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Abstract

Anomaly detection (AD) aims to identify defective images
and localize their defects (if any). Ideally, AD models should
be able to detect defects over many image classes; without
relying on hard-coded class names that can be uninformative or
inconsistent across datasets; learn without anomaly supervision;
and be robust to the long-tailed distributions of real-world
applications. To address these challenges, we formulate the
problem of long-tailed AD by introducing several datasets with
different levels of class imbalance and metrics for performance
evaluation. We then propose a novel method, LTAD, to detect
defects from multiple and long-tailed classes, without relying on
dataset class names. LTAD combines AD by reconstruction and
semantic AD modules. AD by reconstruction is implemented
with a transformer-based reconstruction module. Semantic
AD is implemented with a binary classifier, which relies on
learned pseudo class names and a pretrained foundation
model. These modules are learned over two phases. Phase 1
learns the pseudo-class names and a variational autoencoder
(VAE) for feature synthesis that augments the training data to
combat long-tails. Phase 2 then learns the parameters of the
reconstruction and classification modules of LTAD. Extensive
experiments using the proposed long-tailed datasets show that
LTAD substantially outperforms the state-of-the-art methods
for most forms of dataset imbalance. The long-tailed dataset
split is available at https://zenodo.org/records/10854201.

1. Introduction
Anomaly detection (AD) is an important problem for many
manufacturing settings [23, 50, 60, 63]. To reflect practical
manufacturing constraints, most datasets [5, 83, 89] are curated
under the unsupervised AD setting, where no defect images
are available for training. Various methods [19, 20, 43, 60, 69]
have shown that this problem can be solved with high accuracy;
e.g., [3, 20, 31, 36, 41, 44, 69, 77, 79, 84] have success rates
>95% for anomaly detection and localization on the MVTec
dataset [5]. However, as illustrated in Fig. 1, these methods
require a different model per image category. which compro-
mises scalability to many classes. Recently, there has been
interest in more efficient methods that use a single model to

Figure 1. Challenges of long-tailed AD include (Left) designing a
single model to detect anomalies over multiple image classes, (Middle)
uninformative class names, and (Right) long-tailed data distributions.

detect anomalies in all object classes [9, 14, 26, 30, 32, 76, 87].
These methods can be grouped according to the level of image
semantics where they operate. On one hand, AD by reconstruc-
tion methods [76, 87] use a reconstruction module to project the
input image into the manifold of normal images. The difference
between the image and its projection is then used to detect
possible defects. On the other hand, semantic AD methods
[9, 26, 32] build explicit models of normal/abnormal images.
Given the absence of abnormal training data, this is done
by leveraging the knowledge of visual-language foundation
models [25, 39, 57, 67]. Abnormal regions are detected using
the predefined text prompts for normal and abnormal plus an
image class name, e.g., “a normal photo of a [CLASS]” and
“an abnormal photo of a [CLASS],” where [CLASS] is a class
name in the dataset, e.g., “bottle” in the MVTec dataset.

The two types of methods have limitations. Reconstruction
methods require modeling the complex manifold, especially for
problems requiring many classes. Even when trained on large
datasets, the distance between the input image and this manifold
can be smaller for certain anomalies. The foundation model used
by semantic AD methods can provide additional clarity, because
it enables framing AD as a binary classification problem. How-
ever, this is difficult when the dataset class names are ambiguous
or unknown to the foundation model. Fig. 1 shows an example
of ambiguity due to the fact that the class name “bottle” refers to
visually different concepts in MVTec [5] (where it means “bottle
bottom”) and the GoodsAD dataset [83] (where it means “bottle
side”). Hence, in MVTec, the “bottle” label may not be the most
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informative for the foundation model, which may associate the
images with alternative labels, e.g. “black sphere.” Sometimes,
class names can be simply unknown to the foundation model,
e.g. the classes “PCB1” and “PCB2” also shown in Fig. 1. This
suggests that the foundation model should learn what are the
class names that best align with these images. When this is dif-
ficult, semantic AD might benefit from the flexibility of the AD
by reconstruction methods, which are not constrained by class
names. Hence, this work investigates the design of AD methods
that combine both AD by reconstruction and semantic AD.

Beyond this, it remains unclear whether the resulting models
generalize to the long-tailed setting [2, 18, 29, 34, 88] where,
as illustrated in Fig. 1, the sample distribution is skewed. This
is particularly important because long-tailed distributions are
natural in manufacturing, where different objects can have very
different popularity. We formulate the problem of long-tailed
AD by introducing long-tailed datasets, which are obtained by
resampling current AD benchmarks with different imbalance
factors and types of imbalance. We also propose a set of
performance metrics for the long-tailed setting.

To address the challenges above, we propose a new method,
LTAD, which combines AD by reconstruction and semantic
AD. AD by reconstruction is implemented by combining
the ALIGN [33] image encoder and a transformer-based
reconstruction module (RM), trained to project image patches
into the manifold of normal images. An anomaly score is
then obtained by computing the difference between the input
image and the result of this projection. The latent patch
representation produced by the ALIGN image encoder is
also mapped to the feature space of the ALIGN text encoder,
to enable the implementation of semantic AD. For this, a
binary normal/abnormal classifier is implemented in ALIGN
text space, by using as classifier weight vectors the ALIGN
representation of text prompts for “normal” and “abnormal.”
The posterior probability of the abnormal class, under this
classifier is then used as a second anomaly score. Anomalies
are detected with a combination of the two AD scores.

