
Mitsubishi Electric Research Laboratories

Technical Report 91-01 March 12, 1991

by

Richard C. Waters

Abstract

Programs can be constructed and modi�ed more rapidly and reliably if they are built out of
standard fragments (clich�es) than if they are written from scratch. Three experimental clich�e-based
program editors have been implemented, exploring the tradeo� between power and simplicity.

The Knowledge-Based Editor in Emacs (kbemacs) is the most powerful of the three editors.
It supports a wide range of editing operations and can represent a wide range of clich�es, because
it uses an internal representation called plan diagrams, which combines features of owcharts and
data-ow schemas. Unfortunately, the need to convert back and forth between program text and
plan diagrams causes kbemacs to be complex.

The Tempest editor is the simplest and fastest of the three editors. Because it uses text as its
internal representation, it does not have to do any conversions. Unfortunately, Tempest is not useful
for editing programs, because the manipulations required when combining programming clich�es are
too complex to be performed directly on program text. However, Tempest's capabilities are useful
in other, simpler contexts.

The Ace editor retains much of the simplicity of Tempest while supporting much of the power
of kbemacs. Ace is relatively simple, because it uses parse-trees as its internal representation. It
achieves high power by using a specially modi�ed programming-language grammar, which facilitates
the representation and easy combination of clich�es. This approach could be used to add powerful
and e�cient clich�e-based editing capabilities to any programming environment.

Submitted to ACM TOPLAS, March 1991.

201 Broadway
Cambridge Massachusetts 02139

Publication History:-

1. First printing, TR 91-01, March 1991

Copyright c Mitsubishi Electric Research Laboratories, 1991

201 Broadway; Cambridge Massachusetts 02139

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted for
nonpro�t educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories of Cambridge, Massachusetts; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the
copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories.
All rights reserved.

Contents

1. Overview : 1

2. Clich�es : 4

3. KBEmacs : 7

3.1 Representing Clich�es as Plan diagrams : : : : : : : : : : 8

3.2 Transcript of KBEmacs in Action : : : : : : : : : : : : : 14

3.3 Manipulating Plan Diagrams : : : : : : : : : : : : : : : 18

3.4 Evaluation : 21

4. Tempest : 23

4.1 Representing Clich�es as Textual Schemas : : : : : : : : : 24

4.2 Transcript of Tempest Being Used To Edit a Program : 25

4.3 Evaluation : 26

4.4 A Situation Where Tempest Works Well : : : : : : : : : 28

4.5 Manipulating Textual Schemas : : : : : : : : : : : : : : 30

4.6 Reevaluation : 31

5. Ace : 32

5.1 Representing Clich�es as Parse-Tree Schemas : : : : : : : 33

5.2 Transcript of Ace in Action : : : : : : : : : : : : : : : : 39

5.3 Manipulating Parse-Tree Schemas : : : : : : : : : : : : : 42

5.4 Evaluation : 46

6. Conclusion : 48

6.1 Acknowledgments : 48

6.2 References : 49

Clich�e-Based Program Editing 1

1 Overview

Programmers seldom think about programs directly in terms of primitive elements, such
as +, <, and assignment. Rather, like engineers in other disciplines, they think in terms of
clich�ed combinations of elements corresponding to familiar concepts, such as searching, sum-
ming a sequence of values, and computing a result by successive approximation. In addition
to improving productivity, this reuse of ideas improves reliability by taking advantage of
past experience.

The importance of clich�es in programming is evident in a number of ways. The names of
clich�es form a large part of the vocabulary of programmers. Descriptions of clich�es take up
much of every programming textbook. Psychological experiments have demonstrated that
programmers think in terms of clich�es [19].

An important trend in software engineering has been providing increased support for
clich�es. For instance, an important contribution of high-level programming languages is the
introduction of support for certain clich�ed data structures and clich�ed patterns of control
ow.

Clich�e-based editors. Many program editors are merely text editors and do not capture
any knowledge of programming per se. However, some program editors incorporate an
understanding of the grammar of a programming language [2, 4, 6, 11, 20, 18, 25]. These
syntax editors support the manipulation of the few clich�es (such as conditional control ow
and looping control ow) that correspond to parts of programming language grammars. In
particular, standard control constructs can be inserted in a program, and the nested structure
of these constructs can be used as the basis for navigating in a program and moving and
deleting chunks of the program. However, syntax editors do not support clich�es in any
general way.

The central feature of a clich�e-based editor is a large user-extendable library of clich�es.
Instances of these clich�es can be inserted in a program and the resulting nested structure can
be used as the basis for navigation and modi�cation. The goal is to allow the representation
and manipulation of as wide a range of clich�es as possible.

As illustrated in Section 3, the ability to construct and modify programs based on their
structure in terms of clich�es, rather than on their syntactic or textual structure, leads to
signi�cant improvements in programmer productivity and program reliability. However,
while clich�es account for the lion's share of what goes on in typical programs, they do not
account for everything. It is important that clich�e-based editors include the capabilities
of syntax editors and text editors, just as it is important for syntax editors to include the
capabilities of text editors [12, 27].

Clich�e-based editors can be compared with other approaches to software reuse (see [3])
along two primary dimensions: expressiveness (the range of things that can be reused) and
tailorability (the extent to which the reused items can be altered to �t the circumstances at
hand). Clich�e-based editors take an extreme position on each of these dimensions, supporting
very high expressiveness and tailorability.

At the low end of the expressiveness dimension, the earliest approaches to software reuse
only supported the reuse of subroutines. Current approaches support a wider range of
components. However, the primary emphasis is still on the reuse of components that can be
combined solely by passing data values between them.

2 R.C. Waters

Clich�e-based editors support the reuse of traditional components in traditional ways.
However, as illustrated in Section 3, they also seek to support skeletal clich�es that have to
be combined in more complex ways.

At the low end of the tailorability dimension, alteration is forbidden altogether. This has
advantages with regard to reliability and is the focus of much of the work on software reuse.
However, greater reuse can always be obtained by allowing tailorability.

Clich�e-based editors encourage reuse without alteration. However, they allow unlimited
tailoring on the theory that when no clich�e is exactly applicable, it is better to start with a
clich�e that is almost applicable than with a blank screen. Each time a clich�e is brought into
play, the programmer is free to use the full range of editing operations to adjust it.

Representing clich�es. The basic feasibility of clich�e-based editing was demonstrated
some time ago by the Knowledge-Based Editor in Emacs (kbemacs) [16, 30]. However,
kbemacs is only a demonstration system and would have to be reimplemented with an eye
toward e�ciency and robustness before it could be used in a commercial setting. Given that
kbemacs is comparable in size and complexity to an optimizing compiler, it is reasonable
to consider whether some intermediate steps are possible|i.e., whether simpler approaches
could still provide signi�cant support for clich�e-based editing.

The central issue in implementing a clich�e-based editor is how clich�es are represented.
This representation must simultaneously satisfy a number of goals [15]. In the current
context, three of these goals are particularly important:

1. It must be possible to express a wide variety of clich�es.
2. It must be practical to combine clich�es as directed by the user. (Clich�es are seldom

of much use in isolation.)
3. It must be possible to e�ciently convert back and forth between the representation

for clich�es and program text. (This last goal is unfortunately at odds with the
�rst two.)

To explore the tradeo�s between the goals above, two additional clich�e-based editors
(named Tempest and Ace) were constructed. As a group, kbemacs, Tempest, and Ace test
the e�cacy of three di�erent representations for clich�es. Figure 1 shows the relative power

6

p

o

w

e

r

-

complexity

sKBEmacs

sAce

sTempest

Figure 1: The relative power and complexity of three experimental clich�e-based editors.
The dashed line indicates the minimum power required for clich�e-based editing of programs.

Clich�e-Based Program Editing 3

and complexity of the three systems. The dashed horizontal line indicates the minimum
power needed to support clich�e-based editing of programs.

kbemacs represents clich�es as plan diagrams. As discussed in Section 3, this represen-
tation is like a owchart except that data ow as well as control ow is represented using
explicit arrows. In addition, the representation is hierarchical in that plan diagrams can be
nested within each other and schematic in that a plan diagram can contain boxes that are
not yet �lled with any speci�c computation. Plan diagrams are capable of expressing a large
variety of clich�es and have a number of features that make clich�e combination particularly
easy. However, conversion between plan diagrams and program text is complex and time
consuming.

An obvious way to make conversion between program text and the internal representation
used by a clich�e-based editor extremely simple is to use program text as the internal repre-
sentation. This approach was explored by the Tempest system [23] described in Section 4.
Tempest is much simpler and many orders of magnitude faster than kbemacs. Unfortu-
nately, the work on Tempest makes it clear that text is not a satisfactory representation for
programming clich�es, because it is too restrictive in what can be expressed and because it
makes it too hard to combine clich�es. Nevertheless, while not useful for program construc-
tion, Tempest demonstrates a set of capabilities that could be pro�tably added to any text
editor.

The Ace system [24] described in Section 5 shows that it is possible to make a compromise
between kbemacs and Tempest that comes close to capturing the best features of the two
systems. In Ace, clich�es are represented as schematic fragments of parse trees. As in a
syntax editor, this allows straightforward conversion to and from program text via parsing
and unparsing (pretty printing). In addition, if the underlying grammar is designed with care,
parse-tree schemas can represent a reasonably wide variety of clich�es and can be combined
reasonably easily. All in all, Ace manages to support a large part of the functionality of
kbemacs while being much simpler and at least two orders of magnitude faster.

The techniques pioneered by Ace should make it signi�cantly easier for clich�e-based
editing to become a commercial reality.

4 R.C. Waters

2 Clich�es

Suppose that a programmer has been given the task of writing a program to print a
report of the results of an experiment. Suppose further that the programmer decides to
delegate this task to an assistant. The programmer might describe what needs to be done
by saying something like the following.

Write a simple report program REPORT-TIMINGS with a parameter TIMINGS. Print
the title "Report of Reaction Timings (in msec.)". Enumerate the elements
in the vector TIMINGS, creating a tabular print out of each one. Do not print
column headings. Print a summary showing the mean of the elements.

The most important parts of this description are the phrases \simple report", \enumerate
: : : vector", \tabular print out", and \mean". To understand the directions, one has to know
the clich�ed algorithms these phrases refer to. Moreover, most of the code which needs to be
written follows directly from an understanding of these clich�es.

Before considering how clich�es like these can be represented and manipulated, it is useful
to look in detail at their content. A Clich�e has three fundamental parts: a body that remains
the same in every use of the clich�e, roles whose contents vary from one use of the clich�e to
the next, and constraints on what can �ll the roles.

As a simple example, consider the clich�e tabular print out described in Figure 2. The
top half of the �gure describes the algorithm that forms the body of the clich�e. An English-
language description is used in order to present the essential features of the body independent
of any particular programming language that might be used to implement the clich�e and
independent of any particular representation that might be used for machine manipulation
of the clich�e.

The notation frole-nameg is used to refer to roles. The tabular print out clich�e has
three roles, each of which is referred to several times. The item is the object printed. The
format speci�es how the item should be printed. The width limit controls the insertion of
line breaks.

The bottom half of Figure 2 describes constraints that are part of the clich�e. The �rst
constraint speci�es a default value for the format role|i.e., a value that should be used if
no other value is provided.

The second constraint speci�es a �xed relationship between the width limit and format
roles. It can be used to derive the value of the width limit based on the format. The derived

Body:
If the number of characters already printed on the current line is greater than fwidth limitg:

Start a new line.
Print fitemg as speci�ed by fformatg.

Constraints:
The default value of fformatg speci�es that fitemg should be printed using the standard

method appropriate for its type.
fWidth limitg is the maximum number of characters that can be printed on a single line minus

the maximum number of characters that can be output by fformatg.

Figure 2: English-language description of the tabular print out clich�e.

Clich�e-Based Program Editing 5

Body:
Open the output �le f�le nameg.
Print a line containing ftitleg.
Print a line containing the current date and time.
For each element generated by fenumeratorg:

Before the �rst element is printed and whenever the number of lines already printed on the
current page is greater than fline limitg:

Start a new page.
Print a line containing "page:", the page number, and ftitleg, along with the current

date and time. (The page number of the �rst page after the title page is 1.)
fPrint headingsg appropriate for the body of the report.

fPrint entryg presenting the element on the report.
fPrint summaryg at the end of the report.
Close the output �le.

Constraints:
fLine limitg is the maximum number of lines that can be printed on a single page minus the

maximum number of lines that can be output when performing the fprint entryg and then
the fprint summaryg.

Figure 3: English-language description of the simple report clich�e.

value guarantees that a new line will be started whenever the printed representation of an
item might extend beyond the end of the current line.

The simple report clich�e. A more complicated clich�e is described in Figure 3. This
clich�e, which speci�es a simple method for printing a multi-page report, has seven roles.
The �le name is the name of the �le that will contain the report being produced. The title
and current date are printed on a title page. The enumerator enumerates the elements of
some aggregate data structure. The print entry prints information about each enumerated
element. The print summary prints some summary information at the end of the report.

Much of the complexity in Figure 3 centers on the di�culties involved with printing
multi-page reports. The title and date, along with the page number, are printed at the
top of each page of the report. The print headings prints column headings on each page of
the report that explain the output produced by the print entry. The line limit controls the
insertion of page breaks. Its value is constrained in such a way that the print entry and
summary will never attempt to print o� the end of a page, and at least one entry will appear
on the same page with the summary.

Suites of clich�es. Clich�es do not exist in isolation; rather, they have evolved in groups
that make sense together. For example, the tabular print out and simple report clich�es are
linked by the concepts of the number of lines printed on a page and the number of characters
printed on a line. Further, the tabular print out clich�e �ts into the print entry role of simple
report and other similar roles.

Figure 4 shows an example of a clich�e that �ts into the enumerator role of simple report.
The body of the clich�e speci�es how to generate the elements of a vector one at a time,
in order. The algorithm is described abstractly in terms of a test that determines when
the enumeration is complete, a method for accessing individual elements, and a method for
stepping from one element to the next. In most programming languages, these actions would

6 R.C. Waters

body:
Initialize a counter to the lower bound of fvectorg.
Each time a new element is desired:

Test whether the counter is greater than the upper bound of fvectorg.
If it is, the enumeration has been completed.

Access the element by fetching the element of fvectorg indexed by the counter.
Step to the next element by adding 1 to the counter.

Figure 4: English-language description of the vector enumeration clich�e.

be implemented as parts of a loop.
A particular programmer might well disagree with some of the details in Figures 2{4.

