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efficient and resolution-complete path generation method based on electrostatics. The pro-
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where the boundary conditions of the Laplace equation are specified based on the map of
the original path planning problem and is solved to obtain a map-specific electrostatic po-
tential. Since its calculation only involves map, the electrostatic potential can be viewed
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feasible paths are constructed by following any equipotential curve whose potential value is
different from those of obstacles and boundaries. The electrostatic potential differs from the
celebrated repulsive/attractive force- based potential field by its non-vanishing gradient, sub-
ject to the resolution of the boundaries conditions for the Laplace equation. Consequently,
the resolution-completeness of the pro- posed method is established. The computational ef-
ficiency of the proposed method arises from a novel electrostatic solver based on complex
analysis, and on an original collision-checking algorithm inspired by the Residue theorem.
Extensive numerical examples are provided to demonstrate the effectiveness and limitations
of the proposed method. We believe this work provides an unconventional strategy for quan-
titatively encoding global map information and can play a role complementary to prevailing
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Path generation based on electrostatic equipotential curves
Chungwei Lin1, Yebin Wang, William Vetterling, Devesh Jha, Rien Quirynen

Abstract—Path planning for a point-mass robot moving in a
cluttered two-dimensional environment is a well studied but non-
trivial problem. In this paper we propose a novel computationally
efficient and resolution-complete path generation method based
on electrostatics. The proposed scheme comprises two stages.
First, an auxiliary electrostatic problem is formulated where
the boundary conditions of the Laplace equation are specified
based on the map of the original path planning problem and is
solved to obtain a map-specific electrostatic potential. Since its
calculation only involves map, the electrostatic potential can be
viewed as a roadmap and used for both single- and multi-query
path planning problems. Second, feasible paths are constructed
by following any equipotential curve whose potential value is
different from those of obstacles and boundaries. The electrostatic
potential differs from the celebrated repulsive/attractive force-
based potential field by its non-vanishing gradient, subject to
the resolution of the boundaries conditions for the Laplace
equation. Consequently, the resolution-completeness of the pro-
posed method is established. The computational efficiency of the
proposed method arises from a novel electrostatic solver based on
complex analysis, and on an original collision-checking algorithm
inspired by the Residue theorem. Extensive numerical examples
are provided to demonstrate the effectiveness and limitations
of the proposed method. We believe this work provides an
unconventional strategy for quantitatively encoding global map
information and can play a role complementary to prevailing
path planning methods.

I. INTRODUCTION

Path planning, meaning the generation of a feasible path to a
target position while avoiding all obstacles in the environment,
is a classic and fundamental problem in robotics. It is typically
the first requirement for applications such as autonomous
driving, robotic motion planning, etc. [1]–[3]. This problem
has been extensively studied in the past several decades and
numerous results have been presented. Established methods
include Rapidly-exploring Random Tree (RRT) [4]–[11], Prob-
abilistic RoadMap (PRM) [12]–[16], Potential Field based
methods [17]–[22], Bug algorithms [23]–[25], A* [26] and its
variants [27]–[30], and visibility or tangent graph [31], [32],
to name a few. Despite being an area of active research for
decades, this problem remains open in several ways.

Completeness guarantee and computational efficiency are
two main objectives of any path planning scheme, but it is
generally difficult to design algorithms having both of these
desired features simultaneously. For example, sampling-based
methods are complete and can even provide some asymptotic
optimality guarantees, but they become inefficient for patho-
logical cases such as for maps with narrow passages. Graph-
based methods, such as A*, rely on estimated ”cost-to-go” to
guide the search. As encoding the map information into cost-
to-go is very challenging, A* could be misguided and thus suf-
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fers from low computation efficiency. Potential Field methods
are computationally efficient, but the searching process can be
trapped in local minima and therefore cannot be complete. Due
to non-convexity of collision-free configuration space, most of
the optimization-based path planning methods struggle to find
feasible solutions in cluttered environments [33], [34].

It is noteworthy that prior path generation methods make
use of only local map information, even if all obstacles are
given. For example, both sampling-based and visibility-based
methods use global information to generate collision-free
samples, while planning is done by searching over neighboring
points. The Potential Field approach regards each obstacle
as a short-ranged repulsive potential whose strength decays
exponentially away from the obstacles. Indeed it is not obvious
whether the obstacles and boundaries far away could affect
the local path planning, and if one developed a procedure to
include these effects, what the benefits could be. This is the
very aspect that this work attempts to explore.

This paper presents a computationally efficient and
resolution-complete path planning method in a two-
dimensional (2D) space by means of an innovative use of
the global map information. The proposed method breaks
the path planning into two sub-problems. In the first sub-
problem, an auxiliary electrostatic problem is setup based on
the map, and solved for the electrostatic potential. Specifically,
boundaries and obstacles are represented by perfect metals,
with boundaries carrying different amounts of charge whereas
obstacles are charge neutral. A highly efficient electrostatic
potential solver is developed via the use of complex ana-
lytical functions [35]–[37]. In the second sub-problem, fea-
sible (collision-free) paths are constructed by exploiting the
electrostatic potential as a roadmap or graph. In particular
using the property that each metallic surface has a constant
potential, feasible paths can be generated by following any
equipotential curve whose potential value is different from
those of all obstacles and boundaries. Each feasible path is
labeled by a potential within the known upper and lower
bounds; multiple topologically non-equivalent paths can be
generated by scanning the potential values. Associating each
path with a finite scalar value is a manifestation of quantita-
tive utilization of global information. We regard this as the
most distinctive feature compared to other existing methods.
Major advantages of the proposed method are three-fold: 1)
resolution-completeness; 2) flexibility to construct a family of
collision-free paths parameterized by the potential value; and
3) computation and memory efficiency. The practical limita-
tions of our method can be traced to the numerical resolution,
and can be circumvented by performing a few additional
calculations. This paper considers only a point-mass robot for
clarity of presentation. The geometric size of the robot can be
treated by inflating/shrinking the obstacles/boundaries.



The rest of this paper is organized as follows. Section II
is devoted to a brief literature review. Section III defines the
problem and outlines the proposed approach. Section IV is
dedicated to formulating and solving the auxiliary electrostatic
problem for an electrostatic potential field. Section V details
how path construction is done by using the electrostatic poten-
tial field. Section VI establishes the resolution-completeness
of the proposed method, addresses the limitations and cor-
responding remedies, and discusses the differences to the
Potential Field approach. In Section VII two examples are
presented. In Section VIII we consider two alternative bound-
ary conditions that could be useful for specific tasks. Brief
conclusions are given in Section IX. In the Appendix we
provide details for the developed 2D electrostatic potential
solver. As a general comment on notation, in this paper we
use complex numbers to represent 2D points and vectors:
Z = X + iY or z = x + iy denotes a point. A vector
E = [Ex, Ey]

⊤ ∈ R2 is represented by E = Ex + iEy and
can be normalized as Ê = E/|E|.

II. RELATED WORK

There have been several different approaches presented for
the path planning and motion planning problems. We briefly
review a few classical and relevant path generation schemes
that will be used to compare with the proposed method.

The Potential Field approach [17]–[22] constructs a poten-
tial field that has a higher value at the initial point and a
lower value at the target point. A feasible path is generated
by following the gradient of the potential field. The potential
in our scheme is different from the potential in Potential Field
approach, and we shall make a detailed comparisons in Section
VI-C.

