
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Multi-level Reasoning for Robotic Assembly: From Sequence
Inference to Contact Selection

Zhu, Xinghao; Jha, Devesh K.; Romeres, Diego; Sun, Lingfeng; Tomizuka, Masayoshi; Cherian,
Anoop

TR2024-033 April 04, 2024

Abstract
Automating the assembly of objects from their parts is a complex problem with innumer-
able applications in manufacturing, maintenance, and recycling. Unlike existing re- search,
which is limited to target segmentation, pose regression, or using fixed target blueprints,
our work presents a holistic multi-level framework for part assembly planning consisting of
part assembly sequence inference, part motion planning, and robot contact optimization. We
present the Part Assembly Sequence Transformer (PAST) – a sequence-to-sequence neural
network – to infer assembly sequences recursively from a target blueprint. We then use a
motion planner and optimization to generate part movements and contacts. To train PAST,
we introduce D4PAS: a large-scale Dataset for Part Assembly Sequences consisting of phys-
ically valid sequences for industrial objects. Experimental results show that our approach
generalizes better than prior methods while needing significantly less computational time for
inference. Further details on our experiments and results are available in the video.

IEEE International Conference on Robotics and Automation (ICRA) 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Multi-level Reasoning for Robotic Assembly:
From Sequence Inference to Contact Selection

Xinghao Zhu1,2, Devesh K. Jha2, Diego Romeres2, Lingfeng Sun1, Masayoshi Tomizuka1, Anoop Cherian2

Abstract— Automating the assembly of objects from their
parts is a complex problem with innumerable applications in
manufacturing, maintenance, and recycling. Unlike existing re-
search, which is limited to target segmentation, pose regression,
or using fixed target blueprints, our work presents a holistic
multi-level framework for part assembly planning consisting
of part assembly sequence inference, part motion planning,
and robot contact optimization. We present the Part Assembly
Sequence Transformer (PAST) – a sequence-to-sequence neural
network – to infer assembly sequences recursively from a target
blueprint. We then use a motion planner and optimization
to generate part movements and contacts. To train PAST,
we introduce D4PAS: a large-scale Dataset for Part Assembly
Sequences consisting of physically valid sequences for industrial
objects. Experimental results show that our approach gener-
alizes better than prior methods while needing significantly
less computational time for inference. Further details on our
experiments and results are available in the video.

I. INTRODUCTION

The assembly of parts in accordance with a target blueprint
presents a compelling research frontier in the domains of
robotics and machine learning. This task not only represents
a highly valuable functionality that autonomous robots can
perform, but it also embodies a complex problem space
characterized by indeterminate intricacies. Achieving suc-
cessful assembly requires robots to master several complex
skills: understanding part geometries, reasoning about physi-
cal interactions and collisions, and executing assembly plans
with robust sensing capabilities. To navigate through these
complexities, robots need to cultivate an array of diverse
competencies conducive to a successful assembly process.
These include deciphering the assembly sequence, coordi-
nating part trajectories, and identifying points of contact and
their physical execution. Equally important is the robot’s
ability to generalize these competencies across various as-
semblies.

Previous investigations in robotics and computer vision
have tackled this multifaceted challenge of part assembly
through diverse methodological lenses. For example, one
line of research attempts to sidestep the complexities of
physics [1], electing to focus on more specialized tasks,
such as the segmentation of target blueprints [2], [3] or the
estimation of part poses [4], [5]. A second vein of research
emphasizes the importance of physical interactions, special-
izing in the assembly of predetermined targets [6]–[9]. A
third category adopts different target blueprints but imposes

1Mechanical Systems Control Lab, UC Berkeley, Berkeley, CA, USA
{zhuxh, lingfengsun, tomizuka}@berkeley.edu

2Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA,
USA {jha, romeres, cherian}@merl.com

Blueprint

Parts

Assembly Plan

1

2

3

4

5

Opt.

Fig. 1: Our goal is to facilitate robotic assembly across
different target blueprints. Utilizing point clouds from target
blueprints and assembly parts, our method identifies feasible
assembly sequences (indicated by colored numbers), orches-
trates part motions (represented by colored long arrows), and
pinpoints contact points (denoted by short green arrows).

simplifying assumptions on part geometries (i.e., blocks) [10]
or restricts its scope to a seen set of blueprint categories
(e.g., chairs) [11]. The use of reinforcement learning (RL)
has seen success in this space [10], [11]. However, RL-
based solutions face challenges in terms of computational re-
sources and efficiency. For instance, Ghasemipour et al. [10]
requires an elaborate computational infrastructure involving
thousands of CPUs and billions of steps for training, raising
concerns about the practicality of the system. Our work
aims to advance the field of robotic assembly by holisti-
cally considering intricate physical interactions between parts
and designing a supervised training paradigm, while our
approach is applicable to a broad spectrum of practical target
blueprints.