However, most programmers have a basic knowledge of these clich�es (and how to compute a
mean) and would therefore have no trouble following the directions shown at the beginning of
this section. Sections 3{5 show how this knowledge can be codi�ed in machine-manipulable
representations that allow a program editor to follow these directions.

A feature that is shared by the editors discussed below is a reliance on schematic repre-
sentations. In each approach, a representation for programs is extended into a representation
for clich�es by introducing schematic gaps representing roles (e.g., holes that do not yet con-
tain any computation) and annotation specifying constraints. (In this paper, the word clich�e
is reserved to mean a standard algorithm that programmers know, while the word schema
is used to mean a representation of a clich�e in a machine manipulable form.) The three edi-
tors use three di�erent schematic representations internally; however, they all use schematic
program text externally to display information to the user.

Clich�e-Based Program Editing 7

3 KBEmacs

This section illustrates the power of clich�e-based editing, using the Knowledge-Based
Editor in Emacs (kbemacs) as an example. Since kbemacs has already been presented
elsewhere (see [15, 16, 30]), discussion of the details of kbemacs is kept to a minimum. This
section focuses on the pros and cons of representing clich�es as plan diagrams and lays the
groundwork for the comparisons in Sections 4 and 5.

Figure 5 shows the architecture of kbemacs. kbemacs maintains two representations
for the program being worked on: program text and plan diagrams. At any moment, the
programmer can either modify the text or the plan diagram. If the text is modi�ed, the
analyzer module creates a new plan diagram. If the plan diagram is modi�ed, the coder

module creates new program text.
Three editing modes are supported. To modify the program text, the programmer can

use either the text editor or the syntax editor. To modify the plan diagram, the program-
mer uses the schema editor and schema library. The schema library contains a collection
of programming clich�es represented as plan-diagram schemas. The schema editor can com-
bine schemas chosen from the schema library and manipulate plan diagrams based on their
structure in terms of schemas.

Since kbemacs is implemented on the Symbolics Lisp Machine [37], the standard Emacs-
style [20] Lisp Machine program editor is used as the text editor and syntax editor. The
schema editor is integrated with the standard editor so that a common interface is presented
to the user.

The results of commands to the schema editor are communicated to the programmer by
altering the program text seen in the standard editor bu�er. The e�ect is as if a human
assistant were sitting at the standard editor modifying the program text under the direction
of the programmer.

The examples in this section show kbemacs being used to construct a Lisp program. As
illustrated in [30], kbemacs can also be used to construct Ada programs. Lisp examples are
used here, because they are briefer than the Ada examples in [30]; they are a good basis for
comparison with the examples in Sections 4 and 5; and taken together with the examples
in [30], they demonstrate the language independence of kbemacs.

schema library
�
�

�

?

schema editor

syntax editor

text editor

��
��
��*

Z
Z
Z
Z
ZZ~

HHHHHHj

�
�

�
plan diagram

?

6

coder analyzer

?

6

�
�

�
program text

Figure 5: Architecture of kbemacs.

8 R.C. Waters

REPORTr

?

@
@
@R

HHHHHj

LINENOr

?

HHHHHHHHHj

fwidth limitg

r

��	

CHARPOS
r
r
B
BBN

fitemg

r

�
�
�	

>
no yes

r r

�
�
�
�
�
�
�
�
��

?

Z
ZZ~

1r
AAU

TERPRI
r
r
�
�
��

+
r r
r�������

join

r r r r
r
Q
Q
Q
QQs

rXXXXXXXX

?r
LINENO

fformatg

r
�
�
��

FORMAT
r r r
r
?r

REPORT

tabular
print out

Default Constraints: fformatg = "~15A".

Derived Constraints: fwidth limitg = 70-Width(fformatg).
Comment: "prints out fitemg in columns".

Described roles: fformatg, fitemg.
Input roles: fitemg.

Primary roles: fformatg, fitemg.

Figure 6: The kbemacs schema for the tabular print out clich�e.

3.1 Representing Clich�es as Plan diagrams

Figure 6 depicts the schema used by kbemacs to represent the tabular print out clich�e
(c.f. Figure 2). The top part of Figure 6 is a drawing of a plan diagram (see [16]). The
bottom part of the �gure shows constraints and other auxiliary information that is recorded
as annotation on the plan diagram.

A plan diagram is a graph in which computation nodes are connected by arcs represent-
ing data ow and control ow. In the depiction in Figure 6, computations and roles are
represented by boxes. If a box corresponds to a primitive computation, the name of the
corresponding Lisp function is written in the box. If a box corresponds to a role, the name
of the role (enclosed in braces) is written above the box. If the contents of a box corresponds
to a schema, the name of the schema is written in the lower-left corner of the box.

Hierarchical relationships are represented by nesting boxes within boxes. Input and
output ports are represented by dots on the edges of the boxes. At the top and bottom of
the plan as a whole, ports corresponding to global variables are labeled with the names of
the variables.

Data ow is represented by arrows between ports. Control ow is represented by arrows

Clich�e-Based Program Editing 9

(DEFINE-PLAN tabular-print-out ({item})
(CONSTRAINTS
((DEFAULT {format} "~15A")
(DERIVED {width-limit} (- 70 (WIDTH {format}))))

COMMENT "prints {item} in columns"
DESCRIBED-ROLES ({format} {item})
PRIMARY-ROLES ({format} {item}))

(WHEN (> (CHARPOS REPORT) {width-limit})
(TERPRI REPORT)
(SETQ LINENO (+ LINENO 1)))

(FORMAT REPORT {format} {item}))

Figure 7: Printed representation of Figure 6.

with cross hatch marks on them. Often the ow of control is implied by the ow of data
(e.g., from the box labeled CHARPOS to the box labeled >). Explicit control-ow arrows are
included only when they are not redundant with data-ow arrows.

The box labeled > is a test box. It is divided into two labeled regions at the bottom
corresponding to the situations where the test succeeds and fails. The control-ow arrows
emanating from these regions show the e�ect that the test has on the overall computation.

The box labeled join represents a place where divergent control-ow paths rejoin. The
data-ow connections to the join box specify how the choice of control path a�ects the data
ow. For instance, if the > test fails, the LINENO value that is returned by the plan as a
whole is the same as the one provided as an input. If the test succeeds, the returned value
of LINENO comes from the output of the + box.

The most obvious di�erence between Figure 6 and Figure 2 is that Figure 6 shows a plan
diagram rather than an English-language description. However, it di�ers in two other ways
as well.

The last four lines of Figure 6 contain auxiliary annotation that is used by kbemacs in
its internal operation. The comment and described roles annotations are used for generating
descriptions of instances of the schema. Their use is discussed in Section 3.3. Some roles are
designated as input roles. As discussed in Section 3.3, this information is used to assist in
the process of combining schemas together.

When using kbemacs' command language, a schema is instantiated by using a phrase
such as \tabular-print-out of X and (+ Y Z)". These phrases specify the name of the
schema and may specify computations that �ll roles of the schema. The primary roles

annotation de�nes which roles can be speci�ed this way and the order in which they must
be speci�ed.

The �nal di�erence between Figure 6 and Figure 2 is that the algorithm in Figure 6 has
been specialized to �t into Lisp. This can be appreciated most easily by looking at Figure 7.
(Like most of the �gures in this section, Figure 7 is based on a �gure from [16]; however, a
few cosmetic changes have been made to facilitate comparison with the �gures in Sections 4
and 5.)

The Lisp de�nition in Figure 7 is the external printed form used by kbemacs for the
schema in Figure 6. The de�nition speci�es the name of the schema, a list of of the input
roles, the various pieces of annotation, and the algorithm that constitutes the body. The

10 R.C. Waters

notation {role-name} is used to represent a role.
The de�nition in Figure 7 (which is created from Figure 6 by the coder module) is used

when showing the schema to a user, because it is more compact than Figure 6 and more
familiar looking to a Lisp programmer. For the same reasons, it is supported as an input
notation. Given a de�nition like the one in Figure 7, kbemacs uses the analyzer module to
generate a schema like the one in Figure 6, which it then adds to the schema library.

The di�erences between Figures 6 and 7 dramatize an important advantage of plan di-
agrams as a representation for clich�es|they abstract away from the various mechanisms
used by programming languages for representing data ow and control ow. In particular,
if the algorithm in Figure 7 were written using di�erent control constructs, or in Fortran, it
would still correspond to exactly the same plan diagram. This fact is the foundation for the
programming-language independence of kbemacs.

Comparing Figure 6 or 7 with Figure 2 reveals that the algorithm has been specialized
in a number of ways. To start with, speci�c Lisp functions are used to perform the required
output. Like the Fortran statement it is named after, the Lisp function FORMAT prints values
under the direction of an inscrutable but concise control string. The global variable REPORT

holds the output �le. The function TERPRI starts a new line.
An implicit feature of Figure 2 and the other clich�es in Section 2 is the need to keep

track of the number of characters printed on each line and the number of lines printed on
each page. The function CHARPOS accesses information internal to Lisp about the number of
characters printed on the current line. Since Lisp provides no internal support for keeping
track of the number of lines printed, an explicitly maintained global value LINENO is used for
this purpose.

The constraints in Figure 7 are de�ned using a combination of ordinary Lisp code and
{: : :} references to roles. The format role is given a speci�c FORMAT control string as its
default value. The constraint on the width limit role reects the assumption that only 70
characters can be printed on a line. (The function WIDTH analyzes the contents of a role and
determines the maximum number of characters that can be printed. A number of utility
functions of this nature are provided along with kbemacs for use in constraints.)

The simple report schema. Figure 8 shows the kbemacs schema for the simple
report clich�e. Except for the enumeration and map boxes, which will be discussed shortly,
it is larger, but not fundamentally more complex than the schema in Figure 6.

Figure 9 shows Lisp code corresponding to the plan diagram in Figure 8. As in the
tabular print out schema, a number of Lisp-speci�c specializations have been introduced
in comparison with the general clich�e description in Figure 3. In particular, it has been
assumed that only 66 lines can be printed on a page, the �le name role has been given a
default value, and speci�c output formats have been chosen. The form WITH-OPEN-FILE takes
care of opening and closing the output �le. It is assumed that the function GET-DATE-TIME

returns a string containing the current date and time.
A signi�cant portion of the computation in the simple report schema is concerned with

features that are implicit in the clich�e description in Figure 3. In particular, the schema keeps
track of the page number and the number of lines printed on the current page. (The relevant
computations are associated with the variables I and LINENO respectively in Figure 9. The
use of these variable names is suggested, but not required, by annotation associated with
the plan in Figure 8.) The count of lines is initially set to 67 as a trick to simplify the test

Clich�e-Based Program Editing 11

simple report

f�le nameg

r

?
OPEN

r

rXXXXXXz

"~2%~A~2%~A"
r

?

ftitleg

r

Z
Z
Z
Z
Z
Z
Z
Z
Z~

�
�

�
��	

GET-DATE-TIME
r

J
J
J
J
J
J
Ĵ

����������
FORMAT

r r r r

r

@@R

enumeration

fenumeratorg

fdatag

r

?

body

r

?
��

HHHHj

HHHHj

yes no

r

ftestg

?

@
@
@R

B
BBNr

faccessorg

� -

r

fstepg

r

?
recurse
r

?

join

r-r

map

r

?

r

?

r

?

67
r

?

0
r

?

fline limitg

r

?

body

rHHHHHHHH

?

��������

r

?

HHHHHHH

?

rHHHHHH

?

�����
?

r

�
�

��	

HHH

?

r

?

����������

r

?

����������

>
yes no

r r

�
�
�
?

@
@
@@R

@
@
@

?

"~|~%~
Page: ~

~3D ~A~
~A~%"

rHHH
?

FORMAT
r r r r

r

?

3
r

?

fprint

headingsg

r

@@R
r

@@R

1
r

?
+
r r

r

?

join

r r r r r r

r

?

r

?

r

?

r �
?fprint itemg

r r r

r

AAU
r

AAU
recurse
r r r r r r

r

?

r-

r

?r

r-

r

?fprint summaryg
r

r

?
CLOSE

r

Default Constraints: f�le nameg = "report.txt".

Derived Constraints: fline limitg = 66-Lines(fprint entryg)-Lines(fprint summaryg).
Comment: "prints a report of fdata of enumeratorg".

Described roles: f�le nameg, ftitleg, fenumeratorg, fprint headingsg,
fprint entryg, fprint summaryg.

Primary roles: fenumeratorg, fprint entryg, fprint summaryg.

Figure 8: The kbemacs schema for the simple report clich�e.

12 R.C. Waters

(WITH-OPEN-FILE (REPORT {file-name} :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(LINENO 67)
(TITLE {title})
(DATA {data of enumerator}))

(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF ({test of enumerator} DATA) (RETURN NIL))
(WHEN (> LINENO {line-limit})
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3)
({print-headings} {REPORT, modified} {LINENO, modified}))

({print-entry} {REPORT, modified} {LINENO, modified}
({accessor of enumerator} DATA))

(SETQ DATA ({step of enumerator} DATA)))
({print-summary} {REPORT, modified})))

Figure 9: Lisp code corresponding to the plan diagram in Figure 8.

controlling the initiation of new pages.
The computations that eventually �ll the print headings and print entry roles are expected

to correctly update the value recording the number of lines printed. This is signi�ed in
Figure 9 by routing the variable LINENO through these roles. The notation {: : :, modified}

in Figure 9 speci�es that the indicated variable is an output as well as an input.

Temporal abstraction. Through the process of temporal abstraction [16, 26] plan dia-
grams represent loops as \compositions" of operations on sequences of values. For example,
the main computation in the simple report schema in Figure 8 is represented as the compo-
sition of the enumerator and a map. The enumerator creates a sequence of values and the
map applies the print entry (and the computation involved with printing page headings) to
each element of this sequence.

The fundamental insight behind temporal abstraction is the observation that the only in-
teraction between fragments like the enumerator and the map is that one uses data computed
by the other. Temporal abstraction views the sequence of values transmitted between the
two fragments as a compound data object (called a temporal sequence) and the fragments
as functions operating on this sequence. The advantage of temporal abstraction is that it
makes the entire computation in Figure 8 as easy to reason about and manipulate as the
expression that prints the title and date on the �rst page of the report.

In Figure 8, the enumerator role is �lled with a generic enumeration schema, which con-
tains four roles. The data role is the structure to be enumerated. The test determines when
the enumeration should stop. The accessor retrieves individual elements of the structure.
The step moves from one element to the next.

