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Abstract
Single-pixel imaging is an efficient image acquisition process where light from a target scene
is passed through a spatial light modulator and then projected onto a single photodiode with
a high temporal acquisition rate. The scene reconstruction is achieved us- ing computational
methods that leverage prior assumptions on the scene structure. In this paper, we propose
to model the structure of a dynamic spatio-temporal scene using a reduced-order model that
is learned from training data examples. Specifically, by combining single-pixel imaging meth-
ods with a reduced-order model prior implemented as a neural ordinary differential equation,
image sequence reconstruction can be accomplished with significantly reduced data require-
ments while maintaining performance levels on par with leading methods. We demonstrate
superior reconstruction at low sampling rates for simulated trajectories governed by Burgers’
equation and turbulent plumes emulating gas leaks.
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ABSTRACT

Single-pixel imaging is an efficient image acquisition process
where light from a target scene is passed through a spatial light
modulator and then projected onto a single photodiode with a high
temporal acquisition rate. The scene reconstruction is achieved us-
ing computational methods that leverage prior assumptions on the
scene structure. In this paper, we propose to model the structure of
a dynamic spatio-temporal scene using a reduced-order model that
is learned from training data examples. Specifically, by combining
single-pixel imaging methods with a reduced-order model prior im-
plemented as a neural ordinary differential equation, image sequence
reconstruction can be accomplished with significantly reduced data
requirements while maintaining performance levels on par with lead-
ing methods. We demonstrate superior reconstruction at low sam-
pling rates for simulated trajectories governed by Burgers’ equation
and turbulent plumes emulating gas leaks.

Index Terms— Single-pixel imaging, high-dimensional dynam-
ical systems, reduced-order model, neural ODE

1. INTRODUCTION

Low-cost cameras with high pixel counts have enabled digital imag-
ing to become ubiquitous. However, traditional pixel arrays are
often too slow or too expensive for imaging applications that require
high acquisition speed or detection at wavelengths outside of the
visible spectrum. On the other hand, imaging systems that raster
scan the illumination or detection pixel-by-pixel enable image for-
mation from a cost-effective single-pixel detector, but the scanning
process may likewise be too slow to capture dynamic scenes. For
example, methane gas-leak monitoring requires mid-infrared (MIR)
wavelengths sensors. Unfortunately, MIR array detectors come with
a significant cost, and capturing scene dynamics requires high-frame
rate acquisition [1]. In such scenarios, a candidate solution is single-
pixel imaging (SPI), a technique that uses a single detector element
and time-varying spatial light modulation to capture multiplexed
measurements of light intensity [2].

SPI acquisition is often combined with prior information on the
structure of the scene content along with computational reconstruc-
tion techniques to recover a full image despite using fewer modu-
lation patterns than the target pixel resolution. Initial approaches
to single pixel imaging often assumed sparsity of the scene in the
Fourier or wavelet basis or in the spatial gradient domain (i.e., to-
tal variation) [2, 3]. Recent approaches have adopted deep learning
(DL) architectures for SPI reconstruction and showed that using deep
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neural networks can dramatically reduce the sampling ratio and offer
near-real-time performance [4, 5, 6, 7]. However, these methods still
require a relatively large number of single-pixel samples per frame
(SPF) to ensure satisfactory reconstruction of a full video sequence.

In this work, we aim to enable high quality reconstruction of
videos from a small number of samples per frame by learning priors
on dynamics that can act as a regularization across the entire se-
quence of frames. We call our method SPI-NODE because we com-
bine SPI acquisition with a reconstruction algorithm that uses a neu-
ral ordinary differential equation (Neural ODE, or NODE) as regu-
larization. We first pre-train a reduced-order model (ROM) to iden-
tify a low-dimensional latent space representation of a gas flow and
calculate the system’s evolution within the latent space using Neural
ODEs [8, 9]. Next, we efficiently solve an ODE-regularized inverse
problem using the adjoint-sensitivity method to obtain the necessary
derivatives following the technique proposed in [8]. The reconstruc-
tion procedure minimizes the measurement mismatch between the
samples recorded by the SPI detector and the synthesized measure-
ments obtained by sampling the reconstructed trajectory using the
compressive measurement operator. We demonstrate through nu-
merical validation using simulated and real flows that our approach
is capable of reconstructing dynamic flows at a sampling rate that is
approximately two orders of magnitude lower than that achieved by
competitive SPI algorithms.