To address the long-tailed setting, we propose a preliminary
training phase for data augmentation. This consists of learning
a VAE [37, 38], which is then used to synthesize features. To
make these class sensitive, the VAE is conditioned by the text
encoding of the [CLASS] name, according to the ALIGN
model. However, to address the ambiguity of class names, a set
of learnable [CLASS] prompts are learned by backpropagation,
during VAE training. In a second training phase, a mix of real
and synthetic examples is used to train the LTAD model. Since
there are no training anomalies, these are simulated by adding
noise to the synthesized features during this stage.

Overall, we make the following contributions:
1. We show that prior methods do not perform well on

long-tailed setting and formulate long-tailed AD based on 3
datasets with 9 imbalance settings and performance metrics.

2. We propose LTAD, which combines AD by reconstruction

Unsupervised AD Method Conditions
Unsupervised AD Categories

C0 C1 C2 LTAD (ours)

Single model for all classes ✗ ✓ ✓ ✓
No class name prior ✓ ✓ ✗ ✓

Designed for the long-tailed setting ✗ ✗ ✗ ✓
Learnable class names ✗ ✗ ✗ ✓

Table 1. LTAD addresses some important challenges for real-world AD,
previously not considered in (e.g., C0: [16, 19, 20, 31, 43, 54, 59–61,
64, 69, 77, 79–81, 84], C1: [26, 30, 49, 76, 87], C2: [9, 10, 14, 32, 82]).

and semantic AD, performs multi-class AD, and overcomes
dataset [CLASS] name ambiguity by learning names
consistent with the semantic space of the ALIGN model.

3. We propose a new training strategy for LTAD which uses
a novel data-augmentation procedure to address the data
scarcity of long-tailed data, and learn [CLASS] names.

4. We show that LTAD outperforms the SOTA methods on
the long-tailed AD. Extensive ablations confirm the efficacy
of the various LTAD modules, showing that LTAD gener-
alizes across various datasets and imbalance configurations.

2. Related works
Unsupervised anomaly detection (AD): Unsupervised AD
aims to identify defective images and localize the defects with-
out observing any defect images during training. Tab. 1 groups
recent AD methods into 3 categories. Category C0 contains
earlier works [16, 19, 20, 31, 43, 60, 69, 84] that use a different
model per image category. Student-teacher methods [20, 69, 84]
use a pretrained teacher encoder and a student encoder opti-
mized to match its predictions. AD is based on the difference of
their predictions. Flow based methods [59, 61, 77] fit a Gaus-
sian distribution to the feature vectors of normal images and use
out-of-distribution criteria to perform AD. Reconstruction based
methods [54, 79–81] train models to reconstruct normal samples
and use reconstruction error for AD. Some other methods in cat-
egory C0 are discussed in the AD survey papers [11, 12, 47, 65].
More parameter efficient than these methods, LTAD only needs
a single model for all the classes instead of one model per class.

This is the setting adopted by the more recent methods of
Category C1 [26, 30, 49, 76, 87]. For example, UniAD [76]
improves prior reconstruction-based methods by using a
neighborhood attention mask to avoid information leak, while
AnomalyGPT [26] uses a large vision-language model to
provide explanations for defective regions. While typically
leveraging foundation models, these methods do not use the
class name to detect anomalies. This akin to LTAD but unlike
methods in category C2 [9, 10, 14, 32, 82], which also use
a single model for all classes but require class names. For
example, WinCLIP [32] uses the CLIP [57] model to compute
the anomaly score, by measuring similarity between image
and text feature vectors for several predefined normal/abnormal
text prompts. Some works in categories C1 and C2 [14, 26] also
leverage auxiliary training data (e.g., train on VisA [89] and
test on MVTec [5]), a setting that is not considered in this work.
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(a) dataset distribution (b) anomaly detection performance
Figure 2. Preliminary study with UniAD on MVTec. Image classes
(x-axis) are sorted by popularity. (a) Dataset distribution of MVTec vs.
long-tailed version. (b) AD performance on the two datasets.

More importantly, all the prior AD works assume balanced
datasets [5, 70, 83, 89], where the number of samples is rel-
atively balanced across classes. However, this is an unlikely
setting for real-world applications where different objects tend to
have different popularity. As summarized in Table 1, this work
addresses the combinatorial challenge of imbalanced training set,
absent class name, and single model for multiple object classes.