Graph-based path generation schemes contain two main
steps: (i) constructing a graph (i.e., points and connections)
that covers at least one feasible path; (ii) connecting neigh-
boring points to create a feasible path. Sample-based methods
generate a graph/tree by randomly sampling the collision-free
points. Well-established sampling-based algorithms for graph
construction include PRM [12], RRT [6], etc. Interested read-
ers are referred to [38] for more information. The Visibility-
based method [31], [32] deterministically uses the vertices of
polygonal obstacles to construct a graph. Once a graph is
given, feasible paths subject to some optimization criterion
such as shortest distance or energy minimum [4], [13], [28]
are generated. The potential in our scheme plays a role very
similar to the graph.

The Bug algorithm [23]–[25], which is shown to be com-
plete, implements the following rule: when encountering an
obstacle, circle around the obstacle and leave it at the point
closest to the target point. The Bug algorithm is fast as it does
not require graph construction, but it cannot easily generate
multiple paths. A part of our proposed path generation is
similar to the Bug algorithm, but with the criterion to leave
an obstacle depending on the obtained potential field.

The problem becomes much more complicated when tak-
ing the robot dynamics into account. Generally the energy-
optimal/time-optimal collision-free motion planning can be

categorized into decomposition-based [39] and kinodynamic
approaches [40]. The former divides the problem into a purely
geometric path generation part and a dynamics-related motion
planning part, whereas the latter deals with both simultane-
ously and is usually more computationally demanding. More
involved techniques such as the minimum principle [41], [42],
dynamic programming [43], numerical optimization [44]–[46],
and Mixed-Integer Linear Programming [47] have been used to
find the feasible/optimal solution. This aspect is not considered
in this work.

III. PROBLEM STATEMENT AND ALGORITHM OUTLINE

This section defines the path planning problem and outlines
the proposed algorithm.

A. Problem statement

A configuration q of a robot is a minimum-dimension
parameterization which uniquely defines the positions of all
points on the robot. The configuration space, including all
possible configurations, is denoted as C. A configuration q is
collision-free if the robot at q does not overlap with obstacles
in the environment. The set of all collision-free configurations
is denoted Cfree ⊂ C.

This work considers a point-mass robot which moves in a
compact set D of the global 2D plane where

D ≜ [xmin, xmax]× [ymin, ymax] ⊂ R2. (1)

Here xmin, xmax, ymin, ymax are constants. The robot configura-
tion q has a parameterization: (x, y). The robot is confined in
the region of interest specified by

DROI ≜ {q | q ∈ D, f1(q) > 0, f2(q) > 0}, (2)

where f1(x, y) > 0 and f2(x, y) > 0 further restrict the
workspace of the robot. For example f1(x, y) = 0 and
f2(x, y) = 0 can be used to represent two boundaries of a
non-straight passage. Note that f1(x, y) = 0 and f2(x, y) = 0
do not necessarily lie within D, in which case, D and DROI are
the same. If DROI is the rectangular area as specified in (1), we
can take either f1(x, y) = x− xmin and f2(x, y) = xmax − x
or f1(x, y) = y − ymin and f2(x, y) = ymax − y.

Remark 3.1: Constraints f1 = 0 and f2 = 0 represent two
boundaries that are needed to define the boundary conditions
of the electrostatic problem in Section IV-A. In the case that
there is no physical restriction on the workspace other than D,
one can introduce f1(x, y), f2(x, y) as virtual boundaries. □

Denote the region occupied by the ith obstacle Dobs,i. The
collision-free configuration is given by

Cfree = DROI \ ∪nobs
i=1Dobs,i (3)

where nobs is the number of obstacles. For simplicity, the
information {D, f1, f2,Dobs,i for 1 ≤ i ≤ n} is named after
the map. Given the definitions of map and configuration, we
are ready to state the path planning problem as follows.

Problem 3.2: Given the initial configuration qinit ∈ Cfree and
the target configuration qtarget ∈ Cfree; find a path P : [0, 1] →
Cfree which starts at qinit and ends at qtarget.



As the analytical properties of complex functions will
be used to solve for the electrostatic potential field, it is
convenient to use complex numbers to represent the robot
configurations. A complex number Z equivalently represents
the robot configuration q ∈ R2 and forms a space C where
C = {x + iy|x, y ∈ R}. Using complex numbers, Prob-
lem 3.2 is solved over complex space: the initial and target
points are respectively represented by Zinit = Xinit + iYinit,
Ztarget = Xtarget + iYtarget; a feasible path P is represented by a
collection of complex numbers P = (Zinit, z1, z2, · · · , Ztarget).
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Fig. 1. (a) Problem illustration. Two elliptical and one rectangular obstacles
are between two zig-zag boundaries. The initial and target points are respec-
tively represented by the dot and cross. The goal is to find a path that connects
the initial and target points, stays between two boundaries, and avoids all
obstacles. Two feasible paths, obtained by the proposed scheme, are given.
(b) For the auxiliary electrostatic problem, +1/-1 charge are placed on the
right/left zig-zag boundaries respectively whereas three obstacles are charge
neutral. The resulting potential (color scale) and equipotential curves are used
for generating feasible paths. Path 1 and Path 2 shown in (a) correspond to
Φ = −0.1 and Φ = 0.1 respectively.

B. Outline of path generation scheme

Problem 3.2 is divided into two sub-problems. First, we
relate a given map to an auxiliary electrostatic problem and
solve for a potential field. Second, the resulting potential field
is used as a graph (roadmap) to construct feasible paths. The
proposed path planning method is outlined in Algorithm 1:

steps 1-2 correspond to the first sub-problem and is discussed
in Section IV; steps 3-5 correspond to the second sub-problem
and is elaborated in Section V.

Algorithm 1: Equipotential-based path generation

1 1. Given a map, setup an auxiliary electrostatic
problem by regarding obstacles and boundaries as
conductors, and assigning opposite charges to two
boundaries.

2 2. Solve the auxiliary electrostatic problem for the 2D
electrostatic potential.

3 3. Pick a potential Φref which is different from the
potentials of any obstacles, and computes its
equipotential curve, denoted as C(Φref).

4 4. Construct a path P1 connecting Zinit to a point
Zref,1 ∈ C(Φref); construct a path P2 connecting a
point Zref,2 ∈ C(Φref) to Ztarget.

5 5. Concatenate P1, C(Φ),P2 to obtain one feasible
path P(Φref).

Equipotential curve in Alg. 1 has the following definition.
Definition 3.3: Let Φ(X,Y ) be the potential of an elec-

tric vector field E(X,Y ) = −∇Φ(X,Y ), the level curve
Φ(X,Y ) = C, denoted by C(Φ), is called the Equipotential
Curve or the Contour.

C. Illustrative example

Fig.1(a) illustrates how Alg. 1 is applied to construct a path
from initial point Zinit = −1 − 1.5i to target point Ztarget =
−1 + 4.8i. The map is characterized by D ≜ [−2.5, 2.5] ×
[−2, 5]; f1 and f2 for the two zig-zag boundaries #1 and #2,
respectively; and three obstacles.

First, the auxiliary electrostatic problem is setup and solved
for the electrostatic potential which is shown as a color map in
Fig.1(b). Then, the potential is used as a roadmap or a graph
to construct feasible paths. Each feasible path contains an
equipotential curve and can be labeled by its potential value. In
this example, path 1 and path 2 shown in Fig. 1(a) correspond
to Φref = −0.1 and Φref = 0.1, respectively.