To achieve successful robotic assembly, this study breaks
down the task into three distinct and key sub-tasks: 1) infer-
ring the sequence in which the parts should be assembled,
guided by the target blueprint, part shapes, and assembled
poses; 2) coordinating the movements of the individual
parts; and 3) identifying viable contact points for robotic
manipulation. An illustration of these steps is provided in
Fig. 1. Addressing the first challenge involves contending
the physical interactions between parts and the inherent
ambiguities. The former is due to the collision between parts
that prevent arbitrary assembly order, and the latter arises
due to multiple viable assembly sequences. Can we learn the
order of assembling the parts statistically from their geometry
and their locations in the target assembly? For example, it is

https://www.youtube.com/watch?v=XNYkWSHkAaU

clear in Fig. 1 that the red screw can only be inserted if the
orange piece is in place – the target blueprint and individual
pieces collectively establish a specific order for assembly. We
use this insight towards designing an implicit neural planning
network using Transformers [12], dubbed Part Assembly
Sequence Transformer (PAST) that takes as input point
clouds of the target blueprint and the assembled parts and
identifies the next parts to be assembled. Then, it is applied to
generate the full sequence in an autoregressive fashion. For
training our PAST model, we construct a benchmark dataset
for part assembly sequences, dubbed D4PAS, by enumerating
feasible assembly sequences [13].

To solve the problem of part motion planning for assembly,
we leverage the RRT-connect [14] to generate trajectories
from each part’s resting pose to its assembled pose. Concur-
rently, we conduct an efficient physics-inspired multi-scale
optimization of potential contact points on the part’s surface
to identify those that are most effective in achieving the
desired part movement. Upon generating the assembly plan
through the aforementioned steps, prior research has explored
the use of reinforcement learning [15]–[17], model-predictive
control [18], and diffusion policies [19] for its execution.
However, the focus of this work is not on physical execution,
which is earmarked for future investigation.

In summary, our primary contributions are as follows:
• We present an assembly planning algorithm to generate

feasible part assemblies based on target blueprints,
including inference of assembly sequences, planning of
part movements, and optimization of contact points.

• We introduce the Part Assembly Sequence Transformer
(PAST) to infer assembly sequence in an autoregres-
sive fashion. PAST is designed to generalize to novel,
diverse, and practical blueprints and part geometries.

• We provide a dataset for part assembly sequences
(D4PAS), replete with assembly trajectories, enumer-
ated assembly sequences, and viable contact points,
thereby providing a foundation for future studies in
robotic assembly.

II. RELATED WORKS

Previous research on part assembly varies in focus. On
the one hand, approaches like [2], [3] tackle the problem via
blueprint segmentation and part pose regression, employing
point classification and optimization. Huang et al [4] use
dynamic graph networks for geometric learning, while [5]
utilize a shape-mating discriminator for shape-mating tasks.
On the other hand, reinforcement learning (RL) has shown
promise in physical assembly executions [6]. However, these
RL methods often focus on fixed or single-category tar-
gets [7], [8], [10], [11] and entail costly training [10], [20].

To simplify part assembly, some works that streamline
assembly sequence inference focus on optimizing the as-
sembly order of individual parts [21]. Techniques leveraging
precedence relationships in CADs have been used [22]. The
assembly-by-disassembly strategy has been highlighted for
its efficiency [13], [23]. In cases where parts are rigid,
this strategy simplifies planning by reversing disassembly

sequences [24], leveraging the bijection between assemblies
and disassemblies. However, these methods often rely on
time-consuming physical simulations. To address this, our
work introduces the Part Assembly Sequence Transformer
(PAST) for efficient sequence reasoning and geometrical
understanding of parts and blueprints. We train the network
using a dataset, D4PAS, generated from GPU-based simula-
tions [25], employing assembly-by-disassembly techniques.

After sequence determination, robots require further guid-
ance on part motions and contact points for efficient and
robust execution. Works by [17], [26] demonstrate the impor-
tance of object movements and contact locations for robotic
manipulations. For part motion planning, sampling-based
methods like Rapidly-exploring Random Trees (RRT [14])
have proven effective in robotic motion planning. Zhu et
al. [27] shows that contact optimization reliably identifies
contact points for dexterous manipulation tasks. Building
on these insights, our work fulfills part assembly with part
motion generation and contact points identification, leaving
the physical execution for future research.

III. PROBLEM OVERVIEW

This work employs a part assembly formulation consistent
with [11], [13], as shown in Fig. 1. Given M part meshes
M = {Mi}Mi=1 and their respective 6D assembled poses in
the target blueprints ptgt = {ptgti }Mi=1, the algorithm plans
the assembly trajectories (p0, p1, ...) for each part from their
resting poses p0 = {p0i }Mi=1. We use pti to represent the
pose of part Mi at time t and use pt to represent poses
of all parts at time t. The algorithm assumes, at each time
step, that only one part is in motion while the others remain
stationary [13]. The work breaks down the complex task of
assembly planning into three sub-tasks: assembly sequence
inference, part motion planning, and contact point selection.

