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Abstract

We present a method to recognize hand gestures, based on a pattern recognition technique de-
veloped by McConnell [16] employing histograms of local orientation. We use the orientation
histogram as a feature vector for gesture classification and interpolation. For moving ord̈ynamic
gestures̈, the histogram of the spatio-temporal gradients of image intensity form the analogous
feature vector and may be useful for dynamic gesture recognition.
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Abstract

We present a method to recognize hand gestures,
based on a pattern recognition technique developed
by McConnell [16] employing histograms of local ori-
entation. We use the orientation histogram as a fea-
ture vector for gesture class�cation and interpolation.
This method is simple and fast to compute, and

o�ers some robustness to scene illumination changes.
We have implemented a real-time version, which can
distinguish a small vocabulary of about 10 di�er-
ent hand gestures. All the computation occurs on a
workstation; special hardware is used only to digitize
the image. A user can operate a computer graphic
crane under hand gesture control, or play a game.
We discuss limitations of this method.
For moving or \dynamic gestures", the histogram

of the spatio-temporal gradients of image intensity
form the analogous feature vector and may be useful
for dynamic gesture recognition.

1 Introduction

Computer recognition of hand gestures may provide
a more natural human-computer interface, allowing
people to point, or rotate a CAD model by rotat-
ing their hands. Interactive computer games would
be enhanced if the computer could understand play-
ers' hand gestures. Gesture recognition may even be
useful to control household appliances.
We distinguish two categories of gestures: static

and dynamic. A static gesture is a particular hand
con�guration and pose, represented by a single im-
age. A dynamic gesture is a moving gesture, rep-
resented by a sequence of images. We focus on the
recognition of static gestures, although our method
generalizes in a natural way to dynamic gestures.
For the broadest possible application, a gesture

recognition algorithm should be fast to compute.
Here, we apply a simple pattern recognition method
to hand gesture recogntion, resulting in a fast, use-
able hand gesture recognition system.

1.1 Related Work

The trackball, the joystick, and the mouse are ex-
temely successful devices for hand-based computer
input. Yet all require that the user hold some hard-
ware, which can be awkward. Furthermore, none ac-
comodates the richness of expression of a hand ges-
ture.
Devices such as the Dataglove [1] can be worn

which sense hand and �nger positions [9]. While this
captures the richness of a hand's gesture, it requires

the special glove. We seek a visually based method
which will be free of gloves and wires.
Relying on visual markings on the hands, previ-

ous researchers have recognized sign language and
pointing gestures [24, 5, 8]. However, these methods
require the placement of markers on the hands.
The marking-free systems of [12, 21] can recog-

nize speci�c �nger or pointing events, but not gen-
eral gestures. Employing special hardware or o�{
line learning, several researchers have developed suc-
cessful systems to recognize general hand gestures
[22, 14, 6, 7, 20]. Blake and Isard [4] have developed
a fast contour-based tracker which they applied to
hands, but the discrimination of di�erent hand poses
is limited. The real-time hand gesture recognition
systems we are aware of require special hardware or
lengthy training analysis.

2 Our Approach

We seek a simple and fast algorithm, which works in
real-time on a workstation. We want the recognition
to be relatively robust to changes in lighting.
A high level approach might employ models of the

hand, �ngers, joints, and perhaps �t such a model
to the visual data. This approach o�ers power and
robustness, but at the expense of speed.
A low-level approach, such as was taken by [6],

would process data at a level not much higher than
that of pixel intensities. This approach would not
have the power to make inferences about occluded
data. However, it could be simple and fast. We chose
this approach.
We use a pattern recognition system of the form of

Fig. (1). Some transformation, T , converts an image
or image sequence into a feature vector, which we
then compare with the feature vectors of a training
set of gestures. We will use a Euclidean distance
metric.
We seek the simplest possible transformation T

which allows recognition of hand gestures. To moti-
vate the algorithm, let us �rst examine a transforma-
tion which is too simple, and then �x it.
Suppose we did nothing as our transformation, T

and used the image itself as our feature vector. We
would sum the squares of image pixel di�erences to
measure distances between gestures. Figure 2 illus-
trates a problem with this scheme, and suggests a
solution. (a) and (b) show the same hand gesture un-
der two di�erent lighting conditions, illustrating that
pixel intensities can be sensitive to changes of scene
lighting. A pixel-by-pixel di�erence of the images (a)
and (b) would show a large distance between these
identical gestures. However, others have observed [3]
that local orientation measurments are less sensitive
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Figure 1: Outline of the recognition system.
We apply some transformation T to the im-
age data to form a feature vector which repre-
sents that particular gesture. To classify the
gesture, we compare the feature fector with
the feature vectors from a previously gener-
ated training set. For dynamic gesture recog-
nition, the input would be a sequence of im-
ages.

to lighting changes. (d) and (e) show the local direc-
tion of dominant orientation (as computed in [10])
for the images (a) and (b). In this representation,
the two gestures look quite similar.

Next, we need to enforce translation invariance.
The same hand at di�erent positions in the image
should produce the same feature vector. A simple
way to enforce this is to form a histogram of the local
orientations. This treats each orientation element the
same, independent of location.