IV. ELECTROSTATIC POTENTIAL FIELD

In this section we elaborate how to setup the auxiliary
electrostatic problem and highlight relevant features that will
be used in path generation.

A. Auxiliary electrostatic problem

Given a map for Problem 3.2, i.e., DROI and all obstacles
∪nobs
i=1Dobs,i, the auxiliary electrostatic problem is setup as

follows: boundaries and obstacles are regarded as perfect
conductors; charges of +1/-1 are placed on the two boundaries,
respectively, whereas the obstacles are charge neutral. The
electrostatic potential Φ(X,Y ) in DROI satisfies the Laplace
equation [

∂2

∂X2
+

∂2

∂Y 2

]
Φ(X,Y ) = 0. (4)



Remark 4.1: Assigning the total charge on each conductor
determines the 2D electrostatic potential up to a position-
independent constant and uniquely determines the electric
field [48]. Charge assignment is equivalent to specifying the
boundary conditions for the Laplace equation. Positions of
initial and target points are not part of the boundary conditions
and thus do not affect the resulting potential field. That is: the
potential field is fully determined by the map, and can be
treated as a roadmap for both single- and multi-query uses. □

B. The 2D potential solver

  

Boundary 1, -1 charge

Boundary 2, +1 charge

Fig. 2. Potential contours, obtained by a 2D potential solver, are needed for
the path generation scheme. In this example, charges of -1 and +1 are placed
on the top and bottom line boundaries, respectively. A few charge neutral
conductors, which will represent obstacles in the proposed path generation
method, are placed between these two boundaries. Notice that the potential
is a constant over the area occupied by a conductor. The dots indicate the
surface charge distributions (with size representing amplitude, and the colors
red/blue representing sign.) Each boundary has a constant potential.

We develop an efficient 2D potential solver for the auxiliary
electrostatic problem. Detailed procedures, benchmarks, and
distinct advantages are detailed in the Appendix. A represen-
tative result is shown in Fig. 2, where charges of -1 and +1
are respectively placed on the top and bottom line boundaries,
and all obstacle-related conductors are charge neutral. Because
charges are free to move inside the conductor, a static solution
is only possible when the charges of each conductor adjust
themselves such that each conductor has a constant potential
and thus zero electric field. This is seen in Fig. 2 where
equipotential curves do not enter any of the conductors (up
to numerical errors).

C. Important features

We list four general features of the electrostatic potential
that are crucial to path construction.

• (F1): all points within a metallic object have the same
potential. This implies that boundaries and obstacles,
albeit spatially extended, can be described by their cor-
responding potential values.

• (F2): the potential is defined over the entire Z-plane. If
only two of objects carry opposite charges, the potential
over the entire plane is bounded by the potentials of these
two objects. Denote the potentials at upper and lower
boundaries as Φb,1, Φb,2, and that at ith obstacle as Φobs,i
which satisfies

Φb,1 < Φobs,i < Φb,2. (5)

As described in the Appendix, the solver provides the
potential Φ and its gradient E = −∇Φ efficiently. Both
quantities are important in our path generation scheme.

• (F3): any equipotential curve C(Φ) is collision-free as
long as Φ is different from Φb,1, Φb,2 and Φobs. i.

• (F4): within the region between the two boundaries, i.e.
DROI, the potential has no local extrema or saddle points.
In other words, the gradient E = −∇Φ is non-zero
everywhere in the collision-free region.

Remark 4.2: Generally, points of the same potential can
belong to two disconnected contours. The auxiliary electro-
static potential problem setup prevents this from happening
by imposing charge-neutrality on obstacles, ruling out local
extrema or saddle points from the potential Φ in the region of
interest DROI. □

Remark 4.3: A complex function F (Z) = FR(X,Y ) +
iFI(X,Y ) has real and imaginary parts. In the proposed solver
we solve for a complex Φ(Z) whose real part represents
the electrostatic potential, i.e., Re[Φ(Z)] = Φ(X,Y ). To
simplify the notation, Φ(Z) should be understood to refer to
the potential Φ(X,Y ) for the remainder of this paper. □

V. PATH GENERATION BASED ON EQUIPOTENTIAL
CURVES

In this section, we complete our path generation method
by elaborating steps that solve the second sub-problem: how
to generate feasible paths given the potential Φ(Z). We also
provide an efficient and robust 2D collision checking method
based on complex analysis.

A. Equipotential-based path construction

Steps 1-2 in Alg. 1 result in an electrostatic potential field
Φ(Z) and have been discussed in Section IV-B. Given the
electrostatic potential field Φ(Z) for Z ∈ DROI, we follow
Steps 3-5 in Alg. 1 to construct a path from Zinit to Ztarget.

In Step 3: one picks any potential Φref ∈ (Φb,1,Φb,2)\Φobs

where Φobs ≜ {Φobs,1, · · · ,Φobs,nobs} and determines the
equipotential curve C(Φref). An equipotential curve is gen-
erated by following the direction (denoted as T̂ ≡ (Ey −
iEx)/|E|) that is perpendicular to the potential gradient
(which is Ê ≡ (Ex + iEy)/|E|). As shown in Fig. 3, to
find the next equipotential point of Zi, we first propose
Z ′
i+1 = Zi ± T̂ (Zi)|dZ| with |dZ| a chosen stepsize. To

eliminate the discretization error caused by |dZ|, we per-
form a one-dimensional search on the line segment between
Z ′
i+1 ± Ê(Zi)|dZ| to find the next equipotential point

Zi+1 = argminZ
[
Φ(Zi)− Φ(Z)

]2
,

with Z ∈ Z ′
i+1 + αÊ(Zi)|dZ|, |α| < 1.

(6)

Note that ±T̂ are both allowed.
In Step 4: we connect the initial point and the target point

to C(Φref) without crossing any obstacles or boundaries, i.e.,
constructing paths P1 and P2 in Alg. 1. Paths P1 and P2

usually cross equipotential curves. To construct them, we
recognize the fact that the potential has no local extrema and
propose to follow the gradient direction to move downstream
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Fig. 3. Procedure to generate a contour from Zi (left circle) to Zi+1 (star).
The contour is generated by two steps: first following the transverse direction
(denoted as T̂ ), the direction perpendicular to the potential gradient (along
the electric field, denoted as Ê), to Zi+1 (right circle); second to perform a
line search along Ê to find the equilpotential point. Note that the transverse
directions has two options and we keep both paths as long as they stay within
the region of interest.

(if Φ(Zinit) > Φref) or upstream (Φ(Zinit) < Φref). Once hitting
an obstacle, the equipotential curve is followed until reaching
a point at which following the gradient direction once again
avoids obstacles. As shown in Fig. 4, the procedure involves
three scenarios: (i) following the gradient consistent with the
potential difference; (ii-a) when the proposed point using (i)
hits an obstacle, then following the transverse direction; (ii-b)
if the point proposed by (ii-a) hits an obstacle, then adding
a gradient component to bring the path back to Cfree. Again
there are two directions in which to follow the equipotential
curve; we keep both as long as they each stay within the region
of interest. For numerical stability, we avoid saddle points
resulting from discretization error by choosing a minimum
field strength Emin below which one follows the equipotential
curve. Emin is chosen to be much smaller than the electric
field defined by |Φb,1−Φb,2|

L where L is the distance between
two boundaries.