Long-tailed recognition: Real-world data distributions
are often imbalanced across classes. Prior works in classifica-
tion [18, 34, 40, 45, 72] have shown that the data imbalance
degrades performance for minority, or tail, classes. Long-tailed
recognition methods aim to avoid this. Prior long-tailed
recognition methods related to this work can be mainly
categorized into (1) data re-sampling, (2) loss re-weighting,
and (3) representation learning. Data re-sampling meth-
ods [6, 13, 15, 22, 27, 28, 75] balance the sample distribution by
under-sampling majority classes or augmenting minority classes.
For example, [2, 29, 40, 45, 88] utilize a generative model to
synthesize samples or features from minority classes. Loss
re-weighting methods [7, 18, 34, 46, 58, 66, 71] weigh the loss
function by class cardinality, usually assigning higher weights
for loss terms dependent on minority classes. Representation
learning methods [21, 35, 74] focus on learning a more powerful
feature encoder. For example, [21, 51, 52] leverage the generaliz-
able knowledge from large foundation models [57]. For a more
detailed review, please see the recent survey papers [73, 85, 86].
While prior long-tailed works focus on image classification, we
are the first to investigate the long-tailed setting for AD.

3. Long-tailed anomaly detection
Motivation: Previous AD works assume that different image
classes are equally populated. However, in most industrial
applications, different objects have different costs, production
schedules, etc. This creates long-tailed distributions where cer-
tain classes have much higher example cardinality than oth-
ers. Extensive research in areas like classification, indicates
that systems not trained to account for this class imbalance
tend to overfit on popular classes and ignore the less popular
ones [18, 34, 34, 40, 45, 58, 71]. To test whether this also holds
for AD, we perform some preliminary experiments, using the
MVTec dataset and a long-tailed version, obtained by image

Dataset Max Class Sample Imbalanced Factor β

MVTec [5] 391 {100, 200}
VisA [89] 905 {100, 200, 500}

DAGM [70] 1000 {50, 100, 200, 500}
Table 2. The statistics of the long-tailed splits we use across the 3
datasets. For all datasets, we consider both the exp and step imbalance.

resampling. The sample distributions of the two datasets are
shown in Fig. 2(a). Fig. 2(b) compares the performance on the
two datasets of UniAD [76], one of the best open-source AD
methods based on a single model that detects multi-class anoma-
lies. The figure confirms that UniAD performs well on MVTec
but degrades considerably for the long-tailed version, where it
overfits to majority classes and severely underperforms on mi-
nority ones. This experiment highlights the need for the methods
that explicitly address the long-tailed AD problem. This requires
datasets and performance metrics, which we discuss next.
Dataset collection: Following [8], given a balanced dataset, we
create a long-tailed version by sampling the training set, while
the test set remains unchanged. The distribution of the sampled
training set depends on two factors: the imbalance factor β and
the imbalance type. β is the ratio between the cardinalities of
the most and least populated classes, i.e., β= maxc{Nc}

minc{Nc} where
Nc is the number of samples of class c. To prevent overfitting
on a specific imbalance distribution, we consider two types of
imbalance: exponential (exp) and step (step). While the former
indicates that Nc decays exponentially across classes c, the latter
indicates a binary split into majority classes of size max{Nc}
and minority classes of size min{Nc}. Individual long-tailed
datasets are denoted by type and imbalance factor. For example,
exp100 indicates a training set exponentially imbalanced with
β = 100. We define the half most/least populated classes as
majority/minority classes and construct the long-tailed dataset
by randomly sampling from the original dataset, without
repetition. When the number of samples of a class is less than
the desired number of samples, all samples are kept.
Tasks and metrics: Both anomaly detection (AD) and anomaly
segmentation (AS) are considered. Following [26, 30, 76, 79],
we use the Area Under the Receiver Operating Curve (AUROC)
at image and pixel level for AD and AS, respectively. We report
two types of results. The first is average performance (Avg),
which is the performance averaged across all classes. The
second is the pair of average performance for majority classes
(High) and average performance for minority classes (Low).
Datasets: We consider 3 datasets: MVTec [5], VisA [89]
and DAGM [70]. Various long-tailed datasets are built from
each. Tab. 2 shows the maximum number of samples across
classes and the imbalance factors considered per dataset. For
all datasets, we consider both the exp and step imbalance types.
Our proposed dataset splits will be released upon publication.

4. The LTAD anomaly score
In this section, we propose a novel method, LTAD, for the
unsupervised long-tailed anomaly detection task. As shown in



Figure 3. The LTAD architecture combines AD by reconstruction and
semantic AD scores (Srec andSsem, respectively), implemented by the
RM and SAD modules. We use an image E and text encoder T from
a pretrained foundation model to extract images features freal and
text features tn,c,ta,c derived from text-prompts that include a static
component to discriminate between normal (vn) and abnormal (vn)
and a learned component sc to make this discrimination class-sensitive.

