MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

WHY DOES MUSIC SOURCE SEPARATION BENEFIT
FROM CACOPHONY?

Jeon, Chang-Bin; Wichern, Gordon; Germain, Frangois G; Le Roux, Jonathan

TR2024-030 March 19, 2024

Abstract

In music source separation, a standard training data augmentation procedure is to create
new training samples by randomly combining instrument stems from different songs. These
random mixes have mismatched characteristics compared to real music, e.g., the different
stems do not have consistent beat or tonality, resulting in a ca- cophony. In this work, we
investigate why random mixing is effective when training a state-of-the-art music source sep-
aration model in spite of the apparent distribution shift it creates. Additionally, we examine
why performance levels off despite potentially limitless combinations, and examine the sen-
sitivity of music source separa- tion performance to differences in beat and tonality of the
instrumental sources in a mixture.

IEEE ICASSP Satellite Workshop on Ezxplainable Machine Learning for Speech and Au-
dio (XAI-SA) 2024

(© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139






WHY DOES MUSIC SOURCE SEPARATION BENEFIT FROM CACOPHONY?

Chang-Bin Jeon'?, Gordon Wichern', Francois G. Germain', Jonathan Le Roux"

'Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA
2Department of Intelligence and Information, Seoul National University, Seoul, South Korea

ABSTRACT

In music source separation, a standard training data augmentation
procedure is to create new training samples by randomly combining
instrument stems from different songs. These random mixes have
mismatched characteristics compared to real music, e.g., the differ-
ent stems do not have consistent beat or tonality, resulting in a ca-
cophony. In this work, we investigate why random mixing is effec-
tive when training a state-of-the-art music source separation model
in spite of the apparent distribution shift it creates. Additionally,
we examine why performance levels off despite potentially limitless
combinations, and examine the sensitivity of music source separa-
tion performance to differences in beat and tonality of the instru-
mental sources in a mixture.

Index Terms— Music source separation, random mixing, data
augmentation

1. INTRODUCTION

Music source separation (MSS) has seen tremendous progress in per-
formance in the deep learning era with an ever-growing list of high-
performing models, in both the open-source community and com-
mercial applications [1,[2]. While this success is often credited to
advances in network architecture [[3H5]] and growing public dataset
availability [|6H8]], the contribution of training pipeline improvements
(e.g., data augmentation) has gone largely unnoticed and remains
poorly understood. Meanwhile, MSS research continues to suffer
from a chronic lack of available large-scale training data. Indeed,
despite some efforts to leverage self-supervised training [9|], training
a state-of-the-art MSS model still requires access to large amounts of
supervised data for which the stems (i.e., recordings of the isolated
sources) that make up a song are available for use as training targets.
This remains difficult due to the practical barriers to recording them
(especially outside of a recording studio environment) and intellec-
tual property concerns. The size of MSS datasets thus tends to be
small, with MUSDB18 [6]], the most widely used dataset in the field,
containing only 150 individual songs, i.e., about 10 hours per stem.
Data augmentation techniques have long been used to improve
performance, especially in the context of low training data availabil-
ity. Among these, techniques relying on random combinations of
samples have become popular in many fields, thanks to their simplic-
ity and effectiveness. For example, approaches such as mixup [[10]
or cutmix [11]] have been successfully applied to the training of var-
ious classifier systems, including audio ones [[12]]. Random mixing,
in the sense of mixing together randomly selected audio sources, is
also a staple of the learning-based audio source separation literature,
from speech enhancement and separation [13}/14] to natural sound
separation [15] and soundtrack separation [16]. It is however impor-
tant to note that, in the context of these applications, a random mix
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generally results in somewhat plausible sound scenes. One could
thus argue these mixes remain conceptually “in-distribution” with
respect to the target task so that the benefit obtained from their use
at training should feel unsurprising.

Crucially, we also find random mixing in much of the MSS
literature, where new “songs” are obtained by randomly combining
stems from different songs into additional training mixtures [17].
Thanks to its consistent effectiveness, the technique has become
standard practice when training MSS networks, especially in the
typical 4-stem (vocals, bass, drums, and other) separation setting
found in recent challenges [[18-20]. However, unlike for many of
the other fields mentioned earlier, the basis for the success of random
mixing is less clear in the MSS context. Indeed, the target audio
for the task is characterized by the strong consistency between the
stems of a given song, as they are made to fit together in terms of
aspects like beat, key, timbre, etc. Randomly-mixed mixtures ex-
hibit no such consistency and are akin to a cacophony, making them
conceptually “out-of-domain” with respect to the target task and,
as such, potentially detrimental to the training of better-performing
systems. Similarly, we lack a solid justification regarding why ran-
dom mixing was helpful in a recent paper on multiple singing voices
separation [21], where sources are arguably even more consistent
with other sources (e.g., in timbre, pitch, and time).