The final feasible path is a concatenation of (i) a curve
connecting Zinit and Zref,1, (ii) the contour C(Φref) between
Zref,1 and Zref,2, and (iii) a curve connecting Zref,2 and Ztarget.
(i) and (iii) will be referred to as the “downstream” or
“upstream” parts of the path whereas (ii) is the equipotential
part of the path. Zref,1 and Zref,2 are not unique, and one can
post-process a feasible path to make it smoother and shorter.

Remark 5.1: Due to the concatenation, a generated path P is
usually piece-wise smooth. Using P as the starting point, the
trajectory can be smoothed with well-established interpolation
methods using, for example, Bézier Curves [49] or B-splines
[50]. □

Each feasible path Pf(Φref) is parameterized by a potential
value Φref. It is collision-free because Φref /∈ Φobs and the ith
obstacle has a constant potential Φobs,i; it is confined between
two boundaries because Φb,1 < Φref < Φb,2. The stepsize
|dZ|, which nearly appears in all path generation schemes,
is a tuning parameter: |dZ| has to be sufficiently small for
the scheme to work, but using a larger |dZ| reduces the
computation time. In practice we start with a |dZ| that is much
shorter than the characteristic scale of any obstacles, and may
gradually increase its value after trials.

  

(i) no collision along gradient

(ii-a) collision along gradient, follow transverse 

(ii-b) collision in (2a)

Fig. 4. Procedure to connect two points of different potentials. To connect
two points of different potentials, first follow the steepest direction (i), i.e.,
either the steepest ascent or descent. If following this gradient hits a obstacle,
then one follows the transverse direction (ii-a). If (ii-a) hits a obstacle, then
we add a small gradient component to bring it back into the allowed region.
Note that the transverse directions has two options and we keep both paths
as long as they stay within the region of interest.

B. Residue theorem-based collision check

Many path planning schemes, including the proposed one,
require a robust and efficient procedure to check whether
a point Z lies inside or outside a polygon, the boundary
of which is represented by a sequence of ordered points
(z0, z1, · · · , zn−1, zn = z0). This can be done by utilizing
the residue theorem, i.e., the point Z satisfies

1

2πi

∮
dz

z − Z
=

1

2πi

n−1∑
i=0

log

[
zi+1 − Z

zi − Z

]

=

{
1 Z inside the polygon
0 Z outside the polygon

.

(7)

Eq. (7) assumes a counter-clockwise ordering of {zi}. We can
remove this consideration by using the absolute value of the
integral. Eq. (7) can deal with any polygon, convex or not, and
is particularly efficient when specifying a large obstacle using
only a few vertices. The computation efficiency of (7) stems
from the analytical expression whereas the robustness comes
from the binary output; it is used in all path finding schemes
in this paper.

Eq. (7) can also be used to examine the topological equiv-
alence of two feasible paths. Consider two feasible paths:

P1 = (z
(1)
0 = Zinit, z

(1)
1 , · · · , z(1)n−1, z

(1)
n = Ztarget)

P2 = (z
(2)
0 = Zinit, z

(2)
1 , · · · , z(2)m−1, z

(2)
m = Ztarget),

(8)

where their concatenation results in a closed loop, denoted as
L1−2. To check if two paths are topologically equivalent or



not, we compute

T
(j)
1−2 =

1

2πi

∮
L1−2

dz
z − Zj

=
1

2πi

[
n−1∑
i=0

log
z
(1)
i+1 − Zj

z
(1)
i − Zj

−
m−1∑
i=0

log
z
(2)
i+1 − Zj

z
(2)
i − Zj

] (9)

where Zj is any point inside the jth obstacle. |T (j)
1−2| is

either zero or one. The former implies that the two paths are
topologically equivalent with respect to the jth obstacle, i.e.,
the two paths can continuously deform to each other without
crossing the jth obstacle. The latter implies topological non-
equivalence, i.e., continuously deforming one path to the other
forces it to cross the jth obstacle.

VI. ANALYSIS

This section provides analysis of the proposed method. We
first show that under some assumptions our method is com-
plete. We then examine the scenarios in which the proposed
scheme can run into numerical difficulty and discuss how
to get around them. Finally a detailed comparison with the
Potential Field approach is presented to highlight the distinct
features of our method.

A. Completeness

In this subsection the Cartesian coordinate (X,Y ) (instead
of the complex number Z = X + iY ) is used to represent the
location.

Proposition 6.1: Alg.1 is resolution-complete.
As long as there exists a feasible path, Alg. 1 can find one if

the auxiliary electrostatic potential problem is solved exactly.
However, in order to balance computation and memory effi-
ciency, the potential field solution to the auxiliary electrostatic
potential problem has a limited resolution. Thus Alg. 1 is
resolution-complete.

Lemma 6.2: Given any Φ0 ∈ (Φb,1,Φb,2) and Φ0 /∈ Φobs,
the contour Φ(X,Y ) = Φ0 is not a closed curve in DROI.

Proof: Assume Φ(X,Y ) = Φ0 is a closed curve, and
intersects with a straight line at (X1, Y1) and (X2, Y2). Along
the straight line (X(t), Y (t)) = (X1, Y1)+t(X2−X1, Y2−Y1)
with t ∈ [0, 1], there has to be a local minimum or maximum
because Φ(X,Y ) is continuous. This leads to a contradiction
with the feature (F4), and thus the assumption is invalid.

Lemma 6.3: Contour Φ(X,Y ) = Φ0 in DROI with Φ0 /∈
Φobs and Φ0 ∈ (Φb, 1,Φb, 2) is unique.

Proof: From Lemma 6.2, all contours Φ(X,Y ) = Φ0

with Φ0 /∈ Φobs are not closed curves and thus intersect
with the boundaries of DROI. Assume Φ(X,Y ) = Φ0 has
two different contours, denoted as C1(Φ0) and C2(Φ0), and
(X1, Y1) ∈ C1(Φ0) and (X2, Y2) ∈ C2(Φ0). Along the
straight line (X(t), Y (t)) = (X1, Y1) + t(X2 −X1, Y2 − Y1)
with t ∈ [0, 1], there has to be a local minimum or maximum
because Φ(X,Y ) is continuous. Because Φ(X,Y ) has no local
extrema in DROI, the assumption cannot be true.

Given Lemmas 6.2 -6.3 and the feature (F4), Proposition 6.1
is shown below.

Proof: As stated in Step 5, our generated path contains
three parts: one upstream, one equipotential, and one down-
stream. The equipotential connects two points of the same
potential by following the contour, i.e., by the direction per-
pendicular to the gradient. From Lemma 6.3, the contour of a
given potential is unique. The upstream/downstream segments
are constructed by following the gradient (when away from
obstacles) and following the equipotential (when colliding
with an obstacle). Because there are no local extremal, this
procedure is guaranteed to work in principle.

B. Limitations and Remedy Strategies
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(c) (d) 
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Q=+1
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Fig. 5. Limitations due to small gradients and heuristics from electrostatics:.
(a) When the middle gap is narrow and two boundaries are horizontal, the
potential around the gap is almost constant (vanishing gradient) and our
scheme cannot identify it. (b) when the gap becomes wider, the potential
has some distribution and our scheme identifies the gap as a feasible path.
(c) and (d): the same gap as (a) but placing two boundaries along the vertical
directions and with a 45◦ rotation. In these setups the gradient around the
gap is strong enough that the scheme can identify the gap as one of feasible
paths. Boundary charges of each case are indicated in red.