Fig. 3, LTAD uses a combination of (1) AD by reconstruction
and (2) semantic AD. AD by reconstruction is a common
AD approach, where a model is trained to reconstruct normal
images [1, 4, 17, 48, 62, 76, 78]. At inference, this model
projects abnormal images into the normal image manifold.
AD can thus be implemented by thresholding the magnitude
of the reconstruction error. Semantic AD explicitly trains a
classifier to discriminate between normal and abnormal images.
This is less commonly used, since abnormal images are not
available in the training set. LTAD overcomes this challenge
by leveraging the understanding of the “abnormal” concept
by the pretrained ALIGN [33] foundation model and a learned
semantic descriptor for the classes in the training set. The
implementation of these modules is as follows.
AD by reconstruction. The reconstruction module (RM) Π(.)
is a transformer [42, 53, 56, 76] trained to reconstruct the fea-
tures extracted from the image I by a pretrained encoder E of
L layers. Given an image I∈RW×H×3 from class c∈C, E ex-
tracts feature tensor freal

l ∈RWl×Hl×Cl from layer l∈{1...L}.
Since the feature tensor from the last layer freal

L represents the
global semantics of I, it tends to degrade the AD performance
[30, 60, 76], which requires local semantics. Hence, to perform
AD, this tensor is dropped and the firstL−1 tensors {freal

l }L−1
l=1

are remapped to the dimensions of freal
1 (i.e., W1×H1) by bi-

linear interpolation along the spatial dimension. In the following,
we use the notation freal

l to represent this interpolated version
and define freal = [freal

1 ; ... ;freal
L−1] as the feature tensor ex-

tracted across the L−1 layers. This tensor is then split into
W1×H1 patch feature vectors {pi}W1×H1

i=1 , which are fed as
tokens to the RM transformer Π(.). Given patch i, the anomaly
score of the AD by reconstruction module is the squared error

Srec(pi)= ||Π(pi)−pi||2. (1)

Semantic AD (SAD). The goal of semantic AD is two-fold:
1) to give the anomaly detector sensitivity to normal/abnormal

classes, and 2) to leverage the prior knowledge about normal-
ity/abnormality available in a large foundation model. This
allows the AD to discriminate between the two conditions with-
out requiring abnormal images for training. As shown in Fig. 3,
the semantic AD module is a binary classifier of a projection
p̂i of patch pi into normal/abnormal classes. The layer-wise
components pil of the patch feature vector pi are first projected
into vectors Φl(pil) with the dimension d of the text embedding
of the ALIGN model. These projections are implemented by
projection modules Φl :RCl →Rd, l=1,...,L−1, where each
Φl is implemented with a linear layer. The layer-wise features
are then aggregated into a single patch feature vector

p̂i=max
l

({Φl(pil)}l) (2)

by max pooling over layers. The resulting vector p̂i is then
fed to a binary classifier of parameters tn,c (normal) and ta,c
(abnormal), where c is the class of image I, which computes
the posterior probability of an anomaly using a softmax layer
with temperature scaling τ

Ssem(pi,c)=
exp(ta,c • p̂i/τ)

exp(tn,c • p̂i/τ)+exp(ta,c • p̂i/τ)
, (3)

where “•” denotes the dot product. This is used as the semantic
AD score for the images of class c.

The main difficulty of this process is to learn the classifier
parameters tn,c, ta,c without explicit supervision, since there
are no training images of anomalies. To overcome this problem
we leverage the prior for normal/abnormal classification pro-
vided by the ALIGN model. This is implemented by feeding to
ALIGN a normal text prompt vn and an abnormal text prompt va
that apply to all classes. While we have considered several pos-
sibilities (see Tab. 9), the best AD performance was achieved by
setting vn=“a” and va=“a broken.” Unless otherwise noted, we
use these prompts in what follows. To further make the anomaly
score sensitive to the image semantics, this is complemented
by an image class prompt sc. Unlike prior works [9, 14, 32]
that assume the access to the class names (e.g., “bottle,” or
“hazelnut” in MVTec [5]), we assume that the class name is
unknown. This is important to support the classes that are un-
known to the ALIGN model or even to most humans, such as
“PCB1” vs. “PCB2” in Fig. 1. Instead, inspired by [24], we use
a pseudo class name sc learned per class c. This is implemented
by prompting the text encoder T with a prompt sc per class c,
and learning prompts sc as discussed below. The resulting set
of semantic sensitive AD prompts P={[vn; sc], [va; sc]}c is
mapped to a set of classifier parameters {(tn,c, ta,c)}c by the
text encoder T of the ALIGN model, according to

tn,c=T([vn; sc]) ta,c=T([va; sc]). (4)

LTAD score: The overall anomaly score of a patch feature pi
of class c is defined as the linear combination

S(pi,c)=Srec(pi)+λSsem(pi, c), (5)



Figure 4. Phase 1 of LTAD training learns a VAE-style decoder D for
feature augmentation conditioned on a learned pseudo class name sc.

where λ is the hyperparameter to balance Srec(pi) and
Ssem(pi, c) such that both scores have comparable ranges.

5. Training
The training of LTAD is divided into two phases.

5.1. Phase 1: Class sensitive data augmentation

This training phase seeks two goals: to 1) overcome the data
scarcity of long-tailed AD, by augmenting the training set with
normal examples of minority classes and abnormal examples
of all classes, 2) learn the class sensitive prompts sc required
by the semantic AD score of (3)-(4).