The plan diagram for the generic enumeration schema represents the computation recur-
sively, rather than using a loop in data and control ow. The data role is only performed once
before the enumeration begins. The test, accessor, and step are performed many times. The
double line connecting the box labeled recurse and the box labeled body indicates that the
recurse box is identical to the body. An execution of the recurse box is a recursive execution

Clich�e-Based Program Editing 13

vector enumeration

fvectorg

r

?

@@R
LENGTH
r

r

���

0
r����

body

r

HHHHHj

HHHHHj

rHHHHHj

HHHHHj

r

?

���

HHHHHj

HHHj

<
no yes

r r

ftestg

�
�
�

?

�
�
�

@
@
@R

?
AREF
r r

facces-

sorg

� -

fstepg
r

C
C
CW

1
r

?
+

r r

r

?r
J
JĴ

recurse
r r r

?

join

r-r

Comment: "enumerates the elements of fvectorg".
Described roles: fvectorg.

Input roles: fvectorg.
Primary roles: fvectorg.

Figure 10: The kbemacs schema for the vector enumeration clich�e.

(LET* ((I 0)
(V {vector})
(SIZE (LENGTH V)))

(LOOP DO
(IF {(NOT (< I SIZE)), test} (RETURN NIL))
{(AREF V I), accessor}
{(SETQ I (+ I 1)), step}))

Figure 11: Lisp code corresponding to the plan diagram Figure 10.

of the body. When the test succeeds, the recurse box is bypassed and the enumeration is
terminated.

The most interesting feature of the plan diagram for the enumeration schema is the
output port on the right side. The value at this port is a sequence of the values returned by
the accessor, in the order that they are created. The input port on the left side of the map
is similar in nature. It represents a sequence of the values required by the third input of the
print entry.

14 R.C. Waters

Command: Define program REPORT-TIMINGS with parameter TIMINGS.
Command: Insert simple-report.

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(LINENO 67)
(TITLE {title})
(DATA {data of enumerator}))

(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF ({test of enumerator} DATA) (RETURN NIL))
(WHEN (> LINENO 64)
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3)
({print-headings} REPORT LINENO))

({print-entry} REPORT LINENO ({accessor of enumerator} DATA))
(SETQ DATA ({step of enumerator} DATA)))

({print-summary} REPORT))))

Figure 12: kbemacs output 1, instantiating a schema.

Because the recursion in the enumeration is a tail recursion, the coder renders it as a
loop in Figure 9. The various roles of the enumerator are dispersed in the code, because
they have to be mixed with the computation corresponding to the map. Role designators
of the form {test of enumerator} are used to indicate that the roles of the enumerator are
subroles of a larger role called the enumerator.

The subroles of the enumerator can be �lled individually, or they can be �lled together
as a unit by replacing the generic enumeration schema with a more speci�c enumeration
schema such as vector enumeration (see Figures 10 and 11).

Comparing Figure 10 with the enumeration schema in the enumerator role in Figure 8
reveals that the vector enumeration schema is essentially just an instance of an enumeration
with some additional setup computation and particular operations �lled in for the test,
accessor, and step. (The lower bound of every Lisp vector is 0, while the upper bound
can be determined by calling the function LENGTH. The function AREF accesses an element
of a vector. In Figure 11, the notation {code, name} is used to indicate a role in a schema
de�nition that is �lled with something.)

3.2 Transcript of KBEmacs in Action

To give a feeling for what clich�e-based editing is like in kbemacs, Figures 12{15 show a
transcript of the system in action. The transcript shows the construction and later modi�ca-
tion of the program REPORT-TIMINGS used as an example in Section 2. By using the schemas
discussed in the preceding subsection, kbemacs is able to respond to commands at a similar
level of detail to the directions shown at the beginning of Section 2.

In Figure 12, the programmer starts the construction of REPORT-TIMINGS by specifying
the name of the program, the parameter list, and the fact that the body of the program is an
instance of the simple report schema. The �gure is divided into two parts. The upper part

Clich�e-Based Program Editing 15

Command: Fill enumerator with vector-enumeration of TIMINGS.

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(J 0)
(LINENO 67)
(SIZE (LENGTH TIMINGS))
(TITLE {title}))

(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF (NOT (< J SIZE)) (RETURN NIL))
(WHEN (> LINENO 64)
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3)
({print-headings} REPORT LINENO))

({print-entry} REPORT LINENO (AREF TIMINGS J))
(SETQ J (+ J 1)))

({print-summary} REPORT))))

Figure 13: kbemacs output 2, non-local changes.

shows the commands given to kbemacs. The lower part shows the program that results.
In the interest of brevity, some of the details of the command interface are omitted.

However, the commands have the basic form shown. Each command begins with a verb
specifying the action to be performed. Within the command, lower case is used to refer to
schemas and various connective words, while upper case is used to refer to literal pieces of
code and symbols that appear in the program.

The box that takes up the lower part of the �gure shows the state of the editor bu�er
after the commands are executed. Change bars in the left margin indicate the parts of the
bu�er that have changed since the previous image. The position of the editing cursor is
indicated by the symbol \ ". After a set of commands, kbemacs places the cursor at the
location of the �rst change in the main body of the program.

The program in Figure 12 is an instance of the simple report schema and is very much
like Figure 9. However, the constraints and other annotation are not shown in the program
produced and {: : :} notation is only used for roles that are empty. The �le name and line
limit roles are �lled as speci�ed by the constraints on them. (The constraint function LINES

assumes that an empty role will generate a single line of output once it is �lled.)
The fact that a standard scheme for dealing with pagination is included in the simple

report schema improves the productivity of the programmers using the schema, because
in general, they no longer have to worry about pagination. Perhaps more importantly, it
improves the reliability of the programs produced using the schema, because these programs
always contain a fully general-purpose scheme for dealing with pagination that is at least
internally consistent. Further, the fact that the line limit role is derived by a constraint
means that the programmer never has to �ll it explicitly, and the role is automatically
updated whenever the print entry or print summary are changed.

In Figure 13, the programmer tells kbemacs to �ll the enumerator role with a vector

16 R.C. Waters

Command: Fill title with "Report of Reaction Timings (in msec.)".
Command: Remove print-headings.
Command: Fill print-entry with tabular-print-out of "~9D".
Command: direct editing of summary

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(J 0)
(LINENO 67)
(SIZE (LENGTH TIMINGS))
(TITLE "Report of Reaction Timings (in msec.)"))

(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF (NOT (< J SIZE)) (RETURN NIL))
(WHEN (> LINENO 63)
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3))

(WHEN (> (CHARPOS REPORT) 61)
(TERPRI REPORT)
(SETQ LINENO (+ LINENO 1)))

(FORMAT REPORT "~9D" (AREF TIMINGS J))
(SETQ J (+ J 1)))

(FORMAT REPORT "~2%Mean: ~8D" (MEAN TIMINGS)))))

Figure 14: kbemacs output 3, text editing and constraint propagation.

enumeration. Note that the changes caused by this command are spread throughout the
program. In particular, two new variables are declared and the four subroles of the enumer-
ator role are �lled. This illustrates that combining schemas is signi�cantly more complex
than just appending chunks of program text or calling subroutines.

Another important feature of Figure 13 is that the variable I used by the vector enumer-
ation schema in Figure 11 has been renamed to J. This is necessary, because the variable I

is already being used in the surrounding context (see Figure 12).
In Figure 14, the programmer �nishes the program REPORT-TIMINGS by �lling the title,

print entry, and print summary roles and getting rid of the print headings. (To simplify the
presentation it is assumed that a function is available for computing the mean of TIMINGS.)

The removal of the print headings illustrates the fact that schemas are typically designed
with lots of bells and whistles, on the theory that it is easier to get rid of extra things than
to think up things that are missing.

The print summary role is �lled by using text editing to type in the appropriate code. This
illustrates the fact that the programmer is always free to use ordinary editing commands.
The goal of kbemacs is to make a powerful set of additional commands available, without
taking away any of the capabilities of standard editors.

A key feature of Figure 14 is that the value of the line limit role is changed from 64 to
63. The constraint on the line limit role triggered this change, because the print summary
speci�ed by the programmer prints two lines of output. This automatic change in the value
of the line limit prevents a bug that might well go unnoticed in testing, since the bug has

Clich�e-Based Program Editing 17

Command: Replace print-entry with simple-print-out of "~%~14D".
Command: Create comment.

;;; The function REPORT-TIMINGS is a simple-report.
;;; The file-name is "report.txt".
;;; The title is "Report of Reaction Timings (in msec.)".
;;; The enumerator is a vector-enumeration.
;;; It enumerates the elements of TIMINGS.
;;; There are no print-headings.
;;; The print-entry is a simple-print-out.
;;; It prints out (AREF TIMINGS I).
;;; The print-summary is an idiosyncratic computation.

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(J 0)
(LINENO 67)
(SIZE (LENGTH TIMINGS))
(TITLE "Report of Reaction Timings (in msec.)"))

(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF (NOT (< J SIZE)) (RETURN NIL))
(WHEN (> LINENO 63)
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3))

(SETQ LINENO (+ LINENO 1))
(FORMAT REPORT "~%~14D" (AREF TIMINGS J))
(SETQ J (+ J 1)))

(FORMAT REPORT "~2%Mean: ~8D" (MEAN TIMINGS)))))

Figure 15: kbemacs output 4, modi�cation and documentation.

an e�ect only when the print summary is to be printed on the last line of a page.

Program modi�cation and documentation. The transcript in Figures 12{14 shows
kbemacs supporting program construction. Although this is the main focus of kbemacs,
the system provides support for other parts of the programming process as well.

The program in Figure 14 prints out the numbers in the vector TIMINGS several to a
line. With the �rst command in Figure 15, the programmer changes the print entry role
so that the numbers are printed in one long column. The replace command used removes
the tabular print out �lling the print entry role in Figure 14 and replaces it with a simpler
schema that prints items one to a line. In general, clich�e-based editing is just as useful for
program modi�cation as for program creation.

With the second command in Figure 15, the programmer tells kbemacs to generate a
comment describing the program REPORT-TIMINGS. One could easily argue with the details
of the comment created. However, the comment has an important property that most
comments lack|it is guaranteed to be correct, because it is generated based on the schemas
that were actually used to construct the program, and it can be automatically changed if
the program changes.

18 R.C. Waters

3.3 Manipulating Plan Diagrams

The lion's share of the power of kbemacs comes from the problem solving technique of
representation shift|shifting from an obvious representation in which a problem is easy to
state, to a less obvious representation in which the problem is easy to solve.

The basic problem of constructing and manipulating programs in terms of clich�es is easy
to state in terms of program text. In line with this, the interface to kbemacs is carefully
designed to project this image to the programmer. For instance, a textual form is provided
for de�ning schemas representing clich�es and the programmer sees a continuous display of
the program text resulting from the commands given.

However, actually performing the required manipulations directly on program text would
be very di�cult. This di�culty is overcome by representing both the schemas and the
program being worked on as plan diagrams (implemented as graphs in a simple database).
Once this is done, the manipulations required to combine and modify schemas are simple.

In particular, when considering how kbemacs supports the commands in Figures 12{15, it
is important to realize that kbemacs' internal representation of the program REPORT-TIMINGS

is very di�erent from the program text shown in Figures 12{15. As an example, Figure 16
shows the internal representation of the version of SIMPLE-REPORT shown in Figure 14.

(For the most part, Figure 16 is the same as Figure 8 with Figure 6 inserted in the print
entry role and Figure 10 inserted in the enumerator role. However, note that the vector role
of the vector enumeration and the item role of the tabular print out have been turned into
inputs. In addition, the print headings role of simple report has been removed, while the
other roles have been �lled. To save space, Figure 16 has been abbreviated by omitting part
of the tabular print out and part of the computation that prints headings at the top of each
page of the report. The missing sections of the plan diagram in Figure 16 are identical to
the corresponding sections of Figures 6 and 8.)

Most of the complexity of kbemacs is contained in the analyzer and coder modules that
convert back and forth between program text and temporally abstracted plan diagrams.
The schema editor itself is quite simple due to the following three key advantages that plan
diagrams have in comparison with program text.

Every role is a single box. In program text, it is often the case that widely separated
parts of the program are part of the same logical role. However, in a plan each role is
consolidated into a single box. Because of temporal abstraction, this is even true for loop
fragments such as the enumerator in Figure 16. Because every role is a box, adding, removing,
and �lling roles merely requires adding boxes, deleting boxes, and plugging plan diagrams
into boxes.

For instance, the remove command in Figure 14 is supported by deleting a box and the
arrows touching it. The insert command in Figure 13 is supported by removing the old
contents of the enumerator role (see Figure 8) and replacing it with a copy of the vector
enumeration schema (see Figure 10). When an insert command speci�es a literal piece of
program text, kbemacs uses the analyzer module to convert the piece of text into a plan
and then inserts the plan into the indicated role.

The only operation performed by the schema editor that is at all complex is hooking up
data ow. For instance, when the print entry is �lled with a tabular print out in Figure 14,
a copy of the plan diagram in Figure 6 is placed inside the print entry box in Figure 8

Clich�e-Based Program Editing 19

simple report

TIMINGS
r

?

�
�
�

@@
@@R

"report.txt"

f�le nameg

rHHHj
OPEN

r

rXXXXXXz

"~2%~A~2%~A"
r

?

"Report of Reaction : : :"

ftitleg

r

Z
Z
Z
Z
Z
Z
Z
Z
Z~

�
�

�
��	

GET-DATE-TIME
r

J
J
J
J
J
J
Ĵ

����������
FORMAT

r r r r

r

@@R

vector enumeration

fenumeratorg
r

?

@@R
LENGTH
r

r

���

0
r����

body

r

HHHHHj

HHHHHj

rHHHHHj

HHHHHj

r

?

���

HHHHHj

HHHj

<
no yes

r r

ftestg

�
�
�

?

�
�
�

@
@
@R

?
AREF
r r

facces-

sorg

� -

fstepg
r

C
C
CW

1
r

?
+

r r

r

?r
J
JĴ

recurse
r r r

?

join

r-r

map

r

?

r

?

r

?

67
r

?

0
r

?

63

fline limitg

r

?

body

r

?
r

?
r

?
r

��	@
@
@

r����
r

���
r r r

FORMAT
? ����r ?r ����r ����r

rHHHj

3
r

@@R

+
?r ?r
r

?

join

r r r ??r ?r ?r

r�������

r�������

r

?

r �
?

fprint itemg
r����� @

@
@@R

?

r�����
@
@@R

?

r

61

fwidth limitg

r

��	
r r r

join

r r ��� ���r ��	r

r

Q
Q
Q
QQs

rXXXXXXXX
C
C
CCW

�
�

��	

"~9D"

fformatg

r

�
�
��

FORMAT
r r r

r

@@R

tabular
print out

r

@@R
r

CCW
recurse
r r r ?r ?r ?r

r����

r-

r����

-

r������ fprint summaryg
r

?

r

?
MEAN

r

@@R

"~2%Mean: ~8D"
r����

FORMAT
r r r

r

?r
?