For one possible assembly, let the assembly sequence be
denoted by m = (mk)

M
k=1, specifying the order of part

assembly. Each mk belongs to the set M and identifies the
kth part to be assembled. Part movements are represented
by T = (pmk

)Mk=1, where pmk
details the trajectory of parts

when part mk is moving throughout its moving horizon.
Contact points facilitating these movements pmk

are indi-
cated by C = (cmk

)Mk=1. The assembly planning problem is
formulated as:

P(p0, p1, ..., ptgt) =P(m, T , C)
=P(m) · P(T |m) · P(C|m, T),

where in this work, we assume a multi-level solution ap-
proach by sequentially solving for the sub-problems of (i)
assembly inference, (ii) motion planning, and (iii) contact
selection, in that order.

It is crucial to recognize that feasible assembly sequences
are a subset of all possible part permutations. This constraint
arises from the potential for part collisions, which precludes
arbitrary assembly sequences. For instance, a washer must be
in place before tightening a screw. To address this combina-
torial inference problem approximately, we introduce the Part
Assembly Sequence Transformer (PAST) to learn statistical

correlations between the parts and the target blueprint to
produce physically viable assembly sequences P(m). The
network ingests both target blueprints and unassembled parts,
outputting the next feasible parts for assembly. This iterative
process determines the full assembly sequence, as in Fig. 2.

Upon establishing the assembly sequence m, part move-
ment can be planned using established motion planning
algorithms P(T |m). Following that, the algorithm optimizes
the contact points that the robot can utilize to execute
these movements, P(C|m, T), thus culminating in a coherent
assembly process.

IV. ASSEMBLY PLANNING

The preceding section outlines our multi-level approach
to assembly planning. This section delves into the details of
each of the three planning levels.

A. Part Assembly Sequence Transformer (PAST)
The transformer ingests the target assembly blueprint and

the remaining unassembled parts, outputting a probability
for each part’s suitability for assembly at the current step.
The part with the highest probability is chosen for assembly
and removed from the list of remaining parts. This iterative
process continues until all parts are assembled, yielding one
assembly sequence m = (mk)

M
k=1. Fig. 2 illustrates this

recursive planning approach.
PAST takes two branches of inputs: a target assembly

blueprint and unassembled remaining parts, both represented
using point clouds. For an assembly comprising M parts,
the target blueprint is rendered with the 6D assembled poses
ptgt of all parts, resulting in a point cloud PCtgt ∈ RNt×6.
This point cloud consists of Nt sampled points, each with
positional and normal features. During the kth step of
assembly, PAST selects the next part to assemble from the
M − k remaining parts. These remaining parts are input as
M − k individual point clouds, denoted as {PCr,i}M−k

i=1 ,
where PCr,i ∈ RNr×6 and contains Nr sampled points.

A key design question for PAST is which neural model
to use for representing the input point clouds. Among point
cloud encoders, such as PointNet and its variants [28], [29],
it was shown in [5] that dynamic graph CNN (DGCNN) [30]
offers superior efficiency and representational capabilities in
assembly segmentation. To this end, we employ DGCNN to
derive target features v ∈ RNt×h from the target blueprint
(one feature for every sample point) and part features ui ∈
Rh from each remaining part (i.e., one feature for every part
after max-pooling the features from all samples belonging
to that part). Here, h is the hidden feature dimension and
i ∈ {1, ...,M − k}.

Once the features are extracted, our PAST model then
jointly refines these features through L transformer blocks,
as illustrated in Fig. 2. As is well-known, transformers use
self- and cross-attention to learn correlations between their
inputs and have demonstrated state-of-the-art performances
in generating sequential outputs (e.g., language). Our key
insight is to use such attention to learn physically plau-
sible assembly sequences in a supervised setting. Mathe-
matically, suppose for a query set q and a key set k, let

Target Assembly
Blueprint

Remaining
Unassembled Parts

DGCNN + MaxPool

Pose + Sequence MLPs

PAST

DGCNN

Transformer x L

Sequence Inference with PAST

PAST PAST

PAST Architecture

Fig. 2: Sequence inference pipeline and PAST architecture.
(Top) PAST operates sequentially to estimate the assembly
probability P(Mi) for each remaining part. The part with
the highest probability is chosen for assembly. (Bottom)
Using the third block as an example, PAST selects one part
for assembly from the three remaining options. PAST also
performs pose regression for each part p̂ as an auxiliary task.

the transformer dot-product attention1 operator be defined
as Attention(q,k) = Wv(k)T softmax

(
Wk(k)Wq(q)√

h

)
, where

Wq,Wk,Wv are matrices embedding the query and the key
sets in a common latent space. Our PAST transformer blocks
utilize a two-stage approach for feature refinement between
the target and parts. The first stage independently processes
and updates the features with self-attention; that is,

v = Attention(v, v) and ui = Attention(U, ui),

where U = {ui}M−k
i=1 denotes all part point cloud features.