Data augmentation approaches were proposed to explicitly re-
duce this domain mismatch, either as replacement of or as comple-
ment to random mixing. For example, generating synthesized stems
out of the many publicly-available MIDI songs [7]] allows genera-
tion of many new diverse consistent mixtures, while deploying time
stretching and pitch shifting in combination with random mixing [4]
allows creation of more consistent mixtures, e.g., in key and beat.
However, in spite of their sensible foundations, these techniques
have yet to demonstrate consistent gains over using random mixing
alone. Here, we aim at elucidating some of the reasons behind the
success of random mixing, focusing on the natural question: what
do separation networks learn from collections of unmusical random
mixes? In particular, we raise the following research questions:

* Why do networks trained with randomly mixed training examples
perform better than ones trained without random mixing in spite
of the distribution shift?

¢ Random mixing can make a limitless amount of training data but
performance gains level off. To which extent can random mixing
give us a benefit?

* In our intuition, key differences between random and original
mixes are whether they have consistent beat (or time) and tonality
across each stem. How do these characteristics affect MSS?

To answer these, we compare the training dynamics of networks
with and without using random mixing. Next, we investigate the
effective number of unique random mixes in training. We also study
how inconsistent beat or tonality among the different instruments



in a mix affect performance through evaluations on pitch- or time-
shifted test data. Lastly, we confirm that pitch shift and slight time
shift can lead to a performance gain without random mixing, even if
less than when combined with it.

In this paper, we focus on the 4-stem separation setting based on
MUSDB-HQ data, where stems may be strongly correlated in pitch
or time but generally have very different timbral characteristics. Al-
though we leave analysis on different MSS tasks as future work, we
believe our results and conclusions can shed light on understanding
random mixing in diverse separation tasks.

2. MUSIC SOURCE SEPARATION
2.1. Task Definition

The task of music source separation consists in extracting the signal
of individual sources (typically referred to as stems) from a musical
input mixture. Mathematically, we consider a mixture signal z as
the sum of N stems 2™, i.e.,

N
—y (1)
n=1

The task consists then in putting together a system (e.g., an MSS
model) which, from input x, generates its best estimate &™) of z(™
for each n. We note that the definition of “source” is ambiguous, and
musical songs include different numbers and types of instruments.
Subsequently, we adopt the simplifying convention from the typical
4-stem MSS task [[18H20] where we define sources as belonging to
a fixed closed set of N =4 distinct source types, i.e., vocals, drums,
bass, and other. The signal from a given musical instrument is then
found in the stem of its corresponding source type. We also adopt the
typical convention that all signals are stereo (i.e., 2-channel) signals.

2.2. Experimental Setup

TFC-TDF-UNet v3: To make our analysis as current as possible, we
use the state-of-the art TFC-TDF-UNet v3 architecture [22]], winner
of the recent 2023 MDX Challenge Leaderboard A [20]. The model
takes as input the short-time Fourier transform (STFT) of the mixture
signal z, outputs an estimated STFT for all sources, and is trained us-
ing mean-squared error loss between the waveforms of the estimated
stems (obtained as the inverse STFT of the network output) and their
ground truths. In our experiments, we use the same TFC-TDF-UNet
v3 settings and hyperparameters that were used to train the model
on the MUSDB-HQ dataset in the original paper, including the use
of 6-second training chunks, overlap-add at inference time, model
exponential moving average (EMA) [23], and automatic mixed pre-
cision training [24]. We only change the batch size to 4 to fit the
model on a single 24 GB memory GPU. Every model instance was
trained for 470k steps. Additionally, we employ loudness normal-
ization [25]] to minimize the domain mismatch in terms of loudness.
MUSDB-HQ [6] consists of 150 songs split into a 100 song training
set and a 50 song test set (3.5 hours). Following common practice,
we divide the training set using 86 songs for training (5.3 hours) and
14 for validation (1.0 hours).