With one minor modi�cation, this orientation his-
togram will be our feature vector to represent hand
gestures. The orientation analysis gives robustness
to lighting changes; the histogramming gives trans-
lational invariance. As we will see, such a histogram
can be calculated quickly. This simple method will
work if examples of the same gesture map to similar
orientation histograms, and di�erent gestures map to
substantially di�erent histograms. (We show some
cases where this doesn't hold in Fig. 6). McConnell
[16] proposed this pattern recognition method, al-
though he used a more complicated histogram com-
parison scheme than the squared error measure we
use here.

Figure 3 shows an example histogram and our ad-
ditional modi�cation. When analyzing local orien-
tation, we set a contrast threshold below which we
assume the orientation measurement is inaccurate.
For the image, (a), all points would be below that
threshold except for the region near the horizontal
line, where the pixels all have the same orientation
(b). We then blur the histogram in the angular do-
main, (c). This allows for a gradual fall-o� in the

(a) (b)

 
(c)

 
(d)

Figure 2: Showing the robustness of local
orientation to lighting changes. Pixel inten-
sities are sensitive to lighting change. (a)
and (b) show the same hand gesture illumi-
nated under two di�erent lighting conditions.
The pixel intensities change signi�cantly as
the lighting changes. Maps of local orienta-
tion, (c) and (d), are more stable. (The ori-
entation maps were computed using steerable
�lters [10]. Orientation bars below a contrast
threshold are suppressed.)

distance between orientation histograms of image fea-
tures of gradually di�ering orientation. (d) shows the
same data plotted in polar coordinates, which allows
convenient comparison with the original image.
One has a choice of representing orientation in the

angle or twice angle representations [13]. A repre-
sentation by angle would treat a given edge and a
contrast reversed version as having opposite orienta-
tion. A double angle representation maps these into
the same orientation. A double angle representation
would map a hand on dark and light backgrounds
to approximately the same feature vector. A (sin-
gle) angle representation may allow more gestures to
be distinguished. For our work, we used an angle
representation, to allow more di�erentiation between
gestures.
The resulting algorithm is simple and fast to com-

pute. The representation for each gesture is small,
and comparisons between feature vectors can be very
fast.
Our approach relates to other examples of image

analysis through orientation analysis. In [3], Bich-
sel analyzed faces, using local orientation to achieve
some lighting invariance. Gorkani and Picard [18]
used orientation histograms to compute dominant
texture orientations. Nelson [17] used orientation
patterns for visual homing. This work is also in the
same spirit as texture analysis schemes which ana-
lyze the outputs of ensembles of oriented �lters at



di�ering orientations [2, 15].
We have implemented this algorithm with an HP-

735 workstation, and a Raster Ops digitizing board.
We took various steps to achieve real-time speed.
The 640 x 480 digitized image is averaged and sub-
sampled to a resolution of 106 x 80. We use black
and white video. We measure the gradient direction
and local contrast using simple two 2-tap x and y
derivative �lters. With the above steps, the total
processing time is 100 msec per frame.
If dx and dy are the outputs of the x and y

derivative operators, then the gradient direction is

arctan(dx; dy), and the contrast is
p

dx2 + dy2. We
divide orientation into 36 bins and use a 1 4 6 4
1 �lter to blur the orientation histogram. We set
the contrast threshold as some amount, k, times the
mean image contrast. Values of k between 1.2 and
2.7 worked well.

orientation histogram example

orientation angle

frequency
of occurence

(a) image

orientation angle

frequency
of occurence

(d)
polar plot

(b) raw
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Figure 3: Simple illustration of orientation
histogram. An image of a horizontal edge
(a) has only one orientation at a su�ciently
high contrast. Thus the raw orientation his-
togram (b) has counts at only one orientation
value. To allow neighboring orientations to
sense each other, we blur the raw histogram,
giving (c). (d) shows the same information,
plotted in polar coordinates. We de�ne the
orientation to be the direction of the intensity
gradient, plus 90�.

3 Operation

Figure 4 illustrates operation. There is �rst a train-
ing phase. The user �rst indicates the hand posi-
tions for the desired vocabulary of gestures, such as
the commands for \up", \down", \right", \left" and
\stop" in this example, (a). We show only 3 com-
mands in the �gure, but typically more are used. The
user may show several gesture examples correspond-
ing to a single command. The computer stores the
orientation histograms corresponding to each image,
(b).
In the run phase, the user repeats the gesture for

a desired command (c). The computer forms the ori-

entation histogram of the new image (d), and com-
pares it with each of the orientation histograms from
the training phase. In our implementation described
here, we selected the command corresponding to the
closest feature vector. With this system we have
made a computer graphic crane, (g), which the user
may control in real-time. (see [23] for a related sys-
tem, not visually controlled). Rows (e) and (f) show
the same gestures made under a di�erent lighting
condition. The system can still identify the gestures
properly.
Figure 5 shows a measure of performance for the