The second stage applies cross-attention between the target
features and part features [31], updating them to:

v̂ = Attention(U, v) and ûi = Attention(v, ui).

where v̂ and ûi are fed into the next block.2 In the final
step, PAST calculates the assembly probability for each
part using the formula P(Mi) = MLP(ui). The part to
be assembled next is then selected based on the maximum
probability, denoted as mk = argmaxi P(Mi). In addition
to predicting the assembly sequence, the transformer also
estimates the 6D assembled pose ptgti for each part as an

1For simplicity of notation, we have avoided details on multi-head
attention and other processing modules in the transformer.

2We use the same attention expression for all blocks except for replacing
u and v updated to û and v̂ from the previous block.

auxiliary task, represented as p̂i = MLPp(ui). The inclusion
of this auxiliary task enhances the network’s capability to
comprehend the geometric interrelations between parts, a
technique that has proven effective in [2], [5].

We use supervised learning for training PAST via es-
timating the predicted assembly probability P(Mi) with
mean squared error loss MSE(yi,P(Mi)) with the feasibility
of assembling a part Mi at a given step is denoted yi.
Additionally, the pose regression task aims to minimize the
difference between the actual 6D assembled pose ptgti and
the predicted pose p̂i. The difference is calculated with∑

i

∥∥ptgti,tra − p̂i,tra
∥∥ +

∥∥ptgti,rot − p̂i,rot
∥∥, where ptgti,tra, p̂i,tra

indicate target and predicted translation for each part and
ptgti,rot, p̂i,rot represent the axis-angle.

B. Dataset for Part Assembly Sequences (D4PAS)

To train PAST, we introduce a new dataset for part
assembly sequences or D4PAS. Each sample in the assembly
sequence dataset comprises multiple components, namely: (i)
the target blueprint point cloud PCtgt, (ii) point clouds for
M −k remaining parts {PCr,i}M−k

i=1 , and (iii) the feasibility
of assembly for each part {yi}M−k

i=1 . The feasibility yi
specifies whether a part Mi can be assembled at the current
step and can subsequently lead to a successful final assembly.
Note that there can be many viable part candidates at every
step, derived from all possible sequence enumerations using
the scheme in assembly-by-disassembly [13], as described in
Algorithm 1 and illustrated in Fig. 3.

Algorithm 1 Disassembly Planning

1: Input: part meshes {Mi}Mi=1 and inertias {Ii}Mi=1

2: Input: target part pose ptgt, empty queue J
3: Output: sequence of disassembly
4: J .enq(ptgt, f j

i) for f j
i ∝ Ii and i ∈ {1, · · · ,M}

5: while not finish do ▷ In parallel
6: (pt, f j

i) = J .deq ▷ BFS
7: if success(pt) then
8: return GetSequence(ptgt, pt)
9: end if

10: pt−1 = simulate(pt, f j
i) ▷ Disassembly attempt

11: if isNovel(pt−1) and isExec(pt, pt−1) then
12: J .enq(pt−1, f j

i) for all unassembled part i
13: end if
14: end while

The disassembly planning algorithm operates in a search-
based manner, where the set of parts poses’ at time t,
pt = {pti}Mi=1, serves as the search state. At each step, the al-
gorithm selects an unassembled part i (line 6) and attempts to
remove it from the blueprint with a physical simulation (line
10). The selection of the moving part follows a breadth-first
search (BFS) scheme, ensuring a comprehensive enumeration
of all possible disassembly sequences. The chosen part i is
moved in the direction of its moment of inertia Ii with force
f j
i , calculated as f j

i = ΛiejIi, where Λi is the mass of
the part and ej is a one-hot vector with nonzero element
at j ∈ {1, 2, 3}. Torque is also applied to enable rotational

1 2 3 4 5

1
2

3
5

4 1

1

1

1

1

1

1
1

1

1

1

22

2

2

2
2

2

2

2
2

2

3 3

3

3

3
3

3

3

3

3

3

4

4

4

4

4
4

4

4
4 4

4

5

5

5

5

5

5
5

5

55

5

Fig. 3: Example assembly sequences in our dataset. For
each target blueprint, we enumerate all feasible assembly
sequences and present one representative sequence here. The
color coding and the numbers beside each part signify the
assembly sequence, as indicated by the color bar.

movement and is computed similarly to f j
i . The search queue

is expanded only if the disassembly attempt results in novel
part poses and is executable by a robot (line 11). Part poses
are regarded as a novel (isNovel) if they lead to a new
location for one of the parts. The feasibility of execution
(isExec) is confirmed by determining whether there exists
collision-free grasp or push points on the part’s surface.
After each disassembly attempt, the remaining unassembled
parts are added back to the queue, considering all possible
dragging forces (line 12).