Evaluation Metric: We use the standard source-to-distortion ratio
(SDR) [26] as implemented in museval [[18]. However, for the few
experiments (Fig. [2) that require hundreds of evaluations for every
10k training steps, we use instead the more computationally efficient
SDR metric proposed at the recent SDX challenge [20], denoted as
SDR. Except in Fig.|1] all scores are averaged across the 4 stems.
Data Augmentation: Since music with stem data is highly difficult
to acquire, researchers have used various data augmentation meth-
ods to maximize the potential of small public datasets. As described

in the introduction, the focus of this paper is random mixing aug-
mentation [[17]. During the sampling of a training data sample, we
dynamically generate a random mixture y as follows, where we de-
note the m-th song in the dataset as s,,: for each source type n, we
randomly select a song index m,, and a start time ¢,, and define the
stem y™ as the 6-second excerpt starting at time ¢,, of the n-th stem

sﬁf},{ of song s, , and we add these N stems together, i.e.,

N N
y(t) =3y (t) =D s (t +tn). @)
n=1 n=1

This enables the creation of unique input random mixtures at each
training iteration, even with a small amount of stem data. We denote
as original mixes the samples obtained from the original fixed mix-
tures without using random mixing from (I), and as random mixes
the randomly sampled mixtures from (). Additionally, we use pitch-
shift data augmentation [27]] on all training mixes to best match the
state-of-the-art configuration in [22].

3. SHOULD WE INCLUDE ORIGINAL MIXES AT ALL?

We experiment with various combinations of original and random
mixes during model training to investigate how original mixes con-
tribute to a network’s final performance. Specifically, we set a proba-
bility p for each experiment such that each mix in a batch of training
data is sampled as an original mix with probability p and as a random
mix with probability 1—p.

When random mixing was first used in the context of music
source separation [[17], the performance gain was found to be only
0.2dB SDR (BLSTM-1 in Table 2 of [17]]). However, we observe a
2.1dB gain when training with only random mixes (p = 0.0) com-
pared to training with only original mixes (p = 1.0) (see Fig. [I).
We contend that this is due to a much more expressive model ar-
chitecture: TFC-TDF-UNet v3 is a deep U-Net with 70M parame-
ters, whereas BLSTM-1 is a shallow recurrent network with a single
BLSTM layer. This allows our model to learn more diverse features
from the infinitely many augmented mixes. We also observe that the
p=0.1 model does not show significant difference with the p=0.0
model (0.02 dB). This implies that when we train models, we do not
really need to use original mixes at all.

Interestingly, in Fig. [I} using random mixes even with only a
probability of 0.1 (p=0.9) results in a substantial performance gain
of 1.0dB. Since we train models with batch size B =4 for ] =470k
iterations, a total of 1 880 000 different mixes are generated over the
duration of the training. That is, the p = 0.9 model has learned
significantly meaningful information from only 188 000 randomly
mixed training examples. This leads to the necessity for further in-
vestigations on the effective number of random mixes, which we will
discuss in Section[3.2]

3.1. Training Dynamics Comparison

In Fig. ] we compare the performance of three models (p €
{1.0,0.5,0.0}) over the course of training, measured every 10k
iterations. Performance is evaluated on four sets consisting of either
original mixes or random mixes, generated from either training or
validation data. These sets are generated once and fixed across
training iterations. To match the training setting, evaluations are
performed on 6-second chunks (for original mixes, songs are split
without overlap). For each stem’s evaluation, random mixes are
generated independently across 3 different seeds to marginalize the
influence of randomness, resulting in twelve times as many chunks
as the original mixes.
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Fig. 1. Test SDR for networks trained with different ratios of original
and random mixes. ‘p=1.0" corresponds to the model trained solely
with original mixes and ‘p = 0.0’ to the model trained solely with
random mixes.

Noticeably, for the model only trained with original mixes (p =
1.0) shown in the blue curves in Fig. 2] the scores on original mixes
in the training set are increasing while the scores on random mixes in
the training set and both conditions in the validation set are decreas-
ing. That is, the model trained without using random mixes easily
overfits to the training data. On the other hand, models trained with
at least some random mixes (p = 0.5 and p = 0.0, i.e., orange and
green curves, respectively) do not appear to overfit.