Fig. 4 summarizes this training procedure. Given an image
I∈RW×H×3 of class c∈C, the pretrained encoder E extracts
the feature tensor freal = [freal

1 ;...;freal
L−1] plus a latent code

z = freal
L , which is the feature vector from the last encoder

layer (L). An image decoder D, whose architecture is the
mirror copy of E, is then trained to sample corresponding
feature vectors, using a procedure inspired by the variational
autoencoder (VAE) [37, 38]. A latent feature ẑ is sampled from
a normal distribution N (µ, σ) of parameters µ= Fµ(z) and
σ=Fσ(z), where Fµ and Fσ are learned linear transformations.
The decoder D then synthesizes a feature tensor from ẑ.

In the long-tailed setting, the performance of D degrades for
classes c with few training images. To ameliorate this problem,
D is conditioned by the prior knowledge about the class, in the
form of a text-derived prototype feature vector tc that represents
class c for feature synthesis. This is obtained by prompting
the text encoder of ALIGN with the pseudo-class name sc, i.e.,
tc = T(sc). The feature prototype is then concatenated with
the image-dependent latent feature ẑ to create the input to D,
which finally synthesizes a feature tensor {fsyn

l }L−1
l=1 =D(ẑ,tc)

of dimensions equal to those of freal
l .

Following standard practices for VAE training, D and sc are
learned by optimizing a loss function

LP1 =
1

L−1

L−1∑
l=1

||fsyn
l −freal

l ||2−KL(N (ẑ−µ, σ)||N (0, I)),

(6)

Figure 5. Phase 2 of LTAD training learns the parameters of the
reconstruction module (RM) and patch projections Φl that map visual
features into the semantic space of the semantic AD (SAD) module.

that combines the reconstruction mean square error (MSE),
a regularization constraint based on the Kullback-Leibler
divergence (KL) that encourages a normal distribution, and
the reparametrization trick of [37]. The text T and image E
encoders are those of the pretrained ALIGN model and kept
frozen throughout training. Note that this process encourages
the simultaneous satisfaction of multiple goals: 1) learning a
decoder that can be used to synthesize features from the tail
classes, 2) align these features with the semantic representation
tc produced by the text encoder of ALIGN, and 3) improve the
quality of feature synthesis for tail classes, by leveraging this
alignment. After training, the learned prompts sc are used in (4).

5.2. Data augmentation

When this training phase is completed, the decoder D works
as a data augmentation device, producing synthetic feature
tensors fsyn in the semantic neighborhood of a feature tensor
freal extracted from a real image. This is used to augment the
training data in an online fashion during the second phase of
training. Two types of data augmentation are considered.
Long-tailed classes. To counteract the imbalanced nature of
long-tailed datasets, data augmentation is implemented by
selecting the real freal or synthetic fsyn feature vectors with
probabilities (pc, 1− pc) respectively. The selected feature
vector f is split into W1×H1 patch feature vectors {pni }

W1×H1
i=1

where the n superscript denotes that these are normal features.
Anomalies. To counteract the lack of anomalies during training,
random noise (sampled from normal distribution) is added to nor-
mal patch features pni to produce pseudo-anomaly patch features
pai , as in [76]. This process is repeated for all normal patches
during training. No random noise is added during inference.

5.3. Phase 2: Anomaly detection

Data augmentation is used in the second phase of training to
learn the parameters of 1) the RM transformer Π(.) used to
reconstruct features and 2) the modules Φl(.) used in (2) to
project patch features into the semantic space of ALIGN.



Reconstruction Module (RM): As shown in the bottom
right of Fig. 5, the RM Π(.) is trained to project the pseudo
anomaly patch features pai into the reconstructed patch features
Π(pai ) in the manifold of the normal patch features pni . This
is implemented with the RM transformer to minimize the loss

Lrec=
1

W1H1

W1H1∑
i=1

||Π(pai )−pni ||2. (7)

Semantic patch projections: As shown in the top right of
Fig. 5, the functions Φl compute projections of the patches
pi into the semantic space of ALIGN, where the classifier
parameters of (4) are defined. The functions Φl are trained to en-
courage the alignment between the projected patch features and
the text features by minimizing the binary cross entropy loss

Lsem(c)=
−1

W1H1

W1H1∑
i=1

yilog(Ssem(pi, c)), yi=

{
1, if pi=pai
0, if pi=pni ,

(8)
where c is the image class and Ssem(.) is the semantic score
of (3). Note that both phase 1 and phase 2 share the same
text encoder T , which is fixed in both phases. The total loss
function for phase 2 is LP2

=Lrec+Lsem(c).