gestures shown in Fig. 4. Each matrix indicates the
distance between for the feature vectors from each
gesture of the test set and each gesture of the train-
ing set. Darker intensities correspond to closer dis-
tances. The gestures of the test set made under the
same lighting conditions are unambiguously classi�ed
by the orientation histogram feature vectors. Even
under the di�erent lighting condition of Fig. 4 (e),
each gesture is still properly classi�ed, although the
discrimination is less clear-cut.
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Figure 4: Subset of vocabulary of gestures
used to control computer graphic crane. (a)
shows the training set of gestures for the com-
mands up, down and right. (c) shows a test
set of the same gestures, under the same light-
ing conditions. (e) is a test set, made under
di�erent lighting conditions. (b), (d), and (f)
are the corresponding orientation histograms.
Note that the shapes look approximately the
same as for the same hand positions made un-
der di�erent lighting conditions, (b). An ex-
tension of this vocabulary of commands can
control in real-time a computer graphic crane,
(g).
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Figure 5: The two matrices display, in grey
level, the distances between training and test
sets such as those shown in Fig. 4 (black means
close). The test gestures, made under the
same lighting conditions, are well classi�ed ac-
cording to the training gestures, as indicated
by the diagonal dark line in the matrix of fea-
ture vector distances, (a). For the case of test
gestures made under di�erent lighting condi-
tions, (b), a nearest neighbor classi�er still
gives the correct answer, indicating some de-
gree of lighting invariance. Some of the test
feature vectors have moved closer to train-
ing feature vectors of di�erent categories|the
lighting invariance is not perfect.



Our system has two real-time demonstrations
of gesture classi�cation: control of the computer
graphic crane of Fig. 4, and the game of \scis-
sors/paper/stone", where the computer analyzes the
user's hand gesture to decide the winner of each
round.

3.1 Other uses

One can interpolate between orientation histogram
values. For example, one can train the system at
several di�erent hand orientations. Then interpola-
tion, for example, by radial basis functions [19], al-
lows the machine to interpolate arbitrary angles from
the user's hand input. We have demonstrated a sim-
ple one parameter version of such orientation inter-
polation [11]
The ideas above can be extended in a straightfor-

ward manner to temporal gestures [11]. A natural
extension of our 2-dimensional approach is to mea-
sure the gradient orientation in space{time caused
by image intensities changing over time and space.
As before, we can calculate a histogram of the orien-
tation measurments. The resulting two-dimensional
vector of orientation frequency is the feature vector
for the dynamic gesture.

4 Problem images

From our experience watching many people use the
system, we have observed several conditions where
the user is not satis�ed with the gesture classi�cation.
These are illustrated in Fig. 6.
(a) and (b) show two images which many users feel

should represent the same gesture. However, their
orientation histograms are very di�erent, (c). In the
present system, this problem can only be addressed
by providing multiple training images for the same
gesture.
Some di�erent gestures have very similar orienta-

tion histograms. (d) and (e) show an example of this,
with the histograms overlaid in (f). One must choose
a vocabulary of gestures that avoids such confusable
pairs.
The hand must dominate the image for this sim-

ple statistical technique to work. (g) and (h) show
images where the hand is a small part of the image.
Even though user has very di�erent hand positions,
the orientation histograms of the two images are very
similar, (i). This orientation histogram method is
most appropriate for close-ups of the hand.
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Figure 6: Problem images for the orienta-
tion histogram based gesture classi�er. Users
typically feel that (a) and (b) represent the
same gesture, yet their orientation histograms
are very di�erent, shown overlaid in (c). A
remedy for this problem is to provide training
images of the gesture at various orientations.
(Mathematical rotation of the feature vector
is not su�cient; the corresponding orientation
histograms are typically not simple rotations
of each other.)
Sometimes small changes in the image can
cause large semantic di�erences, while chang-
ing the orientation histograms little. Users
classify (d) and (e) as di�erent gestures, yet
their orientation histograms are nearly identi-
cal, (f). One has to construct a gesture vocab-
ulary which avoids such gestures with similar
orientation histograms.
Finally, for this simple statistical technique to
work, the hand must dominate the image. If
it does not, then even large changes in the
hand pose can cause negligible changes to the
orientation histogram (g) { (i).



5 Conclusions

We have applied a simple pattern recognition tech-
nique to the problem of hand gesture recognition.
For static hand gestures, we use the histogram of lo-
cal orientations as a feature vector for recognition.
This method has a training phase and a run phase.
In the training phase, the user shows 5 to 15 example
hand gesture commands. The computer stores one or
more feature vectors, blurred orientation histograms,
for each command. In the run phase, the computer
compares the feature vector for the present image
with those in the training set, and picks the category
of the nearest vector, or interpolates between vectors.

The methods are image-based, simple, and fast.
We have implemented a real-time version, using an
ordinary workstation with no special hardware be-
yond a video digitizer. The technique works well to
identify hand gestures from a training vocabulary of
gestures for close-up images of the hand. The real-
time system lets the user control a computer graphic
crane by hand gestures, monitor hand orientation,
and play games such as scissors/paper/stone.
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