CLOSE
r

Figure 16: Plan diagram corresponding to Figure 14.

20 R.C. Waters

yielding the result in Figure 16. This is trivial to do, except that the outermost inputs of
the diagram in Figure 6 have to be matched up correctly with the inputs of the print entry
box in Figure 8.

The inputs of the tabular print out schema (i.e., the free variables REPORT and LINENO) are
speci�ed in the schema de�nition in Figure 6. The inputs of the print entry role are speci�ed
in the plan for the simple report schema in Figure 8. Comparing these two speci�cations,
kbemacs matches the two REPORT inputs and the two LINENO inputs together since they refer
to variables of the same name.

The schema editor then notes that the print entry role has one more input than the
tabular print out schema, but that the item role of the schema is tagged as being an input
role. To establish a connection between the elements created by the enumerator and the
schema, kbemacs converts the item role into an input and matches it with the third input of
the role. The key thing to note here is that the tabular print out schema is correctly connected
into the data ow in the program without the programmer having to say anything.

Data ow and control ow represented explicitly and locally. All information
in a plan diagram about inputs, outputs, operations, and the data ow between them is
explicitly represented using direct connections between inputs and outputs. One virtue of
this is that the information can be rapidly retrieved. For example, if the schema editor
wishes to know where the data ow to the print entry comes from, it can �nd this out by
tracing back the relevant arrows without having to perform any global analysis.

Another virtue of this representation is that each arc represents a local fact that is
independent of anything else in a plan diagram. As a result, if the schema editor wants
to add a new data ow, it just adds a new arrow without having to worry about variable
name clashes or anything else. For instance, when the enumerator role is �lled with a vector
enumeration in Figure 13, the schema editor does not have to do anything to prevent variable
clashes, because this problem cannot occur in a plan diagram. Of course, when the coder
module converts a plan diagram into program text, it has to make sure that the data ow
arcs are accurately rendered using variables and other data-ow mechanisms.

To create aesthetic code, the coder makes use of suggestions about variable names that are
stored as annotation on plans. However, it makes up new variables names if the suggestions
lead to conicts. For instance, the plan diagram in Figure 16 has annotation suggesting that
both the variable holding the page number and the variable holding the vector index should
be called I. However, since this is not possible, the coder changes one of the names.

Complete information about the schemas is retained. A plan diagram like the
one in Figure 16 contains complete information about the schemas used to create it. In
particular, all of the roles are shown (except the print headings, which was removed) and
the schemas used to �ll the roles are recorded. (The constraints on the roles are recorded
along with of the schemas in the schema library.)

The replace command in Figure 15 is supported by discarding the contents of the print
entry box in Figure 16, inserting a di�erent plan diagram, and then rechecking the relevant
constraints.

The comment shown in Figure 15 is produced by simply reading out the top two levels
of the hierarchical structure of the underlying plan diagram in terms of schemas and using
some of the auxiliary information associated with the schemas. In particular, the comment

Clich�e-Based Program Editing 21

gives a brief description of each of the described roles in the top-level schema (see Figure 8).
When one of these roles is �lled with a schema, the comment annotation associated with
that schema is used to create a one sentence description.

Constraints are supported procedurally. Constraints are represented as procedures
that take the appropriate actions. For instance, the DERIVED constraint on the simple report
schema (see Figure 8) is represented as a procedure that checks the value of the print entry
and print summary roles and sets the value of the line limit role. This procedure is rerun
whenever the value of either the print entry role or the print summary role changes.

3.4 Evaluation

kbemacs supports clich�e-based editing|namely the creation and modi�cation of pro-
grams through the combination of clich�es selected by the user from an extensible library|
more or less completely. Nevertheless, its capabilities are limited in several crucial ways.

The greatest single weakness of kbemacs is that it does not have any general-purpose
reasoning capabilities. This prevents kbemacs from handling constraints in a general way|
it can only handle constraints that can be expressed as procedures that derive roles from
other roles. This also prevents kbemacs from assessing the reasonableness of the actions
taken by the programmer|it merely does whatever the programmer says. Finally, the lack
of general-purpose reasoning capabilities prevents kbemacs from making any interesting
decisions by itself|the programmer must explicitly pick every schema to be used.

Another weakness of kbemacs is that it is somewhat limited in the clich�es that it can
represent. For the most part, kbemacs only supports clich�ed algorithms like those presented
above as opposed to clich�ed data structures or clich�ed system organizations. This weakness
stems from the fact that plan diagrams are the only method kbemacs has for representing
clich�es. A more general logical representation is required for representing non-algorithmic
clich�es.

Work is currently underway on the construction of a Design Apprentice that will address
the problems above and go beyond kbemacs by automating low-level program design [14,
34]. With the Design Apprentice, a programmer/designer will outline the basic high-level
design, while the system selects the detailed algorithms to use and puts them together into
a program. Unlike kbemacs, the Design Apprentice will be able to reason extensively about
the design of the program and critique the statements made by the programmer/designer.

A subtle weakness of kbemacs concerns the analyzer module. When a plan diagram
for a program is constructed in kbemacs by combining schemas, it contains complete in-
formation about the schemas used. Ideally, the analyzer should be able to take a program
represented as text and create a plan that contains complete information about how the
program could have been constructed from schemas. However, this reverse-engineering task
is beyond the capabilities of the current analyzer. In lieu of a fully detailed plan, the analyzer
creates a minimal plan that accurately represents the computation, but does not contain any
information about schemas.

The weakness of the current analyzer means that while the programmer can apply ar-
bitrary textual editing at any time, this is likely to cause kbemacs to lose track of the
schemas that were previously used to construct the program in question. (kbemacs is able
to carry on with complete schema information after the textual editing in Figure 14 due to

22 R.C. Waters

a special feature|whenever a textual change is con�ned solely to the contents of a single
role, kbemacs recognizes that the change is equivalent to �lling the role with the indicated
text.) Work is currently underway on methods for automatically supporting complete reverse
engineering in the general case, see [17, 35].

The weaknesses above notwithstanding, kbemacs demonstrates valuable capabilities.
However, the evolution of the system has reached the point where the creation of a full-
scale prototype requires complete reimplementation. Unfortunately, kbemacs consists of
some 40,000 lines of Lisp code and is comparable in complexity to an optimizing compiler.
Before attempting such a large reimplementation e�ort, it is reasonable to consider whether
some of the key ideas behind kbemacs can be extracted and hosted in simpler systems.

One of the most important ideas behind kbemacs is temporal abstraction|representing
loops as compositions of functions on sequences of values. By making the manipulation of
loops as simple as the manipulation of expressions, it simpli�es ever aspect of kbemacs'
operation.

Conveniently, the concept of temporal abstraction is quite separate from the idea of
clich�e-based editing and can be supported separately. In particular, a Common Lisp macro
package called Series [32, 33] has been implemented that makes it possible to represent
loops in a functional style, without any loss of e�ciency. In addition, a prototype language
extension has been implemented for Pascal [33]. In both cases, the language extensions have
proven to be extremely valuable, primarily because they allow a wide range of loop clich�es
such as vector enumeration to be represented as functions.

The other key idea behind kbemacs is the construction of programs by combining
schemas representing clich�es. The following sections describe two systems that support
the manipulation of schemas and yet are much simpler than kbemacs.

Clich�e-Based Program Editing 23

4 Tempest

From the beginning of work on kbemacs, it was assumed that a representation shift to
something like plan diagrams was essential for supporting clich�e-based editing. However,
detailed study of kbemacs in action revealed that kbemacs did not make use of the power
of plan diagrams quite as much as had been presupposed. In particular, it became apparent
that it should be possible to reduce the magnitude of the representation shift (and therefore
the system's complexity) signi�cantly, while still retaining most of the system's power.

As a radical �rst experiment in simplifying kbemacs, a system called Tempest [23] was
constructed that eliminates the representation shift altogether. Tempest succeeds in re-
moving almost all of kbemacs' complexity, but at the price of removing most of kbemacs'
power.

Tempest is a small program implemented in c [9] on an ibm pc rather than a large
program on a Symbolics Lisp Machine. It executes commands in fractions of seconds rather
than minutes. However, Tempest is not powerful enough to provide useful support for
program editing. Nevertheless, it is valuable to discuss Tempest for two reasons.

First, it is illuminating to see exactly why Tempest fails as a program editor. The Ace
editor described in Section 5 is a good compromise system, because it solves these speci�c
problems without taking on the full complexity of kbemacs.

Second, although Tempest is rather weak, its power-to-complexity ratio is much higher
than kbemacs'. Tempest is very useful in simple editing situations such as document prepa-
ration and its bene�ts can be obtained very cheaply.

The architecture of Tempest is shown in Figure 17. Unlike kbemacs (see Figure 5) Tem-
pest maintains only one representation and therefore does not need anything equivalent to
kbemacs' coder and analyzer modules. The schema library contains a collection of clich�es
represented as textual schemas. The schema editor performs the same kind of simple opera-
tions as kbemacs' schema editor|i.e., it can insert and replace instances of schemas in the
text being edited and supports simple constraints.

Tempest is written as an extension to the commercially available Emacs-style Mince
editor [38]. The standard facilities of Mince are used to support both text editing and
syntax editing. The commands supported by the schema editor are provided as extensions
to the Mince command set and the modi�cations performed by the schema editor are applied
directly to the Mince editing bu�er.

schema library
�
�

�

?
schema editor

syntax editor

text editor

@
@
@
@
@@R

Z
Z
Z
Z
ZZ~

HHHHHHj
�
�

�
program text

Figure 17: Architecture of Tempest.

24 R.C. Waters

(PROGN (WHEN (> (CHARPOS REPORT) {width-limit})
(TERPRI REPORT)
(SETQ LINENO (+ LINENO 1)))

(FORMAT REPORT {format} {item}))

Figure 18: The Tempest schema for the tabular print out clich�e.

(WITH-OPEN-FILE (REPORT {"report.txt", file-name} :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(LINENO 67)
(TITLE {title})
{prolog of enumerator})

(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF {test of enumerator} (RETURN NIL))
(WHEN (> LINENO {line-limit})
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3)
{print-headings})

{{{accessor of enumerator}, item}, print-entry}
{step of enumerator})

{print-summary}))

Figure 19: The Tempest schema for the simple report clich�e.

{(I 0)
(SIZE (LENGTH {vector})), prolog}
{(NOT (< I SIZE)), test}
{(AREF {vector} I), accessor}
{(SETQ I (+ I 1)), step}

Figure 20: The Tempest schema for the vector enumeration clich�e.

4.1 Representing Clich�es as Textual Schemas

In Tempest, clich�es are represented as textual schemas like the ones shown in Figures 18{
20. The text shown represents the body of the clich�e. Default constraints are speci�ed by
providing a non-empty initial �ller for the role. Simple equality constraints between roles
are represented as annotations on the schema (see Section 4.4). Tempest does not support
defaults which are computed based on the values of other roles or derived constraints as
complicated as the one on the width limit role in Figure 2. In addition, Tempest does not
support the various kinds of special annotation supported by kbemacs.

A new schema can be created by typing text like that shown in Figures 18{20. This is
then stored in a �le, whose name serves as the name of the clich�e. Constraints are created
using a special Tempest command and are stored in an auxiliary �le.

Comparing Figures 18 and 19 with Figures 7 and 9 (respectively) reveals that the Tempest
schemas are very much like the printed representations of the kbemacs schemas.

Somewhat greater di�erences are revealed by comparing Figure 20 with Figure 10. The

Clich�e-Based Program Editing 25

Command: direct editing of function heading
Command: Insert simple-report.

(DEFUN SIMPLE-REPORT (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(LINENO 67)
(TITLE {title})
{prolog of enumerator})

(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF {test of enumerator} (RETURN NIL))
(WHEN (> LINENO {line-limit})
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3)
{print-headings})

{{{accessor of enumerator}, item}, print-entry}
{step of enumerator})

{print-summary})))

Figure 21: Tempest output 1, instantiating a schema.

roles in Figure 20 have been altered so that they contain all of the computation uniquely
associated with the schema (some of the key computation is outside of the roles in Figure 10).
In addition, the standard constructs that connect the computation together (e.g., the loop
itself) have been omitted. The schema in Figure 20 only makes sense when it is inserted
in a role, such as the enumerator in Figure 19, that places the four chunks of text in an
appropriate context. The fact that the vector role in Figure 20 appears twice means that
whatever is inserted in the vector role will be inserted in both places.

4.2 Transcript of Tempest Being Used To Edit a Program

Figures 21{23 show a transcript of Tempest being used to construct the program REPORT-

TIMINGS. Like the transcript �gures in Section 3, these �gures are divided into two parts: a
depiction of the editor bu�er below a summary of commands. As in the �gures in Section 3,
the command interface has been somewhat simpli�ed.

The command language supported by Tempest is simpler than the one supported by
kbemacs. There is no special command for de�ning a program. As a result, ordinary text
editing is used to type in the function header at the top of Figure 21. However, the simple
report schema is instantiated with an insert command just as in kbemacs. In Tempest,
this is done by merely copying the text in Figure 19 into the editor bu�er. As in kbemacs,
�lled roles are displayed by showing only their contents|i.e., {"report.txt", file-name}

is displayed as "report.txt". (The user can override this and force the complete display of
information about all roles. This is useful when de�ning a new schema.)

In Figure 22, the programmer �lls the enumerator role. Tempest does this by simply
inserting the four parts of Figure 20 into the appropriate four subroles in Figure 21. A
separate command has to be used to �ll the vector role of the vector enumeration, because
Tempest does not support commands containing phrases of the form \vector-enumeration

26 R.C. Waters

Command: Fill enumerator with vector-enumeration.
Command: Fill vector with TIMINGS.

(DEFUN SIMPLE-REPORT (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(LINENO 67)
(TITLE {title})
(I 0)

(SIZE (LENGTH TIMINGS)))
(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF (NOT (< I SIZE)) (RETURN NIL))
(WHEN (> LINENO {line-limit})
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3)
{print-headings})

{{(AREF TIMINGS I), item}, print-entry}
(SETQ I (+ I 1)))

{print-summary})))

Figure 22: Tempest output 2, errors creep in.

of : : :".
In Figure 23, the programmer �lls the title, print entry, and print summary while getting

rid of the print headings. As discussed in Section 4.5, the operation of Tempest is extremely
simple. However, this does not count for very much in situations such as Figure 23 where
incorrect results are obtained.