In Fig. Eka), we also observe that the p = 0.5 model (dashed
orange curve) performs better than the p=0.0 model (dashed green
curve) on the training original mixes, while performing worse on the
validation original mixes in Fig. mb). We conjecture this is because
the p = 0.5 model has seen the same mixes too many times during
training, which we explore in more detail in Section[3.2]

3.2. Influence of the Number and Variety of Random Mixes

In this section, we investigate the amount of random mixes needed
for effective training. We first define a number R of unique random
mixes as a fraction of the total number / x B of training examples
(which as discussed previously is 1880 000). We then train mod-
els by sampling training examples only from those fixed R random
mixes, repeating them throughout training until we reach I X B sam-
ples, without using any original mixes. In Fig.[3(a), we see that even
when the model is trained with only 10% of the maximum number of
random mixes, there is almost no decrease in performance. This re-
sult somewhat explains the performance gain of the p=0.9 model in
Fig.[T} where 188 000 random mixes used in conjunction with orig-
inal mixes were actually enough to train a model with competitive
performance. On the other hand, it is also noticeable that the final
performance of the p = 0.9 model from Fig. |I| (7.2dB SDR) is far
below that of the model trained solely by repeating the 10% of fixed
random mixes from Fig. a) (8.2 dB). This likely indicates that the
model trained with p = 0.9 original mixes overfits to the original
mixes. It is also possible that original mixes are less informative for
model training, which we will investigate further in Section 4]

In Fig. Ekb), we create the same fixed number of random mixes,
but sample training stems from a reduced dataset obtained by ran-
domly selecting about half of the songs from the 86 training songs in
MUSDB. We repeat the song selection and random mix creation with
3 different random seeds, where the reduced dataset’s length was
2.3, 2.6, and 3.0 hours. The shaded regions in the figure show the
standard deviation across seeds. Similar to Fig. B|a), Fig. [B[b) also
confirms that training with 10% of fixed random mixes is compara-
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Fig. 2. Average SDR improvement during training as measured on
sets of random (solid lines) and original mixes (dashed lines) for
three different models. The model trained with only original mixes
(p = 1.0) overfits to the training data. Other models trained with
random mixes (p=0.5 and p=0.0) do not.
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Fig. 3. Test SDR when varying the amount of random mixes created
from (a) the full training data and (b) a reduced set of songs. Models
are trained by repeatedly sampling batches from this fixed set of ran-
dom mixes for I = 470k iterations, with the size of this set indicated
on the x-axis as a ratio to the total number of training examples.

ble to using a unique random mix for each training sample (100%).
Furthermore, it is noteworthy that just repeatedly using 90 hours of
random mixes obtained from 86 songs (the 3% setting in Fig. [B[(a))
performs on par or better than using about 3000 hours of never-
repeating random mixes from the reduced song data (100% setting
in Fig.[3[b)). It thus appears that a small amount of random mixes
composed of stems from a larger set of songs performs better than
a large amount of random mixes composed of stems from a smaller
set of songs. Thus, the diversity or novelty of random mixes may
be more important than their amount; data augmentation alone is not
enough, fresh data is necessary for future improvements.

4. ON CONSISTENT BEAT AND TONALITY

In this section, we analyze how consistent beat and tonality across
different stems of mixtures affect performance in music source sepa-
ration. In Fig.[] on the test set of MUSDB-HQ, we apply (a) timing
shift and (b) pitch shift to each stem to form mixtures that have (a) in-
consistent beat and (b) inconsistent tonality, respectively, even as all
stems are from the original song. Specifically, timing shift parame-
ters for each stem are sampled from uniform distribution U (—ts, ts),
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Fig. 4. Test SDR for various (a) timing and (b) pitch modified test
sets using the models trained with only original (p = 1.0) or only
random mixes (p = 0.0) from Fig.[T] Solid lines show the average
across test sets generated from 3 different random seeds, and the
shaded regions show the standard deviation.

where t is the range of timing shift (x-axis in Fig. f{a)). Pitch shift
values in semitones are discretely sampled up to a maximum shift of
3 semitones up or down, as shown in the x-axis in Fig. f[(b). For each
parameter, 3 different random seeds are used. Then, we separate the
mixtures using the p=0.0 and p=1.0 models from Fig.[T] i.e., mod-
els trained with only random and only original mixes, respectively.