Alg. 1 suffers from two types of numerical issues, both of
which can be traced back to the resolution of the potential
field. First, due to the discretization error the potentials inside
each conductor are not strictly constant but have a very weak
spatial dependence. This is explicitly seen in Fig. 5(a) and (b)
where some equipotential curves penetrate into obstacles. This
issue becomes more pronounced if the obstacle boundary has
large or even diverging curvature. A straightforward remedy to
this issue is to increase the number of points around the high-
curvature part of the obstacle boundary. Alternatively one can
choose a feasible path P(Φ) whose potential value excludes
the small potential range of the obstacle.

The other numerical issue arises from the small gradient.
This issue also originates from resolution, as ideally the zero
gradient only occurs inside the conductors. If a feasible path
passes through a region of very small gradient, our path search
algorithm may not be able to follow it, as the vanishing
gradient does not provide sufficient guidance. This usually
happens for a long narrow gap, where the feasible path is
sandwiched by two large obstacles. Fig. 5 provides a series of
examples. As seen in Fig. 5(a), when the gap is narrow and



the two boundaries are horizontal, the potential over the gap
is almost constant and the corresponding gradient is close to
zero. In this case our scheme does not find the path going
through the gap. When the gap becomes wider, as shown in
Fig. 5(b), the potential inside the gap has a more significant
spatial distribution, and thus larger variations, and our scheme
then identifies the gap as a feasible path. We stress that it is the
vanishing gradient, not necessarily the narrowness of allowed
space, that prevents our solver from identifying the feasible
path. As shown in Fig. 5(c) where the gap width is identical
to that of Fig. 5(a), by placing the two boundaries vertically
one gets a larger gradient along the gap. In this case, all three
topologically non-equivalent feasible paths are found.

In the proposed method, an equipotential curve is always
collision-free. The numerically challenging part is to connect
two points of different potential [Step 4 in Section V-A]. When
there are no obstacles between two points of different poten-
tials, Step 4 can easily be achieved by following the gradient.
Otherwise the path must include both an equipotential part
to avoid obstacles, and upstream/downstream parts to match
the beginning and ending potentials. Vanishing gradients may
cause numerical problems in this process. Given a potential
field, one can estimate the smallness of gradients by examining
whether any two spatially close obstacles/boundaries have
close potential values, but this procedure does not scale well
upon increasing the number of obstacles. Given a fast potential
solver, a more practical strategy is to try a few boundary
placements and double check the feasible paths that are
found. For the configuration given in Fig. 5(a), placing two
parallel boundaries tilted at 45◦ [Fig. 5(d)] also finds three
topologically non-equivalent paths comparable to those shown
in Fig. 5(c). Thus the proposed scheme can be made robust
against small gradients with one or two additional calculations.
In this case the computational times listed in the last column
of Table I are accordingly increased by about 50%.

C. Comparison to the Potential Field approach

We now pinpoint the differences between our method and
the Potential Field approach [17]–[22] since both methods
involve a potential field. The Potential Field approach regards
each obstacle as a short-ranged repulsive potential and intro-
duces a smooth potential that has a higher value at initial point
and a lower value at the target point. The feasible path follows
the gradient of the combined potential. Because the combined
potential is not the solution of Laplace equation, there can be
local minima or saddle points that trap the path from reaching
the target point. A closely related concept is the navigation
function (Chapter 8 of Ref. [38]) that can be regarded as a
potential field with only one global minimum at the target
point. If identified, the feasible path can always be constructed
by following the gradient. However a formal construction of
the navigation function needs to take actions into account and
is very computationally demanding.

Our scheme regards each obstacle as a charge neutral
conductor and the potential is found by solving a map-specific
electrostatic problem. Using (F3) described in Section IV-C, a
finite portion of path in our scheme follows the equipotential

curve that is perpendicular to the gradient of potential field.
This is fundamentally different from the way the Potential
Field or the navigation function approach utilizes its potential
field.

Our potential can be regarded as a compromise between
the Potential Field approach and the navigation function:
Compared to the Potential Field approach, our potential has no
vanishing gradients in DROI which guarantees the success of
a gradient-based search, but it takes more effort to construct;
Compared to navigation function, our potential is less infor-
mative since the target point is not an extreme point, but is
much easier to construct using our developed solver. Finally
the potential field in our scheme does not depend on the initial
and target points, and a single potential calculation can be used
to identify multiple paths.

VII. SIMULATION

In this section we provide two examples to illustrate our
path generation scheme. The maps are chosen such that
feasible paths are very different from straight lines connecting
the initial and target points. Paths generated using the RRT,
PRM, and Bug algorithms [23] are provided for comparison.
The stepsize dZ = 0.1 [Eq. (6)] has been used in these
calculations.

A. Narrow-gap scenario

Fig. 6(a) shows the narrow-gap scenario. The planning
problem is specified by

Zinit = −1− 0.5i; Ztarget = 1 + 0.5i

boundary 1 (line) = [−3 + i,+3 + i]

boundary 2 (line) = [−3− i,+3− i]

obstacle 1 (rect.) = [−2.2− 0.3i,−0.2 + 0.3i]

obstacle 2 (rect.) = [0.2− 0.3i, 2.2 + 0.3i]

region of interest (rect.) = [−2− 2i,+2 + 2i].

(10)

The boundaries comprise two horizontal lines which are each
specified by two endpoints. Two rectangular obstacles are
specified by the coordinates of their diagonal vertices. The
“region of interest” is chosen to be rectangular and is also
specified by its diagonal vertices. We put -1 charge on (top)
boundary 1, and +1 charge on (bottom) boundary 2. The
resulting potential distribution is plotted in Fig. 6(a). The
resulting potentials at initial/target points, boundaries and
obstacle centers are:

Φinit = −Φtarget = 0.337

Φb,1 = −1.178, Φb,2 = 1.178

Φobs,1 = Φobs,2 = 0.

(11)

Fig. 6(c) shows the paths parameterized by potentials Φref =
±0.1. Passage through the narrow gap is achieved by the
“downstream” part which connects Zinit and Zref,1. To illustrate
this point, we plot the positions of Zref,1 and Zref,2 [see Step 4
in Section V-A] for a feasible path of Φref = +0.1 and observe
that it is the “downstream” part of the path (i.e. between Zinit
and Zref,1) that accounts for gap passage.



B. 3-boxes scenario

Fig. 6(b) shows the 3-boxes scenario, where

Zinit = −0.5; Ztarget = +0.5

boundary 1 (line) = [−2 + 1.5i,+2 + 1.5i]

boundary 2 (line) = [−2− 1.5i,+2− 1.5i]

obstacle 1 (rect.) = [−0.8 + 0.3i,+0.8 + 1.1i]

obstacle 2 (rect.) = [−0.25− 0.25i,+0.25 + 0.25i]

obstacle 3 (rect.) = [−1.− 1.3i,+1.− 0.3i]

region of interest (rect.) = [−2− 1.5i,+2 + 1.5i].

