M s.t. for each S built at line 8, for each (q; u) 2 S, juj �M .

We rely on the following theorem proven by Cho�rut (1978):

Theorem 1 A function f on �� is subsequential i� it has bounded variations
and for any rational language L � ��, f�1(L) is also rational.

with the following two de�nitions:
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De�nition 2 The left distance between two strings u and v is

ku; vk = juj+ jvj � 2ju ^ vj

De�nition 3 A function f on �� has bounded variations i� for all k � 0,
there exists K � 0 s.t. u; v 2 dom(f), ku; vk � k) kf(u); f(v)k � K

Proof of lemma 4: Let f = jT j. For each q 2 Q let c(q) be a string w
s.t. d(q; w) \ F 6= ; and s.t. jwj is minimal among such strings. Note that
jc(q)j � kTk where kTk is the number of states in T . For each q 2 Q let
s(q) 2 Q be a state s.t. s(q) 2 d(q; c(q)) \ F . Let us further de�ne

M1 = maxq2Qj�(q; c(q); s(q))j

M2 = maxq2Qjc(q)j

Since f is subsequential, it is of bounded variations, therefore there exists
K s.t. if ku; vk � 2M2 then kf(u); f(v)k � K. Let M = K + 2M1.

Let S be a state set built at line 8 , let w be s.t. I
w = S and � = I �w.
Let (q1; u) 2 S. Let (q2; v) 2 S be s.t. u ^ v = �. Such a pair always exists,
since if not

j
^

(q0;u0)2S

u0j > 0

thus j� �
^

(q0;u0)2S

u0j = j
^

(q0;u0)2S

� � u0j > j�j

Thus, because of (ii) in lemma 1,

j
^

q02d(i;w)

�(i; w; q0)j > jI � wj

which contradicts (i) in lemma 1.
Let ! = �(q1; c(q1); s(q1)) and !0 = �(q2; c(q2); s(q2)).
Moreover, for any a,b,c,d 2 ��, ka; ck � kab; cdk + jbj + jdj. In fact,

kab; cdk = jabj + jcdj � 2jab ^ cdj = jaj + jcj + jbj + jdj � 2jab ^ cdj =
ka; ck + 2ja ^ cj + jbj + jdj � 2jab ^ cdj but jab ^ cdj � ja ^ cj + jbj + jdj
and since kab; cdk = ka; ck � 2(jab ^ cdj � ja ^ cj � jbj � jdj) � jbj � jdj one
has ka; ck � kab; cdk+ jbj+ jdj.

Therefore, in particular, juj � k�u; �vk � k�u!; �v!0k + j!j+ j!0j, thus
juj � kf(w � c(q1)); f(w � c(q2))k+ 2M1. But kw � c(q1); w � c(q2)k � jc(q1)j+
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jc(q2)j � 2M2, thus kf(w � c(q1)); f(w � c(q2))k � K and therefore juj �
K + 2M1 = M . 2

The time is now ripe for the main proposition which proves soundness
and completeness.

Proposition 1 If a transducer T represents a subsequential function f , then
the algorithm DeterminizeTransducer described in the previous section ap-
plied on T computes a subsequential transducer � representing the same func-
tion.

Proof. The lemma 4 shows that the algorithm always terminates if jT j
is subsequential.

Let us show that dom(j� j) � dom(jT j). Let w 2 �� s.t. w is not in
dom(jT j), then d(i; w) \ F = ;. Thus, according to (ii) of lemma 1, for all
(q; u) 2 I 
 w, q is not in F , thus I 
 w is not terminal and therefore w is
not in dom(� ).

Conversely, let w 2 dom(jT j). There exists a unique qf 2 F s.t. jT j(w) =
�(i; w; qf) and s.t. qf 2 d(i; w). Therefore jT j(w) = (I � w) � ((I � w)�1 �
�(i; w; qf)) and according to (ii) of lemma 1 (qf ; (I �w)�1 ��(i; w; qf)) 2 I
w
and since qf 2 F , lemma 3 shows that �(I 
w) = (I �w)�1 � �(i; w; qf), thus
jT j(w) = (I � w) � �(I 
 w) = j� j(w). 2

9.3 Worst-case complexity

In this section we give a worst-case upper bound of the size of the subse-
quential transducer in term of the size of the input transducer.

Let L = fw 2 �� s.t. jwj � Mg where M is the bound de�ned in the
proof of lemma 4. Since, according to lemma 2, for each state set Q0, for each
q 2 Q, Q0 contains at most one pair (q; w), the maximal number N of states
built in the algorithm is smaller than the sum of the number of functions
from states to strings in L for each state set, that is

N �
X

Q022Q

jLjjQ
0j

we thus have N � 2jQj � jLjjQj = 2jQj � 2jQj�log2 jLj and therefore N �
2jQj(1+log jLj).
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Moreover,

jLj = 1 + j�j+ � � �+ j�jM =
j�jM+1 � 1

j�j � 1
if j�j > 1

and jLj = M +1 if j�j = 1. In this last formula, M = K +2M1 as described
in lemma 4. Note that if P = maxa2�j�(q; a; q

0)j is the maximal length of
the simple transitions emissions, M1 � jQj � P , thus M � K + 2� jQj � P .