6. Experiments
In this section, we report on various experiments designed
to evaluate LTAD. While we compute average performance
across majority (High), minority (Low), and all (All) classes in
all experiments, we omit the High and Low values in some cases,
for brevity. A complete listing is provided in the supplement.
Baselines: For a given training configuration (e.g., exp100), the
same training set is used for all the baselines [26, 43, 64, 76, 79]
and LTAD. For baselines other than RegAD [30], their official
code and training/testing setting are used. RegAD is trained on
all classes, instead of its leave-one-class-out setting, for fair com-
parison. During testing, we use 2 training examples per class as
the support set to estimate the normal distribution. Since RegAD
requires a support set of 2 images per class, it is not applicable
to some configurations (e.g., exp200 and step200 in MVTec)
where only 1 image is available for some minority classes. Cut
& Paste [43] supports anomaly detection but not localization.
Training details: To train LTAD, we use the pretrained visual
language foundation model ALIGN [33]. Each input image
is scaled to 224×224 and the features freal are extracted from
layers {3, 10, 17, 37} of the ALIGN image encoder. By default,
the length of the pseudo class name is set to 2 and initialized
with the text “object object.” In phase 2, the probability pc of
selecting real features is 0.5. The hyperparameter λ in (5) is set
to 500, 400, and 300 for MVtec, VisA, and DAGM, respectively.
Unless otherwise noted, we use vn= “a” and va= “a broken”
in (4) and τ =1 in (3). Phase 1 is trained for 100 epochs and
phase 2 for 500 epochs, both using the AdamW optimizer with
the learning rate 1e-4. Pytorch [55] is used for implementation.

6.1. Comparisons to the state-of-the-art

Tab. 3-5 summarize the AD and AS performance of all the
methods on MVTec, VisA, and DAGM, respectively. The best
and second best performances for each dataset configuration
are highlighted in bold and underline, respectively. On
MVTec, LTAD is compared to 6 baselines under 4 different
configurations. As shown in Tab. 3, early methods, such as Cut
& Paste [43], MKD [64], and DRAEM [79], are not suitable
to detect and localize defects across classes with a single
model, leading to inferior performance. While more recent
models [26, 30, 76] can detect defects across classes, they do not
perform well across levels of dataset imbalance. LTAD is less
affected by skewed distributions and outperforms most baselines
in all tasks. The only exceptions are RegAD, which outperforms
LTAD in 2 of the 8 tasks, and UniAD in 1 of the 8 tasks. Tab. 4-5
show that the gains of LTAD over the baselines are even larger
for VisA and DAGM, where it achieves the best performance
in all tasks. Overall, LTAD outperforms the baselines on 29
out of the 32 (90.6%) tasks defined by the 3 datasets.

Fig. 7 shows a comparative visualization of anomaly
detections by UniAD and LTAD. Note how the detections of
LTAD are much more localized and selective of the anomaly.
Additional visualizations are provided in the supplement.

Beyond LTAD, the performance of LTAD without the
semantic AD module is shown in the penultimate columns of
Tab. 3-5. Even without this module, LTAD beats the baselines
on 28 out of 32 (87.5%) tasks. However, by adding the semantic
AD module, performance improves on 31 out of 32 (96.9%)
tasks, highlighting the efficacy of the semantic AD module.

6.2. Ablation study

We ablate different designs of LTAD in Tab. 6-8, where the
experiments are denoted by the experiment ID (expID).
Ablation study of AD by reconstruction: Fig. 6 and Tab. 6
compare different RM designs (i.e., LTAD without the seman-
tic AD module) on the MVTec step100 dataset. Fig. 6 studies
the effect of the length of the pseudo class name prompt on AD
performance, showing that the performance peaks for length 2.
Tab. 6 summarizes the detection and segmentation performance
of several variants of LTAD for majority (High), minority
(Low) and all (All) classes. expID 6.2 first shows that replacing
the EfficientNet [68] features of UniAD by those of ALIGN
increases both AD and AS performance by 2.38% and 1.44%,
respectively. In expID 6.3, we replace the text conditioned VAE
of LTAD by an autoencoder trained on ALIGN features, to
generate features for phase 1 of LTAD training. This under-
performs LTAD (expID 6.8) by 2.57% (0.6%) for AD (AS),
highlighting the efficacy of the VAE of LTAD. In expID 6.4,
we replace the probability pc=0.5, used for synthetic feature
selection in phase 2 of LTAD, by a more sophisticated design,
where pc is inversely proportional to the class cardinality (i.e.,
the classes with less samples have higher probability of selecting
synthesized features). When compared to LTAD (expID 6.8),



Config. Task Cut & Paste MKD DRAEM RegAD UniAD AnomalyGPT LTAD w/o SAD LTAD

exp100 Det. 75.89 78.92 79.57 82.43 87.70 87.44 88.74 88.86
Seg. N/A 85.95 85.17 95.20 93.95 89.68 94.00 94.46

exp200 Det. 75.07 79.93 78.82 N/A 86.21 85.80 86.94 86.05
Seg. N/A 86.01 82.95 N/A 93.26 90.15 93.40 94.18

step100 Det. 76.57 79.61 69.82 81.54 83.37 85.95 87.05 87.36
Seg. N/A 85.90 79.65 95.10 91.47 89.28 93.13 93.83

step200 Det. 76.53 79.31 71.64 N/A 81.32 82.47 85.33 85.60
Seg. N/A 86.03 76.79 N/A 89.29 89.45 91.78 92.12

Table 3. Quantitative comparison on MVTec dataset.
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Figure 6. Ablation on the length of
pseudo class name.