4.3 Evaluation

In Figures 21{23 the programmer uses commands very much like the ones used in Fig-
ures 12{14 and combines the same three clich�es together. However, comparison of Figure 23
with Figure 14 reveals that a rather di�erent result is obtained.

The biggest problem concerns the variable I. When inserting the vector enumeration
schema in Figure 22, Tempest blindly combines the text in Figures 20 and 21. This leads
to conicting bindings and uses of the variable I. To �x this problem, Tempest would have
to analyze the data ow in Figures 20 and 21 well enough to detect the conict and rename
one of the variables.

A second problem concerns the PROGN on the sixth to last line of Figure 23. This is needed
in Figure 18 to group the schema into a single expression, which can be inserted in roles
that can only hold a single expression. However, it is unnecessary and therefore misleading
in Figure 23. To �x this problem, Tempest would have to parse the text in Figure 23 and
apply Lisp-speci�c simpli�cation rules.

A third problem with Figure 23 is that the indentation is wrong in a number of places,
which makes the program signi�cantly harder to read than Figure 14. To �x this problem,
Tempest would have to parse the text in �gure 23 and then pretty print it back into the
editor bu�er.

Clich�e-Based Program Editing 27

Command: Fill title with "Report of Reaction Timings (in msec.)".
Command: Remove print-headings.
Command: Fill print-entry with tabular-print-out.
Command: Fill format with "~9D".
Command: direct editing of summary

(DEFUN SIMPLE-REPORT (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" :DIRECTION :OUTPUT)
(LET* ((DATE (GET-DATE-TIME))

(I 0)
(LINENO 67)
(TITLE "Report of Reaction Timings (in msec.)")
(I 0)

(SIZE (LENGTH TIMINGS)))
(FORMAT REPORT "~2%~A~2%~A" TITLE DATE)
(LOOP DO
(IF (NOT (< I SIZE)) (RETURN NIL))
(WHEN (> LINENO {line-limit})
(SETQ I (+ I 1))
(FORMAT REPORT "~|~%Page: ~3D ~A ~A~%" I TITLE DATE)
(SETQ LINENO 3)
)

(PROGN (WHEN (> (CHARPOS REPORT) {width-limit})
(TERPRI REPORT)
(SETQ LINENO (+ LINENO 1)))

(FORMAT REPORT "~9D" (AREF TIMINGS I)))
(SETQ I (+ I 1)))

(FORMAT REPORT "~2%Mean: ~8D" (MEAN TIMINGS)))))

Figure 23: Tempest output 3, things deteriorate further.

A �nal problem is that Tempest does not support the constraints on the line limit and
width limit roles. As a result, these roles are still un�lled in Figure 23. Tempest could
support the required constraints using the same kind of constraint procedures supported by
kbemacs.

There is a common thread that goes through most of the problems above. Basically all
Tempest does is paste textual schemas together without doing anything to alter them so
that they �t together nicely. This is satisfactory only in situations where it is appropriate
to render schemas character-for-character exactly the same way independent of the context
of their use.

Whenever a schema has to be modi�ed based on global considerations, Tempest's ap-
proach breaks down. Because this is often necessary when editing programs, Tempest is
not adequate as a program editor. However, it is worthy of note that there are two pro-
gram editing situations where the no-representation-shift approach of Tempest may prove
adequate.

One situation is suggested by Figure 21. Simple textual insertion works pretty well if
the only thing you want to do is insert a single schema into an empty (or almost empty)
bu�er, because there is no (or very little) context to worry about. However, you have to
restrict yourself to operate in a predominantly non-clich�ed manner after the initial insertion
of a schema. This approach is taken by the Paris system [8], where the nesting of schemas
is mentioned as a theoretical possibility, but not pursued.

28 R.C. Waters

@make(letter)@style(LeftMargin=1.5in, RightMargin=1.5in)
{@Value(Date), date}
@begin(address)
{recipient}
@end(address)
@begin(body)
@greeting(Dear {greeting-title} {greeting-name}:)
{message}
@end(body)
{Sincerely Yours, salutation},
@blankspace(2 lines)
{sender}

Derived Constraints: fgreeting titleg = ftitle of recipientg.

fgreeting nameg = flast name of recipientg.

Figure 24: The Tempest schema for the simple letter clich�e.

{Dr., title} {John, first-name} {J., middle-name} {Smith, last-name}
{77 Elm St., street}
{Evansville, city}, {IN, state} {47712, zip}

Figure 25: The Tempest schema for the Doctor Smith clich�e.

Another situation where you might be able to dispense with representation shift is one
where the user-visible representation of programs is similar to plan diagrams. For instance,
a graphical programming tool such as Prograph [39] could be extended to support clich�e-
based editing with no more di�culty than Mince was extended to become Tempest. However,
the result would be much more powerful than Tempest, because the data-ow-graph-based
representation used by Prograph reduces the need to consider the context when combining
fragments.

4.4 A Situation Where Tempest Works Well

The rather negative assessment of Tempest in the previous subsection might give the
impression that Tempest was not useful for anything. However, while Tempest is not partic-
ularly useful for the clich�e-based editing of programs, it is quite useful in a number of other
situations. For example, Figures 24{28 show Tempest being used for document preparation.

Figure 24 shows a Tempest schema for constructing a simple letter using the Scribe [40]
document preparation system. The schema includes two equality constraints, which are
shown at the bottom.

As with all non-interactive text formatters, Scribe processes �les containing a mixture of
commands (beginning with @) and text. The @make command speci�es the type of document.
Each type of document has various associated style parameters that can be changed and envi-
ronments that can be �lled with text. (In the case of the letter document shown in Figure 24
the environments are the address, greeting, body, etc.). To specify that the text text is to
appear in the environment env you can either type @env(text) or @begin(env)text@end(env).
The user must specify the environments in the proper order. Scribe takes care of the rest|
i.e., justi�cation, pagination, etc.

Clich�e-Based Program Editing 29

Command: Insert simple-letter.

@make(letter)@style(LeftMargin=1.5in, RightMargin=1.5in)
@Value(Date)
@begin(address)
{recipient}
@end(address)
@begin(body)
@greeting(Dear {greeting-title} {greeting-name}:)
{message}
@end(body)
Sincerely Yours,
@blankspace(2 lines)
{sender}

Figure 26: Tempest output 4, instantiating a schema.

Command: Remove date.
Command: Fill recipient with doctor-smith.
Command: direct editing of message and salutation

@make(letter)@style(LeftMargin=1.5in, RightMargin=1.5in)
@begin(address)
Dr. John J. Smith
77 Elm St.
Evansville, IN 47712
@end(address)
@begin(body)
@greeting(Dear Dr. Smith:)
My wife and I very much enjoyed seeing you and your wife at the annual
conference. We would particularly like to thank you for your generous
hospitality. We look forward to your visit this summer.
@end(body)
See you soon,
@blankspace(2 lines)
{sender}

Figure 27: Tempest output 5, �lling roles and constraint propagation

Command: Replace top-level with informal-letter.

@make(letter)@style(LeftMargin=1.5in, RightMargin=1.5in)
@begin(address)
Dr. John J. Smith
77 Elm St.
Evansville, IN 47712
@end(address)
@begin(body)
@greeting(John,)
My wife and I very much enjoyed seeing you and your wife at the annual
conference. We would particularly like to thank you for your generous
hospitality. We look forward to your visit this summer.
@end(body)
See you soon,

Figure 28: Tempest output 6, modi�cation.

30 R.C. Waters

The schema in Figure 24 speci�es the standard text that must be included when writing
a simple letter using Scribe. The seven roles specify the places where variable text has to be
entered. The date has as its default value a Scribe command that generates the current date.
The recipient is the address of the recipient of the letter. The greeting-title and greeting-

name are the title and name of the recipient. The message is the main body of the letter.
The salutation has a default value of \Sincerely Yours". The sender is the name of the
person writing the letter. It is printed below the salutation leaving space for the sender's
signature.

The constraints specify that the greeting-title and greeting-name should be the title
and last-name (respectively) of the recipient. These constraints are designed to work in
conjunction with clich�ed addresses such as the schema Doctor Smith shown in Figure 25,
which can be used to �ll the recipient role. A non-clich�ed address is typed using the general
schema address, which has the same roles as Doctor Smith, but no default values.

Figures 26{28 show a transcript of Tempest being used to compose a letter. (A much
larger transcript appears in [23].) In Figure 26, the user begins by inserting an instance of
the simple letter schema.

In Figure 27, the user removes the date role, �lls the recipient role with an instance of
the schema Doctor Smith, and uses ordinary text editing to �ll the body of the letter and
alter the salutation. The two greeting roles are automatically �lled by the constraints on
the simple letter schema.

When typing the new, less-formal salutation, the user realizes that the letter as a whole
is too formal. In Figure 28, the user recti�es this by switching to an informal letter schema
for the letter as a whole. This schema is much the same as simple letter except that it does
not have a typed sender line and the constraint on it speci�es a less formal greeting.

Tempest's replace command is interesting in that it is more powerful than kbemacs'
replace command. In particular, when replacing one schema instance with another, kbemacs'
replace command simply throws out the old instance and replaces it with the new one.
Tempest's replace command goes beyond this by copying over the contents of the roles of
the old schema. Whenever an empty role in the new schema has the same name as a �lled
role in the old schema, the new role is �lled with the old contents. This is a capability that
could and should be added to kbemacs. In Figure 28, the recipient, text, and salutation are
copied over from Figure 27. The new greeting line is constructed by a constraint.

Tempest works much better in Figures 26{28 than in Figures 21{23, because Scribe
clich�es are much more local in nature than programming clich�es. This is partly due to the
fact that cutting and pasting a document together is fundamentally simpler than cutting
and pasting a program together. However, it is predominantly due to the intervention of
Scribe itself. Literal cutting and pasting of textual schemas inevitably leads to an ugly Scribe
input �le. However, Scribe is speci�cally designed to turn this ugly �le into an attractive
document. It takes care of modifying the textual schemas (e.g., by indentation) to adapt
them to their contexts. Essentially, Scribe provides the support for adaption that Tempest
does not provide.

4.5 Manipulating Textual Schemas

Tempest's schema editor is extremely simple. For the most part, the only thing it does
is insert, delete, and move named chunks of text. As in kbemacs, constraints are supported

Clich�e-Based Program Editing 31

@make(letter)@style(LeftMargin=1.5in, RightMargin=1.5in)
@begin(address)
{{Dr., title} {John, first-name} {J., middle-name} {Smith, last-name}
{77 Elm St., street}
{Evansville, city}, {IN, state} {47712, zip}, recipient}
@end(address)
@begin(body)
@greeting(Dear {Dr., greeting-title} {Smith, greeting-name}:)
{My wife and I very much enjoyed seeing you and your wife at the annual
conference. We would particularly like to thank you for your generous
hospitality. We look forward to your visit this summer., message}
@end(body)
{See you soon, salutation},
@blankspace(2 lines)
{sender}

Schemas used: top-level is simple-letter.

frecipientg is doctor-smith.

Derived Constraints: fgreeting titleg = ftitle of recipientg.

fgreeting nameg = flast name of recipientg.

Figure 29: Internal representation corresponding to Figure 27.

by procedures that take the appropriate action.
There are only two minor points of complexity in all of Tempest. First, a moderate

amount of e�ort has to be expended on maintaining background information about the
positions of �lled roles, the schemas used, and constraints. For instance, each time a character
is added or deleted, the role positions have to be updated. Second, Mince is altered by adding
guards on its various commands to ensure that role delimiters are only created and deleted
in matching pairs. This is important to ensure that the nested structure of roles always
makes sense.

Tempest's internal representation for Figure 27 is illustrated by Figure 29. It consists
of the simple letter schema (Figure 24) with the Doctor Smith schema (Figure 25) inserted
in the recipient role and some other roles �lled with literal text. As indicated by the {: : :}

notation in the upper part of Figure 29, Tempest maintains complete information about the
position of roles. As indicated by the lines at the bottom, Tempest also maintains complete
information about the schemas used and the constraints on these schemas.

(When the contents of the editor bu�er are written to a �le, the information about roles,
schemas, and constraints is written into a separate auxiliary �le so that the main �le can be
passed directly to other systems without having to be converted in any way.)

4.6 Reevaluation

In summary, Tempest is only useful in some situations, and in general, these situations do
not include program editing. However, Tempest has the advantage that it is simple, exible,
and blindingly fast. It would be a valuable extension to any text editor. An example of an
extension of this kind is the gnu Emacs [21] template mode implemented by Ardis [1].

32 R.C. Waters

5 Ace

The experiment with Tempest revealed that some amount of representation shift is essen-
tial for supporting clich�e-based program editing. However, the feeling remained that a full
shift to plan diagrams was not required. In an attempt to strike a balance between kbemacs
and Tempest, a system called Ace [24] was constructed that uses specially designed parse
trees as its internal representation. Ace has proved to be a very bene�cial balance, providing
much of the power of kbemacs at only a fraction of the cost.

The architecture of Ace is shown in Figure 30. It has the same basic form as the archi-
tecture of kbemacs (see Figure 5). However, the internal representation is parse trees rather
than plan diagrams. The value of using parse trees is that it is much easier to shift between
program text and parse trees than between program text and plan diagrams. Rather than
a complex analyzer module, one merely needs a parser. Similarly, rather than a complex
coder module, one merely needs an unparser. Ace's schema library contains a collection
of clich�es represented as parse-tree schemas. The schema editor performs the same kind of
simple operations as the schema editors in kbemacs and Tempest|it can insert and replace
instances of schemas in the parse tree being edited and supports simple constraints.

Like kbemacs, Ace is implemented on the Symbolics Lisp Machine. Also like kbemacs,
Ace is a demonstration system rather than a full prototype. In the interest of saving time,
the work on Ace has focussed on the areas where the most innovation is required|devising
an appropriate parse-tree representation and implementing the schema editor. In particular,
the implementation of the three dashed boxes in Figure 30 was largely omitted.

Support for text editing and syntax editing was omitted on the grounds that it could be
straightforwardly leveraged o� of an existing editor as in kbemacs and Tempest. Similarly,
implementation of the parser was omitted on the grounds that parsing is a well understood
problem. However, it is worthy of note that incremental parsing [5] is required to provide
e�cient combined support for text editing and syntax editing.

While unparsing is just as well understood as parsing, an unparser had to be imple-
mented to enable the ready demonstration of Ace's capabilities. By using the pp Lisp pretty
printer [29] (which is an intermediate version of the pretty printers described in [28] and [31])
it was possible to implement the unparser in only a few pages of code.