Compared to [13], the dataset generation algorithm in this
work incorporates several advancements. First, we employ a
parallel simulation (Isaac Gym [25]) to expedite the dataset
generation and allow future studies on assembly planning
with RL [10]. Second, unlike [13] that use arbitrary force
directions, our algorithm applies disassembly forces along
the part’s moment of inertia, aligning with the physical
properties of the parts. Third, we incorporate additional
constraints to ensure that the generated plans are executable
by robots (isExec), making our dataset more practical for
further robotic applications.

C. Part Motion and Contact Planning

Once the sequence is determined by the PAST transformer,
the next steps involve planning the movements of the parts
and identifying suitable contact points for robotic manipula-
tion. For part movements, we use the RRT-connect [14] to
search for a collision-free path for each part, in line with the
inferred assembly sequence.

For contact points planning, this work first plans robust
grasps for each part with two contact points and filters out
those in collision with other parts [32], [33]. To do this,
we enumerate all grasp pairs from the part point cloud
PCr,i and use the Ferrari Canny metrics to determine their
robustness [34]. We then identify the feasibility of execution

using FCL [35] to check the collision between grasp points
and the assembled parts along the assembly trajectory. If no
feasible grasps are found, we resort to optimizing for a single
pushing point c by solving the optimization [27]:

min
c,Fc

Fc

s.t. Fc ∈ FC(c)

G(c)Fc = W

(1)

where Fc is the pushing force at c. FC(c) is the friction
cone at point c and is expressed by F 2

c,1+F 2
c,2 ≤ µF 2

c,3 with
µ being the friction coefficient. G(c) ∈ R6×3 is the grasp
map which maps the contact force to the part movement
force [36]. W is the part movement force derived from
the part movement [27]. We observe that the optimization
problem (1) can be cast as a semi-definite program (SDP)
once the pushing point c is specified. To solve this problem,
we employ a hybrid approach that combines sampling with
an SDP solver [27]: the pushing point c is sampled from the
part’s point cloud and held constant during the optimization
of Fc as SDP. The outcomes are iteratively updated across
all sampled pushing points to identify the optimal solution.

V. EXPERIMENTS

This section offers details of our model, dataset, and em-
pirically validates our approach against the related methods.

A. Dataset and Network Details

Both disassembly planning and PAST training were per-
formed using a single RTX3090 GPU. During the disas-
sembly planning, properties of parts Λi, Ii were extracted
from the simulation. The friction µ = 0.2. Our dataset
comprises 8,670 target blueprints and a total of 84,326
assembly sequences, broken down as follows: 7,278 are
3-step sequences, 54,612 range from 4 to 7 steps, and
22,436 have more than seven steps. These sequences can
be further augmented with varying choices of the remaining
(unassembled) parts. Specifically, for an assembly sequence
with M parts, we randomly split the sequence into two
segments with size k and M − k, respectively. Parts in the
second segment are regarded as unassembled, and the first
part in the second segment is the part that can be assembled
with yM−k = 1. Additionally, we gather segments from all
viable sequences to identify all potential parts that can be
assembled for a specific unassembled segment.

During the training of PAST, two-part assemblies were
only used to train the auxiliary pose regression. The target
blueprint was sampled at Nt = 1024 points, and each
part mesh was sampled at Nr = 512 points. The DGCNN
encodes point clouds with dimension h = 256. PAST uses
L = 8 transformer blocks and was implemented in PyTorch
and was trained with the AdamW optimizer using the One-
Cycle learning rate scheduler. The target blueprints were re-
centered and normalized to a unit ball and randomly rotated
and jittered as augmentation. We allocate 500 multi-part
assemblies for the test set, reserving others for training.

TABLE I: Quantitative results on assembly sequence infer-
ence. We report three metrics: one-step prediction accuracy
(1-Acc), full sequence prediction accuracy (Seq-Acc), and
the computation time (CT).

1-Acc (%) Seq-Acc (%) CT (ms)
NSM [5] 75.0 57.8 58.5
DGL [37] 77.4 54.1 104.4
ATA [13] NA NA 24312.6
Seg-PAST 90.3 80.4 52.2

NoAux-PAST 79.1 58.4 52.2
PAST 91.7 82.9 52.2

B. Baselines and Ablations

The baseline and ablation studies aim to evaluate the
efficacy of PAST and the overall algorithm.
Metrics. We employ two key metrics to assess the per-
formance of assembly sequence inference: one-step predic-
tion accuracy (1-Acc) and sequence prediction accuracy
(Seq-Acc). A one-step prediction is deemed correct if the
selected part, sampled based on predicted assembly proba-
bilities, belongs to the set of possible parts for assembly.
In addition, we apply PAST in an autoregressive fashion to
generate a full assembly sequence, which is considered cor-
rect if it aligns with any of the possible assembly sequences
for that object in our dataset. In addition, we also report the
computational time (CT) taken for full sequence inference.
Compared algorithms. Given that no existing solutions are
tailored specifically for part assembly sequence inference, we
adapt methods from part segmentation and pose regression
as baselines, and compare against various ablations.