Config. Task RegAD UniAD AnomalyGPT LTAD w/o SAD LTAD

exp100 Det. 71.36 77.31 70.34 79.27 80.00
Seg. 94.40 95.03 80.32 95.07 95.56

exp200 Det. 72.10 76.87 69.78 78.55 80.21
Seg. 94.69 94.80 79.48 94.51 95.36

exp500 Det. N/A 73.67 68.18 77.25 78.53
Seg. N/A 94.35 78.83 94.04 94.66

step100 Det. 71.80 78.83 71.98 82.80 84.80
Seg. 94.99 96.04 82.30 96.16 96.57

step200 Det. 71.65 77.64 69.78 83.79 84.03
Seg. 94.52 95.66 81.97 95.89 96.27

step500 Det. N/A 71.84 62.88 82.42 83.33
Seg. N/A 95.03 81.48 95.50 96.41

Table 4. Quantitative comparison on VisA dataset.

Config. Task RegAD UniAD AnomalyGPT LTAD w/o SAD LTAD

exp100 Det. 84.86 84.34 85.31 93.35 94.40
Seg. 90.29 90.13 77.20 96.93 97.30

exp200 Det. 84.86 83.56 83.29 92.83 94.29
Seg. 90.29 89.73 77.16 96.16 97.19

exp500 Det. 84.86 81.35 83.47 92.08 93.54
Seg. 90.29 88.63 76.87 95.99 97.01

step100 Det. 84.86 81.11 86.48 91.94 93.97
Seg. 90.28 89.11 78.76 96.38 97.07

step200 Det. 84.86 80.33 84.73 91.78 93.79
Seg. 90.29 89.07 78.29 96.04 96.84

step500 Det. 84.86 80.04 85.08 91.82 92.78
Seg. 90.29 88.53 78.75 95.64 96.65

Table 5. Quantitative comparison on DAGM dataset.

Input Image G.T. Mask UniAD LTAD Input Image G.T. Mask UniAD LTAD Input Image G.T. Mask UniAD LTAD

Input Image G.T. Mask UniAD LTAD Input Image G.T. Mask UniAD LTAD Input Image G.T. Mask UniAD LTAD

Figure 7. Qualitative comparison of UniAD and LTAD anomalies. The images without defects (i.e., normal image) have a black ground truth mask.

there is no benefit in adopting this distribution aware sampling
(DAS) mechanism. The remaining experiments then ablate
different possibilities for the class prompt sc. Experiments
expID 6.5 and expID 6.6 consider the case where the class
names are available in the dataset. In expID 6.5, the name
of class c is simply used as sc. This underperforms all other
experiments, where sc is a learned pseudo class name. These ex-
periments vary on the procedure used to initialize sc for learning.
ExpID 6.6, which uses the class name in the dataset as initial-
ization, outperforms expID 6.7, which randomly initializes sc.
Altogether, these results support the claim that, while the class
specific prompts are important, not all the class names are infor-
mative and the prompts should be learned. Finally, all methods
underperform LTAD (expID 6.8), which initializes all sc with
the word “object.” This initialization also outperformed various
other words that we have tried. The configuration of expID 6.8
is used as the default for all other experiments in the paper.
Ablation study of Semantic AD: Tab. 7 ablates different SAD
module designs (i.e., LTAD without the RM module) on the
MVTec step100 dataset. ExpID 7.1 replaces (2) by a direct
projection of the concatenated vectors pi into the d-dimensional

expID method
use

ALIGN
AE or
VAE

use
DAS

learned
sc sc init.

Detection Segmentation

All High Low All High Low

6.1 UniAD ✗ N/A N/A N/A N/A 82.63 99.60 67.79 91.47 96.15 87.38
6.2 UniAD ✓ N/A N/A N/A N/A 85.01 99.39 72.43 92.91 95.99 90.20
6.3 LTAD ✓ AE ✗ ✗ N/A 84.48 99.13 71.67 92.53 94.77 90.57
6.4 LTAD ✓ VAE ✓ ✓ “object” 86.06 97.77 75.81 92.99 94.44 91.73
6.5 LTAD ✓ VAE ✗ ✗ class name 85.39 99.11 73.39 92.57 94.56 90.82
6.6 LTAD ✓ VAE ✗ ✓ class name 86.12 99.07 74.80 92.94 94.60 91.49
6.7 LTAD ✓ VAE ✗ ✓ random 85.95 99.01 74.53 92.92 95.07 91.03
6.8 LTAD ✓ VAE ✗ ✓ “object” 87.05 99.07 76.54 93.13 95.07 91.44

Table 6. Ablation Study without the SAD module on MVTec-step100.
Acronyms: DAS: distribution aware sampling; init.: initialization.

text space, using a linear transformation Φ̂ : R
∑L−1

l=1 Cl → Rd.
When compared to LTAD (ExpID 7.4), this degrades AS
performance significantly, most likely due to a greater difficulty
in accounting for the different resolutions of features from
different layers. The remaining experiments compare the
implementation of (2) with different pooling operations, namely
max vs. mean. Experiments expID 7.2 and 7.4 show that mean
pooling is better than no layer aware projection, but inferior to
the max pooling of LTAD. Finally, expID 7.3 uses max pooling
and investigates the use of multiple word-prompts vn and va

in (4). This is inspired by the gains reported for ensembling



expID
Layer Aware

Projection
Pooling

Operation Prompt
Detection Segmentation

All High Low All High Low

7.1 ✗ N/A Single 83.78 96.35 72.79 87.18 91.08 83.77
7.2 ✓ Mean Single 81.25 90.95 72.76 88.28 91.89 85.12
7.3 ✓ Max Multiple 77.19 94.06 62.43 91.14 95.37 87.44