As with kbemacs, the concepts underlying Ace are programming-language independent.
Nevertheless, while it would have been very convenient to use Lisp as the target language of

schema library
�
�

�

?

schema editor

syntax editor

text editor

��
��
��*

�
�
�
�
��>

HHHHHHj

�
�

�
parse tree

?

6

unparser parser

?

6

�
�

�
program text

Figure 30: Architecture of Ace.

Clich�e-Based Program Editing 33

stm

decl Charpos
Integer

init Charpos
71

if

expr Charpos
>
fwidth limitg

stm

:= Charpos
1

:= flinenog

expr flinenog
+
1

call Writeln
freportg

:= Charpos

expr Charpos
+
fwidthg

fwritesg

tabular print out

Default Constraints: fformatg = ~15A.

Derived Constraints: fwidth limitg = 70-fwidthg.
fwidthg = Width(fformatg).

fwritesg = GenerateWrites(freportg, fformatg, fitemg).
Input roles: freportg, flinenog, fitemg.
Primary roles: fformatg, fitemg.

Schema type: statements.

Role types: freportg, flinenog: identi�er.

fitemg: expression.
fformatg: string.

fwritesg: statements.

fwidthg, fwidth limitg: number.

Figure 31: The Ace schema for the tabular print out clich�e.

Ace, an Algol-like language (Pascal [7]) was used to emphasize the practical applicability of
the system.

5.1 Representing Clich�es as Parse-Tree Schemas

Figure 31 shows the schema used by Ace to represent the tabular print out clich�e. The top
of the �gure depicts a parse tree with the root at the left. Non-terminals are indicated by the
abbreviations stm (statement list), decl (declaration), init (initialization), if (if statement),
:= (assignment statement), expr (expression), and call (function call). Lines are used to
indicate the children of each non-terminal, with the leftmost child at the top. The terminals
consist of symbols, numbers, and roles. A dashed box is used to delimit the parse tree
corresponding to a schema. The name of the schema is written in the lower left-hand corner
of the box. The bottom of the �gure shows auxiliary information maintained by Ace as

34 R.C. Waters

var Charpos: Integer;
begin
Charpos := 71;
� � �
if Charpos > {width-limit} then

begin Charpos := 1; {lineno} := {lineno}+1; Writeln({report}) end;
Charpos := Charpos+{width};
{writes}

end

Figure 32: Pascal code corresponding to the parse tree in Figure 31.

annotation on the parse tree.
The most important di�erence between the Ace schema in Figure 31 and the one used

by kbemacs (see Figure 6) is the fact that a parse tree is used as the basic representation.
However, before discussing this, it is useful to set the scene by discussing the di�erences
that stem from the fact that Ace's schema corresponds to Pascal code instead of Lisp code.
These di�erences are most easily appreciated by considering Figure 32, which shows the way
the parse tree in Figure 31 is displayed by Ace's unparser. (Like most of the �gures in this
section, Figure 32 is based on a �gure from [24]; however, a few cosmetic changes have been
made to facilitate comparison with the �gures in Sections 3 and 4.)

(Since a parser module has not yet been implemented, Ace does not support text like
Figure 32 as an input form for schemas. However, once a parser module exists, this will be
easy to do. All that is necessary is to introduce declaration-like syntactic extensions of Pascal
that support the speci�cation of the annotation information at the bottom of Figure 31.)

Comparison of Figure 32 with the kbemacs schema in Figure 7 reveals that, while the
same clich�e is involved, there are a number of di�erences due to semantic di�erences between
Lisp and Pascal.

Pascal does not maintain information about the number of characters printed on the
current line. As a result, the Ace tabular print out schema maintains an explicit record
of the character position in the variable Charpos. As part of this, the schema contains an
additional role width and a constraint that derives its value (see Figure 31).

Pascal has nothing corresponding to the Lisp function FORMAT. Rather, output must
be done using sequences of simple output operations. To retain the bene�ts of a compact
notation for describing output, a simple program generator GenerateWrites was written that
can convert format strings like those used by FORMAT into an appropriate sequence of Pascal
operations. Used in a constraint (see Figure 31), this generator forms a bridge between the
format role of the Ace tabular print out schema and a new role called writes that gets �lled
with Pascal statements.

The use of GenerateWrites in the tabular print out schema illustrates an important
point|clich�es represented as program generators can be combined with clich�es represented
as schemas. This is done by using the same representation for schemas and for the output
of the generators. Once this is done, the result of a program generator is indistinguishable
from a schema and can be freely combined with other schemas. The program generator can
be viewed as representing a class of schemas that are generated when needed.

The Ace tabular print out schema uses two roles report and lineno in place of the free

Clich�e-Based Program Editing 35

variables REPORT and LINENO, which are used in the kbemacs schema. This makes it easier
for Ace to combine the tabular print out schema with other schemas, without analyzing
data and control ow. The lineno role appears twice in the Ace schema. As in Tempest,
this means that whatever is used to �ll the role will be inserted in both places. Multiple
insertion is particularly useful in conjunction with roles that are intended to be �lled with
variables.

Comparison of Figures 6 and 31 reveals that Ace and kbemacs support much the same
annotation. However, while it could easily be added, Ace does not support the generation of
comments describing a program in terms of the schemas used to create it. As a result, Ace
schemas do not contain information about how to generate comments.

On the other side of the ledger, Ace schemas contain some information that kbemacs
schemas do not|each schema and each role has a syntactic type. These types are used
for reasonableness checking when Ace combines schemas together. (As noted at the end
of Section 3, kbemacs simply does whatever the programmer says, whether or not it is
reasonable.)

A special programming-language grammar is used. Returning to a consideration
of the parse tree in Figure 31, the most important thing to notice is that the grammar
underlying the parse-tree is di�erent from the standard grammar for Pascal. The grammar
is radically reformulated to simplify the operations performed by Ace's schema editor. In
addition, the grammar is extended to reect the fact that roles can appear anywhere any
other syntactic constituent can appear.

Programming-language grammars have traditionally been developed with a number of
desiderata in mind, such as unambiguousness, capturing a wide range of information such as
operator precedence, and linking up with particular kinds of e�cient parsing methods such
as lalr. This is convenient for many purposes (e.g., compiler writers), but by no means
for all. For instance, these desiderata encourage grammars that lead to deeply nested parse
trees. Because the intermediate nodes in these parse trees have little or no signi�cance to
human programmers, it has proved useful to use altered grammars that lead to shallow parse
trees as the bases for syntax editors [10].

The grammar used by Ace is based on three principal desiderata: minimizing the number
of non-terminal nodes in parse trees, minimizing the alterations that must be performed
when parse-tree schemas are combined, and moving as many syntactic details as possible
out of the parse trees and into the unparser. Several features of the Pascal grammar used
by Ace are illustrated in Figure 31.

Rather than using a recursive tower of non-terminals to represent a list of statements, the
non-terminal stm has a at structure that can directly contain any number of statements
or roles. In addition, no record is maintained in the parse tree of where begin/end pairs
should appear. Rather, the non-terminal stm is allowed to appear directly wherever a single
statement can appear (e.g., as a statement in a list of statements or as the then clause of
an if). This approach discards some information about the input and allows ambiguous
parses; however, it has three important advantages. The insertion of begin/end pairs in the
correct places is relegated to the unparser and need not be considered by the schema editor.
A schema containing more than one statement (e.g., tabular print out) can be inserted
anywhere a statement can appear without having to alter the schema. Since the alteration
of schemas is minimized, the structure of a parse tree created by combining several schemas

36 R.C. Waters

stm

var Date: packed array [1..17] of Char
var I: Integer
var Lineno: Integer
var Report: Text
var Title: packed array [1..ftitle lengthg] of Char
GetDateTime(Date)
Lineno := 67
I := 0
Title := ftitleg
Rewrite(Report, f�le nameg)
Writeln(Report)
Writeln(Report)
Writeln(Report, Title)
Writeln(Report)
Writeln(Report, Date)
fprolog of enumeratorg

loop

if ftest of enumeratorg
goto 0

if
Lineno>fline limitg

stm

Page(Report)
I := I+1
Lineno := 3
Writeln(Report)
Writeln(Report, Page: , I:3, : : :)
fprint headingsg(Report, Lineno)

fprint entryg(Report, Lineno, faccessor of Enumeratorg)
fstep of enumeratorg

lab
0

fprint summaryg(Report)

simple report

Default Constraints: f�le nameg = report.txt.
Derived Constraints: fline limitg = 66-Lines(fprint entryg)-Lines(fprint summaryg).

ftitle lengthg = SizeOfString(ftitleg).
Primary roles: fenumeratorg, fprint entryg, fprint summaryg.

Schema type: statements.
Role types: f�le nameg, ftitleg: string.

fenumeratorg: enumeration.

fprint headingsg, fprint entryg, fprint summaryg: statements.
ftitle lengthg, fline limitg: number.

Figure 33: The Ace schema for the simple report clich�e.

contains a clear record of the schemas used.
The grammar rules for expressions are modi�ed in a similar way. In particular, while the

parser has to take cognizance of operator precedence and the placement of parentheses, no
explicit record is kept in the parse tree about either one. Rather, the unparser takes care to
insert parentheses where needed. This allows the parse-tree representation for expressions
to be as simple and straightforward as the Lisp representation for expressions. In particular,
when a subexpression is inserted in a role in an expression, it never has to be altered to suit
the precedence of the containing operator.

Clich�e-Based Program Editing 37

label 0;
var Date: packed array [1..17] of Char;

I, Lineno: Integer;
Report: Text;
Title: packed array [1..{title-length}] of Char;

begin
GetDateTime(Date); Lineno := 67; I := 0; Title := {title};
Rewrite(Report, {file-name}); Writeln(Report); Writeln(Report);
Writeln(Report, Title); Writeln(Report); Write(Report, Date);
{prolog of enumerator};
while True do
begin
if {test of enumerator} then goto 0;
if Lineno>{line-limit} then

begin
Page(Report); I := I+1; Lineno := 3; Writeln(Report);
Writeln(Report, Page: , I:3, , Title, , Date);
{print-headings}(Report, Lineno)

end;
{print-entry}(Report, Lineno, {accessor of enumerator});
{step of enumerator}

end;
0:{print-summary}(Report)
end

Figure 34: Pascal code corresponding to the parse tree in Figure 33.

To allow a schema to be inserted in a parse tree without having to move the declarations
in it to any special place, declarations are allowed to appear anywhere that a statement
can appear. (For instance, the type declaration for the variable Charpos is included in
the statement list in Figure 31.) The unparser takes care of moving declarations to the
appropriate place when displaying a program.

In a similar vein, parse trees are not required to contain any information about label
declarations. These declarations are inserted by the unparser as needed.

A new non-terminal init is introduced, which is the same as an assignment statement
except that it is treated like a declaration specifying an initial value for a variable. It is
moved by the unparser to a location where it is only evaluated once.

The simple report schema. Figures 33 and 34 show the Ace schema for the clich�e
simple report. The top-level structure in the parse tree is a list of nineteen statements,
declarations, and labels. To �t this into a reasonable amount of space in Figure 33, subtrees
corresponding to simple statements and declarations (e.g., \var I: Integer") are abbrevi-
ated by simply showing the text itself in place of the subtree.

The non-terminal loop corresponds to the construct while True do. The non-terminal
lab corresponds to a label de�nition. Labels are represented as separate statement-level con-
stituents rather than part of statements because this allows greater exibility when schemas
are combined.

Comparing Figure 34 with Figure 9 reveals that syntax aside, the schema used by Ace
is very much like the one used by kbemacs. However, di�erences between the semantics of
Pascal and Lisp force some notable di�erences. For instance, the Ace schema uses Rewrite

38 R.C. Waters

fprologg stm var I: Integer
I := fstartgftestg

I>fendg
faccessorg

fvectorg[I]
fstepg

I := I+1

vector enumeration

Default Constraints: fstartg = LowerBound(fvectorg).
fendg = UpperBound(fvectorg).

Input roles: fvectorg.
Primary roles: fvectorg.

Schema type: enumeration.
Role types: fvectorg: identi�er.

fstartg, fendg, faccessorg: expression.

fprologg, ftestg, fstepg: statements.

Figure 35: The Ace schema for the vector enumeration clich�e.

var I: Integer;
begin
{I := {start}, prolog};
� � �
{I>{end}, test};
� � �
{{vector}[I], accessor};
� � �
{I := I+1, step}

end

Figure 36: Pascal code corresponding to the parse tree in Figure 35.

instead of WITH-OPEN-FILE and multiple calls on Write, Writeln, and Page instead of FORMAT.
Further, due to the typing requirements of Pascal, the Ace simple report schema contains

detailed type declarations not needed in Lisp schemas. The fact that Pascal requires the
length of a string to be declared as part of its type necessitates an additional role title length.
A constraint speci�es that this role should be the length of whatever string �lls the title role.

The treatment of enumerators. A �nal di�erence between the schemas used by Ace
and kbemacs concerns the enumerator role. In the kbemacs schema (see Figure 9) the
variable DATA is used to indicate the data ow connections between the various subroles of
the enumerator. However, in the Ace schema (see Figure 34) the subroles are treated as
procedure calls without regard for what values they return or alter. This simpli�cation is
possible (and necessary), because Ace does not do data-ow analysis.

Figures 35 and 36 show the Ace schema for the vector enumeration clich�e. In the parse
tree at the top of Figure 35, hooked lines (such as the one beginning below the prolog role)
are used to indicate a subtree that is contained in a role. The four roles prolog, test, accessor,
and step form the signature of the vector enumeration schema|they specify the environment

Clich�e-Based Program Editing 39

Command: Define-procedure "ReportTimings" of "(var Timings: DataVector)".
Command: Insert simple-report.

procedure ReportTimings (var Timings: DataVector);
label 0;
var Date: packed array [1..17] of Char;

I, Lineno: Integer;
Report: Text;
Title: packed array [1..{title-length}] of Char;

begin
GetDateTime(Date); Lineno := 66; I:= 0; Title := {title};
Rewrite(Report, report.txt); Writeln(Report); Writeln(Report);
Writeln(Report, Title); Writeln(Report); Write(Report, Date);
{prolog of enumerator};
while True do
begin
if {test of enumerator} then goto 0;
if Lineno>64 then

begin
Page(Report); I := I+1; Lineno := 3; Writeln(Report);
Writeln(Report, Page: , I:3, , Title, , Date);
{print-headings}(Report, Lineno)

end;
{print-entry}(Report, Lineno, {accessor of enumerator});
{step of enumerator}

end;
0:{print-summary}(Report)
end

Figure 37: Ace output 1, instantiating a schema.

in which it must be placed. As indicated by the dashed box the contents of these roles form
the schema itself.