Therefore, if j�j > 1, the number of statesN is bounded: N � 2jQj�(1+log
j�j(K+2�jQj�P+1�1

j�j�1
)

and if j�j = 1, N � 2jQj�(1+log (K+2�jQj�P+1)).

10 Subsequentiality of Transformation-Based

Systems

The proof of correctness of the determinization algorithm and the fact that
the algorithm terminates on the transducer encoding Brill's tagger show that
the �nal function is subsequential and equivalent to Brill's original tagger.

In this section, we prove in general that any transformation-based system,
such as those used by Brill, is a subsequential function. In other words, any
transformation-based system can be turned into a deterministic �nite-state
transducer.

We de�ne transformation-based systems as follows.

De�nition 4 A transformation-based system is a �nite sequence (f1; � � � ; fn)
of subsequential functions whose domains are bounded.

Applying a transformation-based system consists of taking the functions
fi, one after the other, and for each of them, one looks for the �rst position
in the input at which it applies, and for the longest string starting at that
position, transforms this string, go to the end of this string, and iterate until
the end of the input.

It is not true that, in general, the local extension of a subsequential func-
tion is subsequential19. For instance, consider the function fa of Figure 23.

The local extension of the function fa is not a function. In fact, consider
the input string daaaad, it can be decomposed either into d � aaa � ad or into

19However, the local extensions of the functions we had to compute were subsequential.
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a:b a:b a:b

Figure 23: Function fa

da�aaa�d. The �rst decomposition leads to the output dbbbad and the second
one to the output dabbbd.

The intended use of the rules in the tagger de�ned by Brill is to apply
each function from left to right. In addition, if several decompositions are
possible, the one that occurs �rst is the one chosen. In our previous example,
it means that only the output dbbbad is generated.

This notion is now de�ned precisely.
Let � be the rational function de�ned by �(a) = a for a 2 �, �([) =

�(]) = � on the additional symbols '[' and ']' with � such that �(u � v) =
�(u) � �(v).

De�nition 5 Let Y � �� and X = �� � �� � Y � ��, a Y -decomposition of
x is a string y 2 X � ([ � Y � ] �X)� s.t. �(y) = x

For instance, if Y = dom(fa) = faaag, the set of Y -decompositions of
x = daaad is fd[aaa]ad; da[aaa]dg.

De�nition 6 Let < be a total order on � and let � = � [ f[; ]g be the
alphabet � with the two additional symbols '[' and ']'. Let extend the order >
to � by 8a 2 �, '['< a and a < ']'. < de�nes a lexicographic order on �

�
that

we also denote <. Let Y � �� and x 2 ��, the minimal Y -decomposition of
x is the Y -decomposition which is minimal in (�

�
; <).

For instance, the minimal dom(fa)-decomposition of daaaad is d[aaa]ad.
In fact, d[aaa]ad < da[aaa]d.

Proposition 2 Given Y � �+ �nite, the function mdY that to each x 2 ��

associates its minimal Y -decomposition, is subsequential and total.

Proof. Let dec be de�ned by dec(w) = u � [ � v � ] � dec((uv)�1 � w) where
u; v 2 �� are s.t. v 2 Y , 9v0 2 �� with w = uvv0 and juj is minimal among
such strings. The function mdY is total because the function dec always
returns an output which is a Y -decomposition of w.
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We shall now prove that the function is rational and then that it has
bounded variations; this will prove according to theorem 1 that the function
is subsequential. In the following X = ����� �Y ���. The transduction TY
that generates the set of Y -decompositions is de�ned by

TY = IdX � (�=[ � IdY � �=] � IdX)�

where IdX (resp. IdY ) stands for the identity function on X (resp. Y ).
Furthermore, the transduction T�;> that to each string w 2 �

�
associates the

set of strings strictly greater than w, that is T�;>(w) = fw0 2 �
�
jw < w0g,

is de�ned by the transducer of Figure 24 in which A = f(x; x)jx 2 �g,

B = f(x; y) 2 �
2
jx < yg, C = �

2
, D = f�g � � and E = �� f�g.20

D

B
A

0

E

D

C

1

D

2

E

3

D

4

Figure 24: Transduction T�;>

Therefore, the right-minimal Y -decomposition function mdY is de�ned
by mdY = TY � (T�;> � TY ) which proves that mdY is rational.

Let k > 0. Let K = 6 � k + 6 � M where M = maxx2Y jxj. Let u,
v 2 �� be s.t. ku; vk � k. Let us consider two cases: (i) ju^ vj �M and (ii)
ju ^ vj > M .

(i): ju ^ vj � M , thus juj,jvj � ju ^ vj+ ku; vk � M + k. Moreover, for
each w 2 ��, for each Y -decomposition w0 of w, jw0j � 3 � jwj. In fact, Y
doesn't contain �, thus the number of [ (resp. ]) in w0 is smaller than jwj.
Therefore, jmdY (u)j; jmdY (v)j � 3� (M + k) thus kmdY (u);mdY (v)k � K.