7.4 (LTAD) ✓ Max Single 84.12 97.02 72.84 91.36 95.13 88.07

Table 7. Ablation Study without RM on MVTec-step100 dataset.

expID
assign sc=i

to class i
use text

encoder T
Detection Segmentation

All High Low All High Low

8.1 ✗ ✓ 72.76 81.06 65.49 63.74 62.09 65.18
8.2 ✓ ✗ 59.79 63.34 56.69 69.83 70.95 68.85

8.3 (LTAD) ✓ ✓ 84.12 97.02 72.84 91.36 95.13 88.07

Table 8. Importance of pseudo class name sc on MVTec-step100.

va

vn a broken a damaged an abnormal a defective

a 84.12 / 91.36 82.95 / 91.70 82.20 / 91.33 83.66 / 91.87
a normal 83.71 / 91.39 82.74 / 91.21 83.47 / 91.23 82.94 / 91.26
a good 75.68 / 90.75 82.14 / 91.22 81.03 / 91.15 82.09 / 91.23

a flawless 65.63 / 87.61 79.09 / 91.00 76.13 / 90.24 83.89 / 91.42

Table 9. Ablation on different normal/abnormal text prompts (i.e., vn

and va) on MVTec step100. The AD/AS performances are reported.

multiple prompts when visual language foundation models are
used for open-set classification [57]. Comparing experiments
expID 7.3 and 7.4 shows that there is no similar advantage
for semantic AD. Note that jointly using 2 anomaly scores on
MVTec step100 (See Tab. 3 step100) outperforms using either
the reconstruction by AD of expID 6.8 or the semantic AD of
expID 7.4 solely, indicating both modules contribute to the gain.

Tab. 8 ablates the importance of the learned pseudo class
name sc for the semantic AD module, showing that it does not
solely rely on the normal/abnormal prompt for anomaly detec-
tion. ExpID 8.1 shuffles the pseudo class names across classes
by assigning sc=i, the pseudo class name of class i, to class j,
where i≠j. Compared to LTAD (expID 8.3), this hurts perfor-
mance significantly. ExpID 8.2 tests the alternative of eliminat-
ing the text encoder of ALIGN completely, simply learning a
binary classifier of weight vectors tn,c, ta,c per image class c.
This approach is even less effective, showing the importance of
the prior knowledge encoded in the foundation model about both
classes and normal/abnormal images. The small sizes of the AD
datasets are not sufficient to overcome the use of this prior.

Tab. 9 further ablates different combinations for normal vn

and abnormal va text prompts. The combinations of (“a”, “a bro-
ken”) and (“a”, “a defective”) outperform all others. Note that a
poor choice of these prompts can degrade performance, although
the latter seems to be more sensitive to the choice of normal than
abnormal prompt. This shows the importance of leveraging the
prior knowledge of foundation model about the two conditions.
Distribution imbalance: A set of experiments were performed
on DAGM [70] to evaluate the robustness of LTAD to the
class imbalance of the training dataset. To avoid the possibility
of overfitting on a specific class order, we repeated these
experiment with reverse class order (the least populated
classes become the most populated ones). We considered both
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Figure 8. Top: Sample distributions before and after class reversal, for
exponential and step imbalance, respectively. Bottom: AS and AD
AUROC vs. imbalance for different dataset configurations.

exponential and step dataset imbalance. Fig. 8 (a,b) show the
class cardinalities before (blue) and after (orange) reversing the
class order. Fig. 8 (c-d) compare the AD and AS performance
of the different approaches. For all dataset configurations,
LTAD outperforms the baselines by at least 9.1% (5.9%) for
AD (AS). Part of these gains are due to SAD module, which
improves performance by 1.62% (1.01%) for AD (AS) on
average. These results show that LTAD generalizes across
imbalance factors, that SAD module consistently improves
performance, and that its gains are insensitive to class order.

7. Conclusion
In this work, we have introduced the task of long-tailed
AD, by proposing datasets and performance metrics and
a novel AD method, LTAD, tailored for the long-tailed
setting. LTAD detect defects from multiple and long-tailed
classes, without relying on dataset class names. It combines
AD by reconstruction and semantic AD modules. AD by
reconstruction is implemented with a transformer-based
reconstruction module. Semantic AD is implemented with a
binary classifier, which relies on learned pseudo class names
and a pretrained foundation model. These modules are learned
over two phases. Phase 1 learns the pseudo-class names and
a VAE for feature synthesis that augments the training data
to combat long-tails. Phase 2 then learns the parameters
of the reconstruction and classification modules of LTAD.
Experiments show that LTAD outperforms the SOTA AD
methods on most long-tailed datasets considered and all the
components of LTAD contribute to its superior performance.
Acknowledgement CH and KCP were supported by Mitsubishi
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