Comparing the Ace schema with the schemas supported by kbemacs (see Figure 11)
and Tempest (see Figure 20) reveals that the Ace schema has basically the same form as
the Tempest schema. In particular, all of the computation in the Ace schema is contained
in one or the other of the roles. (In the kbemacs schema, the initialization of I and SIZE

are outside of the roles, see Figure 11.) In addition, the extraneous constructs that connect
this computation together have been omitted. (As noted in the schema type annotation, the
schema can only be used to �ll the subroles of an enumerator.)

Pascal does not provide functions for determining the bounds of a vector at run time.
The Ace vector enumeration schema contains two additional roles (start and end) and two
constraints that determine bounds information at program-construction time.

5.2 Transcript of Ace in Action

Figures 37{40 show a transcript of Ace being used to construct the same simple reporting
program that is used in the examples in the preceding sections. The key feature of these
�gures is that even though Ace is much simpler than kbemacs, the �gures are very much
the same as Figures 12{15. While there are a number of minor di�erences, the programmer
basically constructs the same program using the same clich�es and the same commands.

The �rst command in Figure 37 begins the de�nition the procedure ReportTimings. The

40 R.C. Waters

Command: Fill enumerator with vector-enumeration of "Timings".

procedure ReportTimings (var Timings: DataVector);
var Date: packed array [1..17] of Char;

I, J, Lineno: Integer;
Report: Text;
Title: packed array [1..{title-length}] of Char;

begin
GetDateTime(Date); Lineno := 67; I:= 0; Title := {title};
Rewrite(Report, report.txt); Writeln(Report); Writeln(Report);
Writeln(Report, Title); Writeln(Report); Write(Report, Date);
for J := 1 to 32 do
begin
if Lineno>64 then

begin
Page(Report); I := I+1; Lineno := 3; Writeln(Report);
Writeln(Report, Page: , I:3, , Title, , Date);
{print-headings}(Report, Lineno)

end;
{print-entry}(Report, Lineno, Timings[J])

end;
{print-summary}(Report)

end

Figure 38: Ace output 2, non-local changes.

command used is similar to the kbemacs command in Figure 12. However, Ace commands
are somewhat simpler in a number of ways. In particular, the parameter list of a procedure
is speci�ed by typing it in literally and everything corresponding to pieces of program text
has to be delimited using double quotes. (The command processor contains a parser for
simple Pascal expressions and statements.)

The argument list for ReportTimings refers to the type DataVector. It is assumed that
before beginning the de�nition of ReportTimings, the programmer has de�ned this type as
follows.

type DataVector = array [1..32] of Integer

With the second command in Figure 37, the programmer speci�es that ReportTimings is
a simple report. As in Figure 12, the code shown in Figure 37 is derived directly from the
simple report schema (see Figure 34) with a few constraints being run. On the theory that
this is the most convenient place for it to be, Ace automatically moves the editing cursor
to the �rst role in the body of the program that needs to be �lled. (As in kbemacs and
Tempest, there is no explicit indication of the positions of �lled roles. However, commands
exist for moving the cursor to these positions.)

In Figure 38, the programmer �lls the enumerator of ReportTimings with a vector enu-
meration. As in Figure 13, this results in changes scattered throughout the program. In
particular, the subroles of the enumerator are �lled. The constraints associated with the
vector enumeration schema (see Figure 35) �ll the start and end roles with 1 and 32 based
on the de�nition of DataVector.

Given the form of the loop in Figure 37, one might expect that the loop in Figure 38
would have the following form.

Clich�e-Based Program Editing 41

Command: Fill title with "Report of Reaction Timings (in msec).".
Command: Remove print-headings.
Command: Fill print-entry with tabular-print-out of "~9D".
Command: Fill print-summary with

"Writeln(Report); Writeln(Report, Mean: , Mean(Timings):8)".

procedure ReportTimings (var Timings: DataVector);
var Charpos, I, J, Lineno: Integer;

Date: packed array [1..17] of Char;
Report: Text;
Title: packed array [1..37] of Char;

begin
Charpos := 71; GetDateTime(Date); Lineno := 67; I:= 0;
Title := Report of Reaction Timings (in msec.);
Rewrite(Report, report.txt); Writeln(Report); Writeln(Report);
Writeln(Report, Title); Writeln(Report); Write(Report, Date);
for J := 1 to 32 do
begin
if Lineno>63 then

begin
Page(Report); I := I+1; Lineno := 3; Writeln(Report);
Writeln(Report, Page: , I:3, , Title, , Date)

end;
if Charpos > 61 then

begin Charpos := 1; Lineno := Lineno+1; Writeln(Report) end;
Charpos := Charpos+9; Write(Report, Timings[J]:9)

end;
Writeln(Report); Writeln(Report, Mean: , Mean(Timings):8)

end

Figure 39: Ace output 3, constraint propagation.

I := 1;
� � �
while True do
begin
if I>32 then goto 0;
� � �
I := I+1

end;

However, Ace's unparser recognizes that this loop can be rendered more compactly in Pascal
using for.

This is another example of moving syntactic details out of the internal grammar used by
Ace into the parser and unparser. The parse-tree representation used by Ace only supports
loops of the form while True do; however, the unparser generates the full range of while,
repeat, and for loops as appropriate.

In Figure 39, the programmer completes the implementation of ReportTimings by re-
moving the print headings role and �lling the title, print entry, and print summary roles.
(Because a full parser module has not yet been implemented for Ace, all of the role �lling
has to be done via explicit commands rather than direct editing.)

The most interesting changes in Figure 39 are the instantiation of the tabular print out
schema and the actions of various constraints. When the tabular print out is inserted, the

42 R.C. Waters

Command: Replace print-entry with simple-print-out of "~%~14D".

procedure ReportTimings (var Timings: DataVector);
var Date: packed array [1..17] of Char;

I, J, Lineno: Integer;
Report: Text;
Title: packed array [1..37] of Char;

begin
GetDateTime(Date); Lineno := 67; I:= 0;
Title := Report of Reaction Timings (in msec.);
Rewrite(Report, report.txt); Writeln(Report); Writeln(Report);
Writeln(Report, Title); Writeln(Report); Writeln(Report, Date);
for J := 1 to 32 do
begin
if Lineno>63 then

begin
Page(Report); I := I+1; Lineno := 3; Writeln(Report);
Writeln(Report, Page: , I:3, , Title, , Date);

end;
Lineno := Lineno+1; Writeln(Report, Timings[J]:14)

end;
Writeln(Report); Writeln(Report, Mean: , Mean(Timings):8)

end

Figure 40: Ace output 4, modi�cation.

GenerateWrites constraint on the schema converts the format string ~9A into the Write

on the fourth to last line of Figure 39. The constraint on the line limit role of simple report,
changes the contents of the line limit from 64 to 63, because the print summary prints out
two lines of output. The constraint on the title length �lls that role with 37, which is the
length of the title string.

The command in Figure 40 illustrates that Ace supports program modi�cation as well
as program construction. Ace maintains a record of the positions of �lled roles and like
kbemacs can replace the contents of a role when requested.

Although they are not illustrated in Figures 37{40, Ace supports a number of syntactic-
structure-based commands for inserting syntactic schemas (e.g., for conditionals and loops)
and moving around the syntactic structure of the program being edited. The full range of
syntax-editing commands could easily be supported.

5.3 Manipulating Parse-Tree Schemas

As with kbemacs, the key to Ace's operation is the representation shift away from pro-
gram text to a representation that facilitates the manipulations that have to be performed.
Figure 41 shows Ace's internal representation for Figure 39.

The most important aspect of Figure 41 is that while the insertion of schemas in Fig-
ures 37{39 results in non-local changes in the program text, the schemas are plugged together
in a local way in the internal parse tree. (For the most part Figure 41 is the same as Figure 33
with Figure 35 and Figure 31 nested in it. Note that complete information is maintained
about roles even after they are �lled.)

As in kbemacs and Tempest, the fundamental operation of Ace's schema editor is the
�ll command, which inserts a schema into a role. This is done in �ve steps: (i) check that

Clich�e-Based Program Editing 43

proc

ReportTimings
(var Timings: DataVector)

var Date: packed array [1..17] of Char
var I: Integer
var Lineno: Integer
var Report: Text
var Title: packed array [1..ftitle lengthg] of char

37GetDateTime(Date)
Lineno := 67
I := 0
Title := ftitleg

Report of Reaction Timings (in msec.)
Rewrite(Report, f�le nameg)

report.txtWriteln(Report)
Writeln(Report)
Writeln(Report, Title)
Writeln(Report)
Writeln(Report, Date)
fprolog of enumeratorg var J: Integer

J := fstartg
1

loop

if ftest of enumeratorg
J>fendg

32
goto 0

if
Lineno>fline limitg

63

stm
Page(Report)
I := I+1
Lineno := 3
Writeln(Report)
Writeln(Report, Page: , : : :)

fprint entryg(Report, Lineno, : : :)

var Charpos: Integer

init
Charpos := 71

if
Charpos>fwidth limitg

61

stm
Charpos := 1
flinenog := flinenog+1

Lineno
Writeln(freportg)

Report
Charpos := Charpos+fwidthg

9fwritesg
Write(: : :, faccessor : : :g:9)

fvectorg[J]
Timings

tabular print out

fstep of enumeratorg
J := J+1

vector enumeration

lab
0

fprint summaryg(Report)
stm Writeln(Report)

Writeln(Report, Mean: , Mean(Timings):8)
simple report

Figure 41: Internal representation corresponding to Figure 39.

44 R.C. Waters

the schema will not clash with anything in the pre-existing tree, (ii) �ll primary roles in the
schema as speci�ed by the command, (iii) �ll additional roles in the schema based on the
parameter list of the role to be �lled, (iv) insert the schema in the parse tree being edited,
and (v) run constraints (which may lead to additional roles being �lled).

Checking for clashes is one area where Ace's schema editor faces signi�cantly greater
challenges than kbemacs' schema editor. As the �rst part of this checking, Ace compares
the syntactic type of the schema with the syntactic type of the role to be �lled, issuing an
error message if the schema cannot be made to �t. (kbemacs should perform this kind of
reasonableness checking, but does not.)

Ace then checks to see that inserting the schema in the role will not alter the computation
speci�ed by the schema or the surrounding structure. In particular, it checks to see that
the schema does not change the de�nition of any variables or labels that are used in the
surrounding context. If a problem is found, it is resolved by renaming the variable or label
used in the schema. (kbemacs does not have to check for this kind of clash, because the
plan diagram representation it uses is designed so that the insertion of a schema cannot alter
the computation performed by the schema or the surrounding structure.)

Under the mediation of the primary-roles annotation in the de�nition of the schema, Ace
uses any values speci�ed in the �ll command to �ll roles in the schema. In addition, any
default constraints associated with the schema are run. Both of these operations are done
in exactly the same way as in kbemacs.

Ace then uses any values provided in the parameter list of the role to �ll additional roles
of the schema. For instance, when the tabular print out schema is inserted in the print entry
role in Figure 39, the parameter list speci�ed with the role, i.e.,

{print-entry}(Report, Lineno, Timings[I])

is matched up with the input roles of the schema (freportg, flinenog, fitemg) and the
corresponding roles �lled with the speci�ed parameter values.

This step is analogous to the work done by kbemacs to �gure out how to connect a schema
with the surrounding context. However, it is simpler because all questions of connection are
reduced to �lling roles of the schema and all matching is done by a simple comparison of the
input roles of the schema in order with the parameter list of the role. (kbemacs sometimes
has to convert a role into an input when establishing a connection and has to use heuristics
to guess what should be connected to what.)

Once the appropriate roles have been �lled in the schema, the schema is inserted in the
parse tree. The parse-tree representation makes this step simple. When a schema is used
to �ll a non-compound role (e.g., when the tabular print out schema is inserted in the print
entry role) the only thing Ace has to do is install the schema as the child of the role.

When a schema is inserted into a compound role, the insertion is slightly more complex,
but still straightforward. There is no single node in the parse tree corresponding to the
compound role as a whole. Rather, there is a node corresponding to each of the subroles.
Each of the subroles is �lled by linking it to the part of the schema contained in the role
of the same name. However, even in this more complex situation, the schema remains as
an intact unit after insertion, as shown in the lower right of Figure 41. (The fact that the
type of the schema matches the type of the compound role ensures that the proper roles
exist in the schema and that the computational context of the subroles in the parse tree is

Clich�e-Based Program Editing 45

compatible with the context expected by the schema. The fact that all of the computation
in a schema such as vector enumeration is contained in roles ensures that nothing is left out
when the schema is inserted in this way.)

Once the schema has been inserted, Ace runs constraints in exactly the same way as
kbemacs. In particular, it runs all the derived constraints associated with the schema
inserted and the schema containing the role it was inserted into. This may cause roles to be
�lled or changed, which may cause more constraints to be run. With regard to constraints,
the only di�erence between Ace and kbemacs is that the constraint functions used by Ace
have to operate by directly inspecting parse trees rather than inspecting plan diagrams. This
is more complex in many situations, but often not overly so.

With regard to most of the operations above (e.g., checking for clashes, deciding what
should be used to �ll which role in a schema, and running constraints) the parse-tree repre-
sentation used by Ace has very little advantage over program text. However, it has important
advantages in the critical step of inserting something in a role. The grammar used allows
enough exibility in the ordering of constituents so that Ace can insert almost anything
anywhere by simply putting it there. This is analogous to the situation with kbemacs' plan
diagrams and in marked contrast to the situation with program text (or parse trees based
on standard programming-language grammars) where considerable adjustment and mixing
has to occur.

In Ace, it is the unparser module that does most of the mixing and adjusting that is
required when schemas are combined. Conveniently, this is relatively easy to do. For exam-
ple, when the unparser creates program text corresponding to Figure 41, it scans the parse
tree, collects all the declarations together (including the type declaration for the variable
Charpos contained in the tabular print out schema and the variable J contained in the vector
enumeration schema), sorts them by type, and prints them compactly in accordance with
the rules of Pascal, as shown in Figure 39.

As a second example of what the unparser does, consider that there is no indication
in Figure 41 of where begin/end pairs should be placed. When printing out statements,
the unparser inserts these where necessary. For instance, it inserts a begin/end around the
statements in the then clause of the conditional in the tabular print out, because there are
three statements in the clause. However, it does not insert begin/end around the statements
forming the top level of this schema, because they can be directly included in the statement
list containing the print entry role. In a similar fashion, the unparser inserts parentheses
based on the priorities of the operators in an expression.