(ii): u ^ v = � � ! with j!j = M . Let �, � be s.t. u = �!� and v = �!�.
Let �0, !0, �0, �00, !00 and �00 be s.t. mdY (u) = �0!0�0, mdY (v) = �00!00�00,
�(�0) = �(�00) = �, �(!0) = �(!00) = !, �(�0) = � and �(�00) = �. Suppose
that �0 6= �00, for instance �0 < �00. Let i be the �rst indice s.t. (�0)i < (�00)i.21

20This construction is similar to the transduction built within the proof of Eilenberg's
cross section theorem (Eilenberg, 1974).

21(w)i refers to the ith letter in w.
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We have two possible situations: (ii.1) (�0)i = [ and �00 2 � or (�00)i = ]. In
that case, since the length of the elements in Y is smaller than M = j!0j , one
has �0!0 = �1[�2]�3 with j�1j = i, �2 2 Y and �3 2 �

�
. We also have �00!00 =

�1�
0
2�

0
3 with �(�02) = �(�2) and the �rst letter of �02 is di�erent from [. Let

�4 be a Y -decomposition of �(�03�
00), then �1[�2]�4 is a Y -decomposition of v

strictly smaller than �1�02�
0
3�

00 = mdY (v) which contradicts the minimality of
mdY (v). The second situation is (ii.2): (�0)i 2 � and (�00)i = ], then we have
�0!0 = �1[�2�3]�4 s.t. j�1[�2j = i and �00!00 = �1[�2]�

0
3�

0
4 s.t. �(�

0
3) = �(�3)

and �(�04) = �(�4). Let �5 be a Y -decomposition of �04�
00 then �1[�2�3]�5 is

a Y -decomposition of v strictly smaller than �00!00�00 which leads to the same
contradiction. Therefore, �0 = �00 and since j�0j + j�00j � 3 � (j�j + j�j) =
3�ku; vk � 3�k, kmdY (u);mdY (v)k � j!0j+j!00j+j�0j+j�00j � 2�M+3�k �
K. This proves that mdY has bounded variations and therefore that it is
subsequential. 2

We can now de�ne precisely what is the e�ect of a function when one
applies it from left to right, as was done in the original tagger.

De�nition 7 If f is a rational function, Y = dom(f) � �+ , the right-
minimal local extension of f , denoted RmLocExt(f), is the composition of
a right-minimal Y -decomposition mdY with Id�� � ([=� � f � ]=� � Id��)�.

RmLocExt being the composition of two subsequential functions, it is
itself subsequential, this proves the following �nal proposition which states
that given a rule-based system similar to Brill's system, one can build a
subsequential transducer that represents it:

Proposition 3 If (f1; � � � ; fn) is a sequence of subsequential functions with
bounded domains then
RmLocExt(f1) � � � � �RmLocExt(fn) is subsequential.

We have proven in this section that our techniques apply to the class of
transformation-based systems. We now turn our attention to the implemen-
tation of �nite-state transducers.
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11 Implementation of Finite-state Transduc-

ers

Once the �nal �nite-state transducer is computed, applying it to an input is
straightforward: it consists of following a unique path in the transducer whose
left labels correspond to the input. However, in order to have a complexity
fully independent of the size of the grammar and in particular, independent
of the number of transitions at each state, one should carefully choose an
appropriate representation for the transducer. In our implementation, the
transitions can be accessed randomly. The transducer is �rst represented
by a two-dimensional table whose rows are indexed by the states and whose
columns are indexed by the alphabet of all possible input letters. The con-
tent of the table at line q and at column a is the word w such that the
transition from q with the input label a outputs w. Since only a few tran-
sitions are allowed from many states, this table is very sparse and can be
compressed. This compression is achieved using a procedure for sparse data
tables following the method given by Tarjan and Yao (1979).
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13 Conclusion

The techniques described in this paper are more general than the problem
of part-of-speech tagging and are applicable to the class of problems dealing
with local transformation rules.

We showed that any transformation based program can be transformed
into a deterministic �nite-state transducer. This yields to optimal time im-
plementations of transformation based programs.
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As a case study, we applied these techniques to the problem of part-of-
speech tagging and presented a �nite-state tagger that requires n steps to tag
a sentence of length n, independent of the number of rules and the length of
the context they require. We achieved this result by representing the rules
acquired for Brill's tagger as non-deterministic �nite-state transducers. We
composed each of these non-deterministic transducers and turned the result-
ing transducer into a deterministic transducer. The resulting deterministic
transducer yields a part-of-speech tagger which operates in optimal time in
the sense that the time to assign tags to a sentence corresponds to the time
required to follow a single path in this deterministic �nite-state machine.
The tagger outperforms in speed both Brill's tagger and trigram-based tag-
gers. Moreover, the �nite-state tagger inherits from the rule-based system its
compactness compared to a stochastic tagger. We also proved the correctness
and the generality of the methods.

We believe that this �nite-state tagger will also be found useful combined
with other language components, since it can be naturally extended by com-
posing it with �nite-state transducers which could encode other aspects of
natural language syntax.
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