In Fig. Eka), we observe that test sets with inconsistent beat are
easier to separate (i.e., higher SDR). Even when timing shift param-
eters are smaller than STFT parameters (e.g., a shift of ¢; = 30ms
is smaller than both the FFT size (186 ms) and hop size (46 ms) of
the model), performance starts to increase. When ¢; = 1, the per-
formance gain is almost 0.9 dB. We also confirm that inconsistent
tonality from pitch shifting makes source separation much easier in
Fig.[|b), as we observe improvements up to 1.0 dB.

Furthermore, we investigate the effects of timing and pitch shift
during training, but evaluated on the unmodified MUSDB-HQ test
set. In Fig.[5(a), we train models without random mixing but with
slight time shifts applied to each stem during training, and add
the t; = co case, where 6-second training samples can come from
anywhere in the same song, i.e., within-song random mixing. In
Fig. Eka), we observe that for shifts greater than 100 ms, which is
longer than the STFT hop size, the scores of the models start to in-
crease, reaching 6.8 dB SDR at ¢, =1 s shift, which is only 0.1dB
lower than the ¢, = oo shift.

Fig.5[b) displays results after training with only original mixes,
but applying pitch shifts to each stem in both a ‘consistent’ (same
pitch shift applied to each stem, the augmentation used in other ex-
periments) and ‘inconsistent’ (different pitch shift applied to each
stem) manner. Scores increase with larger amounts of pitch shift for
both cases, with inconsistent pitch shift providing a notable improve-
ment. The best consistent pitch shifting (6.2 dB), which corresponds
to the p=1.0 model from Fig. |1} is much worse than the best incon-
sistent one, suggesting that inconsistent tonality between stems dur-
ing training is an important component of random mixing. Still, we
note that even the best-scoring configuration of within-song random
mixing in Fig. [5]scores clearly worse than full random mixing.

In Table[I] to further investigate how domain mismatch affects
the performance of MSS networks, we randomly choose stems from
different songs in the train set of MUSDB-HQ and mix them to make
a dataset of 86 beat- and tonality-inconsistent songs from which
training chunks will be sampled (until now, random mixing was at
the 6-second chunk level, resulting in many more possibilities). For
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Fig. 5. Test SDR of models trained on original mixes with (a)

slightly shifted timing or (b) inconsistent tonality across stems.

Table 1. Test SDR (mean =+ standard deviation in [dB]) for mod-
els trained with original (consistent beat and tonality) and randomly
made (inconsistent beat and tonality) data at the song level (not for
every chunk).

Training data  vocals bass drums other avg
Original 74+£0.1 54+£0.1 6.6+01 47+01 6.1+0.1
Random -09+09 -14+1.0 22+22 3.0+06 07+1.1

each song, the four chosen stems are trimmed to match the short-
est one. This results in new datasets across 3 random seeds that each
have length of 2.7 hours. Then, we train models on the random songs
without random mixing (similarly to the p=1.0 model in Fig. E]) and
compare them to models trained on the original songs. For fair com-
parison, we used 3 random 2.7 hour subsets obtained by randomly
trimming each original song.

Surprisingly, data with inconsistent beat and tonality (Random)
leads to significant performance degradation compared to consistent
beat and tonality (Original), dropping from 6.1 dB to 0.7 dB SDR.
In contrast, a model trained using 2.7 hours of random mixes ob-
tained at the 6-second chunk level (R = 0.09% in Section [3.2),
where the training examples are likely much more diverse, obtained
5.0dB SDR. This implies that the domain consistency matters in
music source separation, all the more so as data diversity becomes
limited. This could explain why, in the task of vocal harmony sepa-
ration where consistency is arguably even stronger, random mixing
was found to be detrimental on a small dataset (104 minutes) in [28]],
but significantly beneficial on a much larger one (400 hours) in [21].

5. CONCLUSIONS AND FUTURE WORK

In this paper, we took steps towards explaining the effectiveness of
random mixing, an obviously non-musical data augmentation tech-
nique that has become indispensable in music source separation re-
search. Our results illustrated that both data diversity and domain
consistency in terms of beat and tonality are important for music
source separation, but the data diversity provided by random mix-
ing seems more beneficial unless the amount of random mixes is
strictly restricted. We also empirically demonstrated that actual per-
formance gain of random mixing comes from the diversity of songs,
not solely from the infinitely many combinations of random mixes.
Furthermore, it was confirmed that the inconsistent beat and tonality
of random mixes make separation easier, which perhaps leads to a
stronger learning signal during network training. In the future, we
plan to validate our results on larger recently released datasets [8]]
and explore learning curricula based on random and original mixes.
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