(12)

We put -1 charge on (top) boundary 1 and +1 charge on (bot-
tom) boundary 2 to solve for the electrostatic potential field,
which is plotted in Fig. 6(b). The potentials at initial/target
points, boundaries and obstacle centers are respectively

Φinit = Φtarget = 0.277

Φb,1 = −1.472, Φb,2 = 1.401

Φobs,1 = −0.168 Φobs,2 = 0.275, Φobs,3 = 0.719.

(13)

Fig. 6(d) shows the feasible paths parameterized by potentials
Φref = 1, 0.5, 0,−1. These four representative paths reach
the target point via traversing four different gaps between
boundaries and boxes. In this example, passing through a
horizontal gap is done by following an equipotential curve. To
illustrate this point, we plot the positions of Zref,1 and Zref,2
[see Step 4 in Section V-A] for the feasible path of Φref = −1
and see that it is the “equipotential” part of the path (between
Zref,1 and Zref,2) that accounts for the horizontal path segment.

C. Comparisons with RRT, PRM, and Bug algorithms

Feasible paths are generated by using RRT, PRM, and
Bug algorithms. The results of RRT and Bug are shown in
Fig. 6(e) and (f); those of PRM in Fig. 6(g) and (h). For
the Bug algorithm we adopt a variant “Bug 1” where the
bug leaves an obstacle at the point of its perimeter closest to
the target point. Using a knowledge of the obstacle’s surface,
one could, in this case, skip the step to go around the whole
obstacle to identify that perimeter point. For both the RRT and
the Bug schemes we use a stepsize of ≲ 0.1. Implementing
PRM requires sampling nodes in the collision-free space and
a roadmap that specifies the connections between sampling
nodes. We use 200 and 100 points in DROI for the narrow-
gap and 3-boxes scenarios, respectively, and it takes 286 and
136 random samplings to achieve the results shown in Fig. 6(g)
and (h). When building the roadmap we keep 10 edges (nearest
neighbors) for each sampling node.

TABLE I
COMPARISON ON COMPUTATION TIME

Scenario RRT (ave) PRM (ave) Bug Proposed
narrow-gap 0.07 sec 0.20 sec < 0.01 sec 0.07 sec
3-boxes 0.11 sec 0.26 sec < 0.01 sec 0.10 sec

All three methods find feasible paths. In Fig. 6(f) and (h)
we purposely enlarge the middle box to close the narrow gaps
between boxes; this forces the RRT, PRM and Bug schemes to
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Fig. 6. Path generation for narrow gap scenario (a), (c), (e), (g) and 3-
boxes scenario (b), (d), (f), (h). (a) and (b): the potential. ”obs” represents
the obstacle. Charges of -1 and +1 are respectively placed on boundary 1 and
boundary 2. (c) and (d): feasible paths generated by the proposed scheme. The
curve between Zref,1 and Zref,2 represent the “equipotential” of a feasible path.
(e) and (f): paths generated by RRT and Bug 1. (g) and (h): paths generated
by PRM. In (f), (h) we purposely increase the size of mid box to eliminate
narrow gaps between boxes.

go around the top or bottom box. If there is a narrow gap, as
in Fig. 6(d), all schemes can find the feasible path through one
of the narrow gaps. In terms of the time to construct a path,
the Bug algorithm is the fastest among all schemes. This is be-
cause Bug follows either a straight line or the perimeter of an
obstacle. The former is very easy to construct and the latter is
already known. The proposed scheme and RRT are comparable
in speed. Usually the proposed method appears slightly faster,
but RRT is stochastic so its computation time varies. PRM is
slightly slower than both RRT and the proposed scheme. Table
I summarizes the time taken (for RRT and PRM, the average
time over 50 Monte Carlo runs are reported) to construct paths
using different schemes. A CPU with 3.00 GHz Processor
Base Frequency is used. Our method becomes significantly
more time-efficient when the task involves generating multiple
paths of different initial/target points.

In terms of the smoothness of the path, the Bug algorithm
is as smooth as the obstacle shape except at a few sharp turns
where the path goes from the straight line to the obstacle



perimeter or vice versa. RRT and PRM paths are fragmented
due to their random nature. The proposed scheme is in
between. The path is mostly smooth except for two sharp turns
between the equipotential part and the upstream/downstream
parts. There may also be some small fluctuations when
going around an obstacle due to the procedure shown in
Fig. 4 (ii-b). Compared to the Bug algorithm, our scheme
provides a different criterion for leaving an obstacle, guided
by the potential. Compared to PRM, solving for the potential
Φ(Z) corresponds to the roadmap construction phase, while
following the equipotential (including the upstream and the
downstream path) is analogous to the query phase of PRM.

The main advantage of the proposed scheme is the ability
to generate multiple topologically non-equivalent paths from a
single electrostatic calculation. In a sense, the Bug algorithm
is fast in generating one feasible path because it only cares
about the obstacles between the initial and target points. All
other obstacles do not play any role in the path generation.
RRT and PRM stochastically explore the entire allowed space
and thus spend some time wandering around. The established
tree is certainly useful for searching a path that has to pass
some specified middle points. In our scheme, the feasible path
is parameterized by the potential Φref. By sampling or simply
scanning a few Φref’s, multiple feasible paths can be readily
generated. The ability to generate multiple paths comes from
the global information quantitatively encoded in the potential
distribution. In any case, a hybrid of this type is expected to
be useful for some applications.

VIII. EXTENSIONS

In this section we consider two alternatives for setting
up boundary conditions that can be useful for task-specific
applications.

A. Extension 1: Use of two external fields

  

Fig. 7. Path generation based on two orthogonal external electric fields. Eight
rectangles represent the obstacles. Two sets of potentials (Φ

(x)
tot ,Φ

(y)
tot ), one

corresponding to the uniform field along x and the other y, are obtained
from the 2D potential solver. A feasible path can be labeled by either
Φ

(x)
ref = Φ

(x)
tot (X,Y ) or Φ

(y)
ref = Φ

(y)
tot (X,Y ); here the latter is used. Four

topologically non-equivalent paths are shown.

In auxiliary electrostatic problems considered so far, the
charged objects are the sources of the spatially-varying po-
tential field. This is not essential and an external electric field

can serve the same purpose. An illustrating example is given in
Fig. 7. Like previous examples eight rectangular obstacles are
represented by charge-neutral conductors, but unlike previous
examples there are no boundaries with non-zero net charges.
Instead, two orthogonal electric fields are applied. For the
electric fields uniformly applied along the x and y directions,
the external potentials are given by Φ

(x)
ext = −ExX and

Φ
(y)
ext = −EyY , respectively, based on which we get potential

fields Φ
(x)
tot (Z) and Φ

(y)
tot (Z). Ex and Ey can be arbitrary and

are chosen to be one in Fig. 7. With two sets of potential
fields, a feasible path can be labeled by either Φ(x)

ref = Φ
(x)
tot (Z)

or Φ
(y)
ref = Φ

(y)
tot (Z) and can be constructed as follows. For a

given initial point Zinit and a target point Ztarget, a feasible path,
labeled by Φ

(y)
ref , is generated by concatenating three arcs:

Zinit →
(i)

Zref,1 →
(ii)

Zref,2 →
(iii)

Ztarget, (14)

where arc (i) is determined by Φ
(x)
tot (Zinit) = Φ

(x)
tot (Zref,1);

arc (ii) by Φ
(y)
tot (Zref,1) = Φ

(y)
tot (Zref,2) = Φ

(y)
ref ; arc (iii) by

Φ
(x)
tot (Zref,2) = Φ

(x)
tot (Ztarget). Eq. (14) is analogous to Steps 4-5

in Alg. 1; the only difference is that the downstream/upstream
arcs in Alg. 1 are replaced by the equipotential curves of the
potential field caused by the orthogonal applied field. In Fig. 7,
we use Φ

(y)
ref to label feasible paths and four topologically non-

equivalent paths are shown. Removing the boundaries reduces
the dimension of the electrostatic problem (see Appendix) and
thus shortens the time to obtain the potential; the price to
pay is that we need to solve for at least two potential fields,
corresponding to two linearly independent applied electric
fields, in order to construct feasible paths. Depending on the
applications, this is an option to keep in mind.