As noted above, the primarily value of Ace's ability to insert almost anything anywhere
by simply putting it there is that it makes the �ll command easy to support. However, it has
another important value as well|it enables the parse tree to contain a clear record of the
schemas used to construct a program. This provides the essential foundation for clich�e-based
modi�cation and documentation of programs. For example, the replace command operates
by removing the old contents of a role and then using the �ll command to insert something
new.

Like Tempest, Ace goes beyond kbemacs by using knowledge of what was used to �ll roles
in the removed schema to help �ll roles in the schema to be newly inserted. For instance, in
Figure 40, Ace uses the accessor of the enumerator to �ll the item role of simple print out,
because it was used to �ll the item role of tabular print out in Figure 39. (kbemacs was

46 R.C. Waters

able to get away without this feature, because in kbemacs most of the connections between
a schema and its surroundings are supported by data ow connected to inputs and outputs
rather than by �lling roles.)

It is worthy of note that while the grammar used by Ace is ambiguous and leaves out a
signi�cant amount of information that is present in the standard grammar for Pascal, this
need not present a problem for parsing. The ambiguity is not a problem, because one only
needs to arrive at some accurate parse. Discarding information is never hard.

5.4 Evaluation

The value of Ace is that it combines the key capabilities of kbemacs with the simplicity
of Tempest. In particular, Ace is not signi�cantly more complex than standard syntax
editors, and yet it supports the construction and modi�cation of programs in terms of clich�es.
However, Ace is weaker than kbemacs in a number of ways and shares some problems with it.

Ace has components corresponding to each of the components of kbemacs, however, these
components are individually weaker. In particular, parse-tree schemas are not as exible a
representation for clich�es as plan diagrams. As a result, Ace cannot be used to operate on
as wide a range of clich�es.

The reason Ace supports the combination of schemas corresponding to programming
clich�es much better than Tempest is that Ace's unparser module provides uniform support
for most of the modi�cation required when a schema is placed in a particular context.
However, Ace's unparser is not as powerful as kbemacs' coder module. As a result, Ace is
not as exible in the way it combines schemas as kbemacs.

The central problem in both of these areas is that parse-tree schemas are syntactically
rigid in the way they represent clich�es. In particular, a parse-tree schema corresponds to a
particular syntactic representation for a computation. The unparser may move some parts
of this around, however, except for a few special situations (e.g., the way loops are unparsed)
the syntactic parts speci�ed always appear somewhere in the code produced. In contrast,
plan diagrams express the bare bones of the computation directly, leaving it to the coder to
decide how this can best be realized syntactically. This requires a lot of work, but provides
the freedom to do a better job.

A problem shared by Ace and kbemacs is that neither system provides anything other
than very rudimentary support for locating the appropriate clich�es to be used in a given
situation. In the context of component libraries of various kinds, this issue is being actively
pursued by many researchers (see for example [8, 13]). Ace's schema library could and should
be extended to support browsing, a hierarchical organization of the schemas, and indexing
based on keywords or some other kind of descriptors.

As noted at the end of Section 3, another problem with kbemacs is that its analyzer
module is not as strong as it should be, because it is not capable of recognizing the schemas
that could have been used to create the program being analyzed. It is inevitable that
Ace's parser module will have the same problem. It is easy to arrive at some parse of a given
program, but it is far from easy to arrive at a parse that corresponds to some way of building
the program from a given library of parse-tree schemas. Further, while it appears that this
problem can be �xed in the case of kbemacs (see [17, 35]), there is little likelihood that it
can be �xed in Ace. As above, the central problem is the syntactic rigidity of parse-tree
schemas. A small syntactic di�erence can block a parse-tree schema from matching a piece

Clich�e-Based Program Editing 47

of code even though the code embodies the same clich�e.
An important area where Ace is a lot weaker than kbemacs is its support for schemas

corresponding to loop clich�es. By means of temporal abstraction, kbemacs can compose
loop schemas with each other and with non-loop schemas as easily as it can compose non-
loop schemas. In contrast, Ace cannot compose loop schemas and can only insert them in
roles specially designed to accept them.

(This limitation could be overcome more or less completely by introducing temporal
abstraction directly into the programming language being edited, as discussed in [33]. There
would then be very little need for Ace to manipulate loop clich�es.)

The various defects of Ace discussed above are best viewed as the price of Ace's simplicity.
All in all, while the defects are signi�cant, the price paid is relatively small in comparison
with the dramatic reduction in complexity. As a result, while it should be valuable in the
long run to construct systems with the full power of kbemacs, it should be valuable in the
short run to construct systems like Ace.

48 R.C. Waters

6 Conclusion

kbemacs shows that clich�e-based editing can provide powerful support for the implemen-
tation and modi�cation of programs. However, since kbemacs is a quite complex system,
two experiments were pursued in an attempt to �nd simpler ways of supporting clich�e-based
editing.

The Tempest experiment shows that it is impractical for an editor that operates solely
at the level of text to support clich�e-based editing of programs. However, it also shows that
an extremely simple tool can support clich�e-based editing in simpler situations. It would be
both practical and valuable to add Tempest-like capabilities to any text-based editor.

The Ace experiment shows that signi�cant clich�e-based editing of programs can be sup-
ported using a much simpler representation shift than the one supported by kbemacs. Fur-
ther, it appears that Ace is an excellent compromise in the sense that it would be hard to
get signi�cantly closer to the full power of kbemacs without introducing the full complexity
of supporting plan diagrams. It would be both practical and valuable to add an editor like
Ace to any programming environment.

Given that syntax editors have existed for �fteen years or more [6, 11, 20, 25] and reuse has
been lauded as a key goal of software engineering for much longer than that, it is somewhat
surprising that there are not already many editors like Ace. Nevertheless, while essentially
every syntax editor supports syntactic schemas corresponding to basic programming con-
structs (conditionals, loops, etc.), it is not clear that any syntax editor supports algorithmic
schemas like those supported by Ace.

Any syntax editor could be trivially extended to support algorithmic schemas that corre-
spond to well-formed syntactic chunks. It appears that this has been tried occasionally (for
instance see [36]), however, by itself, this is not very useful.

The key impediment that blocks typical syntax editors from usefully supporting algo-
rithmic schemas is the grammars they use as the basis for their operation. It has become
generally recognized that syntax editors should not be based on the standard grammar for
a programming language [10]. However, they typically try to stay as close to the standard
grammar as possible. In particular, they typically assume that the grammar should be un-
ambiguous and that the order of the constituents in the parse-tree should be the same as
their order in the program text. As long as this is the case, parse trees are not signi�cantly
more supportive of clich�e-based editing than program text.

The problem is that most algorithmic clich�es do not correspond to contiguous chunks of a
program, but rather to pieces of information distributed around a program (e.g., a declaration
and some statements). In addition, while the standard unparsing process automatically
supports more adjustment of schemas than is provided by Tempest, it is not nearly enough
to support clich�e-based editing of programs.

To support clich�e-based editing of programs in a syntax editor, one must take the crucial
step of designing the grammar used by the editor with clich�es and clich�e combination in
mind and allow the unparsing process to become somewhat more complex.

6.1 Acknowledgments

The concept of clich�e-based editing evolved out of the work of the Programmer's Appren-

Clich�e-Based Program Editing 49

tice project as a whole [16]. In particular, Charles Rich made important contributions to all
of the work described here. Further, under the supervision of the author, Peter J. Sterpe
implemented Tempest while Yang Meng Tan implemented Ace.

Support for the research described here was provided in part by the National Science
Foundation under grant IRI-8616644, in part by the Advanced Research Projects Agency
of the Department of Defense under O�ce of Naval Research contract N00014-88-K-0487,
and in part by the ibm, nynex, Siemens, and Microelectronics and Computer Technology
corporations.

6.2 References

[1] M.A. Ardis, Template-Mode for GNU Emacs, draft documentation, Wang Institute,

Tyngsboro MA, July 1987.
[2] R. Bahlke and G. Snelting, \The PSG System: From Formal Language De�nitions to

Interactive Programming Environments", ACM Transactions on Programming Languages
and Systems, 8(4):547{576, October 1986.

[3] T.J. Biggersta� and A.J. Perlis (editors), Software Reusability, Volumes 1 and 2,
Addison-Wesley, Reading MA, 1989.

[4] R. Bilos, \A Token-Based Syntax Sensitive Editor", Link�oping University Technical report
LiTH-IDA-R-87-02, Link�oping Sweden, February 1987.

[5] P. Degano, S. Mannucci, and B. Mojana, \E�cient Incremental LR Parsing for
Syntax-Directed Editors", ACM Transactions on Programming Languages and Systems,
10(3):345{373, July 1988.

[6] V. Donzeau-Gouge et.al., \A Structure Oriented Program Editor: a First Step Towards
Computer Assisted Programming", Proc. Inter. Computing Symp., Antibes France, 1975.

[7] K. Jensen and N. Wirth, Pascal User Manual and Report third edition, revised for the ISO
Pascal Standard, Springer-Verlag, New York, 1985.

[8] S. Katz, C.A. Richter, and K.S. The, \Paris: A system for Reusing Partially Interpreted
Schemas", in Software Reusability, Volume 1, Concepts and Models, 257{273, T.J.
Biggersta� and A.J. Perlis (editors), Addison-Wesley, Reading MA, 1989.

[9] B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall Inc.,
Englewood Cli�s NJ, 1978.

[10] A. Lomax, \The Suitability of Language Syntaxes for Program Generation", ACM
SIGPLAN Notices, 22(3):95{101, March 1987.

[11] R. Medina-Mora and P. Feiler, \An Incremental Programming Environment", IEEE
Transactions on Software Engineering, 7(5):472-482, September 1981.

[12] B. Melese, \Structured Editing|unstructured editing, cooperation and complementarity",
Proc. Second Software Engineering Conference, 48{53, Nice France, June 1984.

[13] R. Prieto-d�iaz, \Classi�cation of Reusable Modules", in Software Reusability, Volume 1,
Concepts and Models, 99{123, T.J. Biggersta� and A.J. Perlis (editors), Addison-Wesley,
Reading MA, 1989.

[14] C. Rich and R.C. Waters, The Programmer's Apprentice: A Program Design Scenario, MIT
Arti�cial Intelligence Laboratory memo MIT/AIM-933a, November 1987.

[15] C. Rich and R.C. Waters, \Formalizing Reusable Software Components in the Programmer's
Apprentice", in Software Reusability, Volume II, Applications and Experience, 313{343, T.
Biggersta� and A. Perlis (editors), Addison-Wesley, Reading MA, 1989.

[16] C. Rich and R.C. Waters, The Programmer's Apprentice, Addison{Wesley, Reading MA,
1990.

50 R.C. Waters

[17] C. Rich and L.M. Wills, \Recognizing a Program's Design: A Graph-Parsing Approach",
IEEE Software, 7(1):82-89, January 1990

[18] J.J. Shilling, \Fred: A Program Development Tool", Proc. Second Conference on Software
Development Tools, Techniques, and Alternatives, 172{180, IEEE Computer Society Press,
Washington DC, December 1985.

[19] E. Soloway and K. Ehrlich, \Empirical Studies of Programming Knowledge", IEEE
Transactions on Software Engineering, 10(5):595{609, September 1984.

[20] R.E. Stallman, \Emacs: the Extensible, Customizable, Self-Documenting Display Editor",
Proc. ACM SIGPLAN-SIGOA Symposium on Text Manipulation, ACM SIGPLAN Notices,
16(6):108{116, June 1981.

[21] R.E. Stallman, GNU Emacs Manual, Free Software Foundation, Cambridge MA, March 1987.
[22] G.L. Steele Jr., Common Lisp: the Language, Digital Press, Maynard MA, 1984.
[23] P.J. Sterpe, Tempest: A Template Editor for Structured Text, MIT Arti�cial Intelligence

Laboratory technical report MIT/AI/TR-843, June 1985.
[24] Y.M. Tan, Ace: A Clich�e-Based Program Structure Editor, MIT Arti�cial Intelligence

Laboratory working paper MIT/AI/WP-294, May 1987.
[25] T. Teitelbaum and T. Reps, \The Cornell Program Synthesizer: A Syntax-Directed

Programming Environment", Communications of the ACM, 24(9):563-573, September 1981.
[26] R.C. Waters, \A Method for Analyzing Loop Programs", IEEE Trans. on Software

Engineering, 5(3):237{247, May 1979.
[27] R.C. Waters, \Program Editors Should Not Abandon Text Oriented Commands", ACM

SIGPLAN Notices, 17(7):39{46, July 1982.
[28] R.C. Waters, \User Format Control in a Lisp Prettyprinter", ACM Transactions on

Programming Languages and Systems, 5(4):513{531, October 1983.
[29] R.C. Waters, PP: A Lisp Pretty Printing System, MIT Arti�cial Intelligence Laboratory

memo MIT/AIM-816, December 1984.
[30] R.C. Waters, \The Programmer's Apprentice: A Session With KBEmacs", IEEE

Transactions on Software Engineering, 11(11):1296{1320, November 1985.
[31] R.C. Waters, \Pretty Printing", in Common Lisp: the Language, Second Edition, 748{769,

G.L. Steele Jr., Digital Press, Burlington MA, 1990.
[32] R.C. Waters, \Series", in Common Lisp: the Language, Second Edition, 923{955, G.L. Steele

Jr., Digital Press, Burlington MA, 1990.
[33] R.C. Waters, \Automatic Transformation of Series Expressions into Loops", ACM

Transactions on Programming Languages and Systems, 13(1), to appear January 1991.
[34] R.C. Waters and Y.M. Tan, \Toward a Design Apprentice: Supporting Reuse and Evolution

in Software Design", to appear in ACM SIGSOFT Software Engineering Notes, 16(2), April
1991.

[35] L.M. Wills, \Automated Program Recognition: A Feasibility Demonstration", Arti�cial
Intelligence, 45(1{2):113{172, September 1990.

[36] W. Yin, et al, \Software Reusability: a Survey and a Reusability Experiment", Proc. 1987
Fall Joint Computer Conference: Exploring Technology Today and Tomorrow, 65{72, IEEE
Computer Society Press, Washington DC, October 1987.

[37] Lisp Machine documentation (release 4), Symbolics, Cambridge MA, 1984.
[38] Mince, Mark of the Unicorn Inc., Cambridge MA, 1981.
[39] Prograph Technical Speci�cations, TGS Systems inc., Halifax NS Canada, 1990.
[40] Scribe Document Production System, user manual, Unilogic Ltd., Pittsburgh PA, 1984.