• NSM (Neural Shape Mating [5]) uses a transformer to
address two-part shape mating. We adapt this network
to accommodate multiple part inputs.

• DGL (Dynamic Graph Learning [37]) employs a graph
neural network to perform assembly pose regres-
sion [38]. We use a global node to represent target
assembly [39] for assembly sequence inference.

• ATA (Assemble-Them-All [13]) solves assembly
through runtime physical simulation. The assembly pro-
cess aligns with Algorithm 1.

• Seg-PAST: We substitute the final pose regression layer
in PAST to predict blueprint segmentation during the
pretraining, as advised in [2].

• NoAux-PAST: We eliminate the auxiliary pose regres-
sion task, focusing solely on predicting the assembly
sequence using the same network.

C. Experimental Results

Table I, Fig. 4, and Fig. 5 summarize the quantitative and
qualitative results, which are elaborated upon in this section.
For more results, we refer readers to our video.
Multi-level assembly planning. As outlined in Sections I
and III, our methodology breaks down assembly planning
into three distinct phases. This approach achieved assembly
planning in 1565.9 ms, with an 82.9% success rate across
our 500 multi-part assemblies test set. Figure 4 illustrates
an example of assembling parts from scratch. Specifically,
part movement planning averaged 1476.9 ms with a 100%
success rate, while contact point optimization took 36.8 ms

(c)

(d) (f)(e)

(a) (b)

Fig. 4: Assembly planning results (a-f). In each step, the part
colored blue indicates the one in motion, while the yellow
parts signify those that are stationary. In (c, d, e), the dual
green spheres denote feasible grasp points. In (f), a solitary
green sphere highlights the designated pushing point.

with 100% success rate using multi-threaded computation
and the CVXPY solver [40]. Unlike our method, RL-based
assembly planning [11] exhibits inferior performance when
evaluated in our setting, achieving a 63.9% assembly suc-
cess rate. While prior works showed promise with simpler
geometries [10], [11], we posit that end-to-end policies
may struggle to handle complex geometries and assembly
reasoning simultaneously.
Generalization to novel assemblies. From Table I, we see
that PAST consistently outperforms other neural sequence in-
ference models, such as NSM, DGL, Seg-PAST, and NoAux-
PAST in both one-step and full-sequence prediction tasks.
Unlike NSM, which employs a discriminator for target shape
understanding and fails to capture the assembly geometries’
distribution, PAST leverages the target assembly blueprint as
input and can extract direct features from the target assembly.
DGL, which represents parts as a graph and updates features
at the node level, struggles to model geometries from other
parts and the target shape. In contrast, PAST aggregates
features at the point level, thus enhancing geometric under-
standing, consequently yielding superior learning outcomes.

Further, from Table I, we also see from the ablated
PAST variants that incorporating auxiliary tasks, such as
pose regression or part segmentation, significantly improves
network performance. This improvement is attributed to
the additional guidance these tasks offer, enhancing the
network’s understanding of part interactions, which are
key for assembly sequence inference. Interestingly, target
segmentation underperforms compared to pose regression,
possibly because some points in the target assembly, like
those corresponding to assembled parts, are not supervised
during training. Further, as is expected, ATA takes signif-
icant computing as it uses enumeration and simulation for
assembly sequences. Instead, PAST, which shows promising
accuracy, has a dramatically short computing time, making
it well-suited for real-world robotic assembly. In Figure 5,
we analyze the impact of the number of parts on sequence
inference accuracy and auxiliary pose regression error. The

Num. of Assembly Parts

Se
q-

A
cc

 (%
)

Po
se

 R
eg

. E
rr

or
 (1

e-
3)

Seq-Acc Pose Reg. Error

Fig. 5: Sensitivity analysis for sequence inference accuracy
and auxiliary pose regression error.

results indicate that increased part count leads to reduced se-
quence accuracy and higher pose error, corroborating results
from [10]: the complexity of the assembly problem increases
with the number of parts in the target blueprint.
Disassembly Planning. As noted earlier, while our D4PAS
construction bears similarities to [13], we enhance disas-
sembly planning through: (i) employing GPU-accelerated
simulation and (ii) applying part-centric forces. Enabling
parallel computations thereby reducing compute time for
disassembly planning to 3592.0 ms against 24312.6 ms. This
efficiency not only allows for the enumeration of feasible
assembly sequences within a manageable timeframe but also
establishes a performance benchmark for future research in
end-to-end robotic assembly learning [10]. Second, we apply
part-centric disassembly forces aligned with the parts’ inertia
axes, as supported by findings in [41], [42]. Although this
adjustment in the force application coordinate system may
seem minor, it led to a notable increase in planning success
rate: 92.7% in our approach versus 83.8% in [13].