B. Extension 2: Task specific charge assignment
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obs 1 obs 2obs 2

obs 3

obs 1

Fig. 8. (a) For narrow-gap configuration [Fig. 6(a)], placing charges on
obstacle 1 facilitates generating paths that avoid obstacle 1. (b) For the 3-boxes
configuration [Fig. 6(b)], placing charges on obstacle 2 facilitates generating
paths that avoid obstacle 2.

Let us consider how to use the “charge” parameter to
simplify the numeric for a specific task. When the goal of
the feasible path is to go from one side to the other side
of one specific obstacle, we could put a net charge only on
that obstacle so that all equipotential contours enclose that
obstacle. Following equipotentials is the easier part within
our scheme. With this heuristic based on electrostatics, we
reconsider the examples shown in Fig. 6. In Fig. 8(a) which
represents the narrow-gap configuration [Fig. 6(a)], placing



charges on obstacle 1 facilitates generating paths that avoid
obstacle 1. In Fig. 8 (b), which represents the 3-boxes con-
figuration [Fig. 6(b)], placing charges on obstacle 2 facilitates
generating paths that avoid obstacle 2. Comparing Fig. 8(a)
and (b) to their counterparts in Fig. 6(a) and (b), the former
has two numeric advantages. First, two line boundaries are
removed, which reduces the computational time to obtain
the 2D potential. Second the majority of the feasible paths
follow an equipotential curve which is easier to construct.
However, we must bear in mind that placing net charge on
the obstacle results in local extrema in the region of interest
and can potentially ruin the path construction; we suggest that
one should avoid placing non-zero charges on more than two
obstacles.

IX. CONCLUSIONS

Path planning is a classical problem in robotics and an active
area of research in autonomous driving, manipulation, etc.
In this paper, we proposed a resolution-complete method to
generate feasible paths in obstacle-cluttered two-dimensional
environments that involves solving for a 2D electrostatic
potential. In our proposed method, all obstacles are represented
by conductors of zero total charges whereas two boundaries
are two metallic curves having different amounts of net charge.
The electrostatics demand a constant potential for the surface
of each obstacle, and therefore a feasible trajectory that avoids
all obstacles can be generated by following the equipotential
curve whose potential value is different from those of obsta-
cles. In this manner each feasible path is associated with its
potential value and one can in principle generate an infinite
number of feasible paths.

The most distinct feature brought by our method is the
quantitative use of global information – the obstacles and
boundaries far away affect the equipotential curves at a given
local point via the 2D long-ranged Coulomb interaction. Upon
solving the 2D electrostatic potentials, all obstacles and bound-
aries affect one another. By following the equipotential curve
the distant information influences the local path planning. The
most critical step of our scheme is to accurately and rapidly
solve the 2D potential, and we develop a very effective 2D
potential solver utilizing the analytical properties of complex
functions to fulfill this demanding task. A different look at
a classic problem can bring new heuristics. In this case,
intuition about electric fields can be helpful. The proposed path
generation scheme provides a novel and quantitative device to
encode the global information that can be complementary to
existing methods.
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APPENDIX

The proposed 2D electrostatic potential solver, including its
benchmarking and convergence, is detailed below.

A. Adaptive real-space expansion of potential

To obtain the electrostatic potential for systems composed of
2D metallic objects, one needs to specify the surface of each
object. We define the following parameters for the metallic
surface locations z

(n)
i and charge densities λ

(n)
i of object n:

z(n)(s) → {z(n)i } = (z
(n)
0 , · · · , z(n)

N(n))

→ {z̄(n)i } =
(z(n)0 + z

(n)
1

2
, · · · ,

z
(n)

N(n)−1
+ z

(n)

N(n)

2

)
λ(n)(s) → {λ(n)

i } = (λ
(n)
1 , λ

(n)
2 , · · · , λ(n)

N(n))

dz(n)(s) → {dz(n)i } = (dz(n)1 , · · · , dz(n)
N(n))

≡
(
z
(n)
1 − z

(n)
0 , · · · , z(n)

N(n) − z
(n)

N(n)−1

)
.

(15)

Here z(n)(s) describes the nth metallic surface (i.e., the
boundary of nth metallic object) with s a continuous parameter
of a curve. In practice we use a set of discrete points {z(n)i }
(i = 0 to N (n)) to represent the nth metallic surface (s is
replaced by the subscript i); λ

(n)
i (i = 1 to N (n)) is the

corresponding surface charge density at z̄(n)i = 1
2 (z

(n)
i +z

(n)
i+1)

[see Fig. 9(a) for illustration]. {dz(n)i } (i = 1 to N (n)) is the
difference between adjacent points which will be used later.
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Fig. 9. (a) Parametrization of the metallic surface by {zi} and the correspond-
ing surface charge density by {λi}. (b) A collection of metallic surfaces and
the corresponding surface charge densities.

Following [35], the potential at a field point Z caused by a
segment from z1 to z2 with line charge density λ is given by

WE(Z | z1, z2)

= −2λ

[
h(z1 − Z)− h(z2 − Z)

]
× |z2 − z1|

z2 − z1

+ const.(z1, z2)

= −2|z2 − z1|
z2 − z1

λ

[(
Z − z1 + z2

2

)
· log

(
z2 − Z

z1 − Z

)
− z2 − z1

2
log

[
(z2 − Z)(z1 − Z)

]
+ (z2 − z1)

]
≡ −λϕr(Z | z1, z2).

(16)

In the first equality h(r) = r log[r]. ϕr(Z | z1, z2) will be
referred to as the potential basis function. The second equality
of Eq. (16) ensures an integration constant consistent with

Re
[
WE(Z | z1, z2)

]
= 2λ

∫ |z2−z1|

0

dt log(| Z−z(t) |), (17)

where z(t) = z1 + t z2−z1
|z2−z1| . The single-valued potential is

given by Φ = −Re[WE ]. Im[WE ] has no physical meaning.



With Eqs. (15) and (16), the superposition principle de-
mands that the potential at location Z generated by the nth
surface be

Φ
(n)
ind (Z | {z(n)i }, {λ(n)

i }) =
N(n)∑
i=1

λ
(n)
i ϕr(Z | z(n)i , z

(n)
i+1).