VI. CONCLUSION

This paper makes several key contributions to robotic
assembly. First, we introduce a multi-level framework for
generating assembly plans, encompassing part sequences,
motions, and contact points. Second, we unveil the Part
Assembly Sequence Transformer (PAST) for inferring feasi-
ble assembly sequences based on target blueprints and part
geometries. Third, we offer a large-scale benchmark dataset
for part assembly sequence (D4PAS) featuring thousands of
physically validated sequences. Post-sequence inference, we
employ motion planning and contact optimization to com-
plete part assembly. Our evaluations show that PAST and the
overall algorithm match previous simulation-based methods
but with significantly reduced computation time. Additional
results and visualizations can be found in the supplementary
videos.

The present work has some limitations. Our approach
assumes one moving part at a time, as well as ideal part
sensing and localization, which may limit practical robotic
execution. Further, additional mechanisms may be needed to
hold the assembly. Future work will focus on fixing these
limitations while enabling real-world robotic assembly and
tool use.

https://www.youtube.com/watch?v=XNYkWSHkAaU
https://www.youtube.com/watch?v=XNYkWSHkAaU

REFERENCES

[1] S. Dorn, N. Wolpert, and E. Schömer, “An assembly sequence planning
framework for complex data using general voronoi diagram,” in 2022
International Conference on Robotics and Automation (ICRA), 2022,
pp. 9896–9902.

[2] Y. Li, A. Zeng, and S. Song, “Rearrangement planning for general
part assembly,” in Conference on Robot Learning. PMLR, 2023.

[3] Y. Li, K. Mo, L. Shao, M. Sung, and L. Guibas, “Learning 3d part
assembly from a single image,” European conference on computer
vision, 2020.

[4] J. Huang, G. Zhan, Q. Fan, K. Mo, L. Shao, B. Chen, L. Guibas, and
H. Dong, “Generative 3d part assembly via dynamic graph learning,”
in Advances in Neural Information Processing Systems, 2020.

[5] Y.-C. Chen, H. Li, D. Turpin, A. Jacobson, and A. Garg, “Neural
shape mating: Self-supervised object assembly with adversarial shape
priors,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2022.

[6] Y. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist, L. Wawrzyniak,
Y. Guo, A. Moravanszky, G. State, M. Lu, A. Handa, and D. Fox,
“Factory: Fast contact for robotic assembly,” in Robotics: Science and
Systems, 2022.

[7] S. Jin, X. Zhu, C. Wang, and M. Tomizuka, “Contact pose identi-
fication for peg-in-hole assembly under uncertainties,” in American
Control Conference (ACC), 2021, pp. 48–53.

[8] X. Zhang, S. Jin, C. Wang, X. Zhu, and M. Tomizuka, “Learning
insertion primitives with discrete-continuous hybrid action space for
robotic assembly tasks,” in International Conference on Robotics and
Automation (ICRA), 2022, pp. 9881–9887.

[9] S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski, and A. Ro-
driguez, “Tactile-rl for insertion: Generalization to objects of unknown
geometry,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), 2021, pp. 6437–6443.

[10] S. K. S. Ghasemipour, D. Freeman, B. David, S. S. Gu, S. Kataoka,
and I. Mordatch, “Blocks assemble! learning to assemble with large-
scale structured reinforcement learning,” in International Conference
on Machine Learning, 2022.

[11] M. Yu, L. Shao, Z. Chen, T. Wu, Q. Fan, K. Mo, and H. Dong,
“Roboassembly: Learning generalizable furniture assembly policy in
a novel multi-robot contact-rich simulation environment,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2022.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, vol. 30, 2017.

[13] Y. Tian, J. Xu, Y. Li, J. Luo, S. Sueda, H. Li, K. D. Willis,
and W. Matusik, “Assemble them all: Physics-based planning for
generalizable assembly by disassembly,” ACM Trans. Graph., vol. 41,
no. 6, 2022.

[14] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in IEEE International Conference on
Robotics and Automation., vol. 2, 2000, pp. 995–1001 vol.2.

[15] T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz,
S. Schaal, and S. Levine, “Offline meta-reinforcement learning for
industrial insertion,” in 2022 International Conference on Robotics
and Automation (ICRA), 2022, pp. 6386–6393.

[16] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning
for robot control,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 6023–6029.

[17] S. Dasari, A. Gupta, and V. Kumar, “Learning dexterous manipulation
from exemplar object trajectories and pre-grasps,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 3889–3896.

[18] X. Zhu, W. Lian, B. Yuan, C. D. Freeman, and M. Tomizuka,
“Allowing safe contact in robotic goal-reaching: Planning and tracking
in operational and null spaces,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 8120–8126.