(18)
The overall induced potential Φind =

∑
n Φ

(n)
ind , and the total

potential includes the contribution from any external field. The
complex electric field corresponding to the gradient of the
potential generated by nth surface is [35]

E
(n)

ind (Z | {z(n)i }, {λ(n)
i })

=

N(n)∑
i=1

2λ
(n)
i Br(Z | z(n)i , z

(n)
i+1) = EX − iEY ,

where Br(Z | z1, z2) =
| z2 − z1 |
z2 − z1

log

[
z1 − Z

z2 − Z

] (19)

and the total induced electric field is the summation over
all surfaces. The total electric field must include the external
contribution.

B. Self-consistency from energy minimization

Eq. (18) and (19) always represent solutions for the elec-
trostatic potential and field corresponding to some boundary
condition, and the task now is to find the coefficients that
corresponds to the case of interest. This will be done by
minimizing the total electric energy with constraints that the
total charge on each metallic object is fixed.

Let us first specify the constraint. Assume the total charge
on nth surface is Q(n), the charge constraint using Eq. (15)
can be expressed as

Q(n) =

∫
dsλ(n)(s) →

N(n)∑
i=1

λ
(n)
i |dz(n)i |. (20)

For M metallic surfaces, the surface charge distribution can
be obtained by minimizing the total energy:

Etot =
1

2

∫
dr ρ(r)Φind(r) +

∫
dr ρ(r)Φext(r)

→ 1

2

M∑
m=1

N(m)∑
i=1

|dz(m)
i |λ(m)

i

[
2Φext(z̄

(m)
i )

+

M∑
m′=1

Φ
(m′)
ind (z̄

(m)
i )

] (21)

The induced potential comes from all M metallic surfaces.
Using Eq. (18), we have the final expression:

Etot =

M∑
m=1

N(m)∑
i=1

λ
(m)
i Vm,i

+
1

2

M∑
m=1

N(m)∑
i=1

M∑
m′=1

N(m′)∑
i′=1

λ
(m)
i λ

(m′)
i′ Pm,i;m′,i′ (22a)

Vm,i = |dz(m)
i | · Φext(z̄

(m)
i ) (22b)

Pm,i;m′,i′ = |dz(m)
i | · ϕr(z̄

(m)
i | z(m

′)
i′ , z

(m′)
i′+1 ) (22c)

There are M constraints for total charges

N(m)∑
i=1

λ
(m)
i |dz(m)

i | = Q(m), for m = 1 . . .M. (23)

Minimizing Eq. (22a) with equality constraints (23) is a
standard quadratic programming (QP) optimization. We use
OSQP [51] as the solver. Some numerical issues with the
optimization process will be discussed in Section D. Here we
point out that specifying Pm,i;m′,i′ takes more than 95% of
the calculation time, and it is the most time-consuming part
of our path generating scheme.

C. Convergence criterion and two examples

  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 10. Analysis of a 2D circle (a)-(c) and a charged line (d)-(e). (a) The
equipotential curves of a charge neutral circle of radius 1 cm in a uniform
field E = +x̂. (b) The induced surface charges using 20 and 50 points. The
differences (multiplied by 100) from the analytical results are also shown. (c)
The strength of the transverse field on the circle. (d) The equipotential curves
of a 1 cm line segment carrying 1 StatC charge: top for using 10 points and
bottom for using 100 points. Their difference is only visible for contours very
close to the line segment. (e) The induced surface charges using 10 and 100
points. (f) The strength of the transverse field on the line.

For systems of metallic surfaces, the tangential component
of electric field at the surfaces has to vanish (otherwise the
charges will move), so the smallness of the following quantity

E[{λ(n)
i }] =

∑
n

∫
ds |Et(z

(n)(s), {λ(n)
i })|2

≈
∑
n

∑
i

dz(n)i |Et(z
(n)
i , {λ(n)

i })|2,

where z
(n)
i ∈ nth surface,

(24)

can be used to quantify the discretization error. In Eq. (24)
λ
(n)
i is the solution and Et the tangential component of the



electric field at the surface which is determined from Eq. (19).
The magnitude of the transverse electric field also indicates the
locations where more points are needed if a solution of higher
accuracy is required.

Two simple examples are provided to illustrate the effec-
tiveness of the solver. The first example is a charge-neutral
unit circle in a uniform electric field Eext = x̂ so the external
potential Φext = −x. Fig. 10(a) clearly shows the expected
screening effect (a constant potential inside the circle). The
induced surface charge in this case has an analytical expression
ρ(θ) = 1

2π cos θ where θ = 0 defines x̂. Fig. 10(b) shows that
using merely 20 points to represent the circle already gives
a very good result, which is modestly improved by using
50 points. Fig. 10(c) shows that the tangential component
of electric field decreases in amplitude upon increasing the
number of points. A more subtle case is a 1 cm segment
carrying 1 StatC charge: the ends of a line represent the
sharpest boundaries one could have and are expected to
cause some divergent behavior. As shown in Fig. 10(e), the
converged surface charge density indeed diverges at both
ends. Upon increasing the number of points parameterizing
the line, the tangential component of electric field becomes
smaller but its magnitude still blows up around the ends of the
line [Fig. 10(f)]. Despite these divergences, the equipotential
curves shown in Fig. 10(d) are reasonable in the sense that
the shapes of contours are elongated along x to comply with
the shape of the line, although some of them actually cross
the line. The results of using 10 points and 100 points are
only visibly different close to two ends of the segment [see
the contour of potential value 2.9 in the top and bottom of
Fig. 10(d)]. In that case the contour using 100 points conforms
more closely to the line shape. This nice property turns out
to be beneficial for the path generation discussed in the main
text.

D. Remarks on the potential solver

We conclude by a few remarks about the proposed potential
solver. First, our solver solves for a 2D potential by deter-
mining a 1D charge distribution and thus offers a memory-
efficient representation of the solution. The rationale behind
the expansion is to fully respect that the non-smoothness
of the potential and electric field originates solely from the
induced charges at the metallic surfaces. The chosen (non-
orthogonal) basis functions [both Eqs. (18) and (19)] not only
satisfy the Laplace equation but also accurately capture the
non-smoothness across the charged boundary as they are the
integrated results of Coulomb’s law [35].

Second, determining the induced charges by minimizing the
total electric energy is a realization of a variational principle –
one tries to find the best charge distribution for a given energy
functional. As our solver enforces the non-smoothness across
the metallic surfaces, the resulting potential always reflects
the surface shape even for a rough discretization. This is seen
in Fig. 10(d) where contours close to the line are strongly
stretched along x to conform to the line shape.

Third, expressing the potential as an expansion allows
computing the potential at any point in the 2D plane. The

gradient (i.e., electric field) computed by Eq. (19) corresponds
exactly to the potential without any interpolation errors. In
other words, the discretization errors for potential and its
gradient are consistent to preserve −∇Φtot = Etot. Computa-
tion complexities for evaluating the potential and the gradient
are the same. This property is useful for constructing the
equipotential curves.

Finally, we point out an issue we have encountered regard-
ing QP optimization. From the physics point of view, the P
matrix in Eq. (22a) corresponds to capacitance and should
be positive definite. When the surfaces include sharp edges,
however, the P matrix usually (not always, but we do not
have control) develops a negative eigenvalue that rules out
a few QP solvers [52]–[54]. The negative eigenvalue goes
away when projecting the P matrix into the null space of
the linear equality constraints (23), meaning that a global
minimum exists in the space allowed by the constraints. We
use OSQP [51] as the QP solver because it can deal with the
non-positive eigenvalues of P in a robust manner.
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