[19] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Proceedings of Robotics: Science and Systems (RSS), 2023.

[20] M. Heo, Y. Lee, D. Lee, and J. J. Lim, “Furniturebench: Reproducible
real-world benchmark for long-horizon complex manipulation,” arXiv
preprint arXiv:2305.12821, 2023.

[21] M. F. F. Rashid, W. Hutabarat, and A. Tiwari, “A review on assembly
sequence planning and assembly line balancing optimisation using
soft computing approaches,” The International Journal of Advanced
Manufacturing Technology, vol. 59, pp. 335–349, 2012.

[22] Q. Su, “A hierarchical approach on assembly sequence planning
and optimal sequences analyzing,” Robotics and Computer-Integrated
Manufacturing, vol. 25, no. 1, pp. 224–234, 2009.

[23] L. H. De Mello and A. C. Sanderson, “A correct and complete
algorithm for the generation of mechanical assembly sequences,” in
1989 IEEE International Conference on Robotics and Automation,
1989.

[24] S. Ghandi and E. Masehian, “Review and taxonomies of assembly
and disassembly path planning problems and approaches,” Computer-
Aided Design, vol. 67, pp. 58–86, 2015.

[25] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” arXiv preprint arXiv:2108.10470, 2021.

[26] G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel, “Learning
robotic assembly from cad,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 3524–3531.

[27] X. Zhu, J. Ke, Z. Xu, Z. Sun, B. Bai, J. Lv, Q. Liu, Y. Zeng, Q. Ye,
C. Lu, M. Tomizuka, and L. Shao, “Diff-lfd: Contact-aware model-
based learning from visual demonstration for robotic manipulation via
differentiable physics-based simulation and rendering,” in Conference
on Robot Learning. PMLR, 2023.

[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in IEEE conference
on computer vision and pattern recognition, 2017, pp. 652–660.

[29] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” Advances
in neural information processing systems, vol. 30, 2017.

[30] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (TOG), 2019.

[31] C.-F. R. Chen, Q. Fan, and R. Panda, “CrossViT: Cross-Attention
Multi-Scale Vision Transformer for Image Classification,” in Inter-
national Conference on Computer Vision (ICCV), 2021.

[32] X. Zhu, Y. Zhou, Y. Fan, L. Sun, J. Chen, and M. Tomizuka, “Learn
to grasp with less supervision: A data-efficient maximum likelihood
grasp sampling loss,” in 2022 International Conference on Robotics
and Automation (ICRA), 2022, pp. 721–727.

[33] X. Zhu, L. Sun, Y. Fan, and M. Tomizuka, “6-dof contrastive
grasp proposal network,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 6371–6377.

[34] Y. Fan, X. Zhu, and M. Tomizuka, “Optimization model for planning
precision grasps with multi-fingered hands,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2019, pp. 1548–1554.

[35] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library
for collision and proximity queries,” in 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 3859–3866.

[36] S. Boyd and B. Wegbreit, “Fast computation of optimal contact
forces,” Robotics, IEEE Transactions on, vol. 23, 01 2008.

[37] J. Huang, G. Zhan, Q. Fan, K. Mo, L. Shao, B. Chen, L. Guibas, and
H. Dong, “Generative 3D part assembly via dynamic graph learning,”
in Advances in Neural Information Processing Systems, 2020.

[38] L. Ma, J. Gong, H. Xu, H. Chen, H. Zhao, W. Huang, and G. Zhou,
“Planning assembly sequence with graph transformer,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 12 395–12 401.

[39] P. Battaglia, J. B. C. Hamrick, V. Bapst, A. Sanchez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner,
C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani,
K. Allen, C. Nash, V. J. Langston, C. Dyer, N. Heess, D. Wierstra,
P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational
inductive biases, deep learning, and graph networks,” arXiv, 2018.

[40] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[41] K. D. D. Willis, Y. Pu, J. Luo, H. Chu, T. Du, J. G. Lambourne,
A. Solar-Lezama, and W. Matusik, “Fusion 360 gallery: A dataset and
environment for programmatic cad construction from human design
sequences,” ACM Transactions on Graphics, vol. 40, no. 4, 2021.

[42] K. D. Willis, P. K. Jayaraman, H. Chu, Y. Tian, Y. Li, D. Grandi,
A. Sanghi, L. Tran, J. G. Lambourne, A. Solar-Lezama, and W. Ma-
tusik, “Joinable: Learning bottom-up assembly of parametric cad
joints,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022, pp. 15 849–15 860.

	Title Page
	page 2

	
	Introduction
	Related Works
	Problem Overview
	Assembly Planning
	Part Assembly Sequence Transformer (PAST)
	Dataset for Part Assembly Sequences (D4PAS)
	Part Motion and Contact Planning

	Experiments
	Dataset and Network Details
	Baselines and Ablations
	Experimental Results

	Conclusion
	References