This paper is organized as follows, in Section 2 we describe re-
lated work in the area of single pixel imaging and reduced-order
modeling of dynamical flows. Section 3 introduces the signal acqui-
sition model along with the proposed network architecture that will
allow us to train suitable ROMs, and present the recovery algorithm
with our proposed regularizer. In Section 4, we evaluate our ap-
proach using one synthetic dataset and one experimental dataset and
demonstrate its superiority over state of the art methods. Finally, we
conclude the paper in Section 5.

2. RELATED WORK

Our work lies at the intersection of single pixel imaging and reduced-
order modeling using neural ODEs. SPI evolved from early obser-
vations of the benefits of using multiplexed illumination instead of
raster scanning [10] and the possibility of combining multiplexing
with a single pixel detector to form an image [11]. However, SPI de-
velopment was largely motivated by compressive sensing theory [12,
13] and efficient reconstruction algorithms [2]. Recent works have
focused on creating more sophisticated reconstruction techniques
that are agnostic to the sampling patterns by improving the effi-
ciency of image recovery using classical [3, 14] as well as learned
priors [4, 5, 7] for image recovery. In the ensuing years, many im-



plementations of SPI have been explored with different hardware ar-
chitectures, reconstruction algorithms, and imaging applications [15,
16, 17].

A Neural ODE model [8] is a differentiable ODE solver.
It utilizes the adjoint sensitivity method [18] to back-propagate
the gradients through the solution. The emergence of GPU-
compatible implementations of differentiable ODE solvers such
as torchdiffeq [8] and Diffrax [19] caused a broad adop-
tion of Neural ODE models in many applications, including for
system identification [20], classification [21] medical imaging [22],
reduced-order modelling [9, 23], and modelling air flow [24] and
fluids [25], to name a few. Neural ODEs have demonstrated supe-
rior ability to model highly non-linear dynamics compared to linear
models especially when the dimensionality of the space over which
the dynamics evolve is small.

3. PROBLEM FORMULATION

3.1. Acquisition System

Let x(t) ∈ X ⊆ Rn, t ∈ [0, T ] denote temporal snapshots of a
high-dimensional spatio-temporal system indexed in time by t, e.g.
the desired video recording of a scene that we wish to observe. In
many applications we cannot record x(t) at full resolution in real
time due, for example, to a prohibitive cost of the required hardware
or lack of high-dimensional sensors. Instead, we collect measure-
ments from p detectors, where each detector provides a linear com-
bination of the light emitted by x(t) at time t:

y(t) = Ax(t), A ∈ Rp×n, t ∈ [0, T ]. (1)

In particular, we consider a single pixel camera setup where for
every time instance t, a vector of p acquisitions y ∈ Rp are ob-
tained by a high sampling rate photo-detector using the projection
matrix A. The rows of the matrix A correspond to a binary mask
pattern that can be optically encoded, for example, using a digital
micromirror device (DMD) [26]. A DMD is a type of spatial light
modulator commonly used for SPI consisting of an array of indi-
vidually addressable mirrors with two possible angle settings. Each
micromirror corresponds to a mask element, which can be turned
“on” or “off” by switching the mirror angle. Fig. 1 illustrates a sin-
gle pixel imaging setup where a gas plume is imaged using a DMD
array and a single-pixel MIR photo-detector.

Multiple techniques attempt to reconstruct x(t) directly by in-
verting equation (1) under mild regularity priors; examples include
differential ghost imaging [27], total variation regularization [15],
and Fourier-domain regularized inversion [28]. Alternatively, one
can recover x(t) by recovering its representation z(t) ∈ Z ⊆ Rm

on a low-dimensional manifold (m ≪ n). Specifically, given an in-
vertible mapping ψ(z) : Z → X , we replace the problem of solving
for a vector x in high-dimensional space using p linear observations
with solving for a low-dimensional vector z from p non-linear ob-
servations:

y(t) = Aψ(z(t)). (2)

We call the space X an observable space, Z a latent space, and
the mapping ψ(z) a decoder. Often a suitable ψ(z) is not known
in advance, in which case an approximation ψθ(z) is trained using
a dataset of full-resolution images {x1, . . . ,xN}, where θ denotes
the parameters of the model, e.g. the weights of an autoencoder net-
work. However, if y(t) is insufficient for a unique reconstruction of
x(t) then it will remain insufficient for reconstructing z(t). In order
to reduce the sufficient number of measurements that can uniquely
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Fig. 1: Schematic of an SPI setup for gas leak monitoring. An MIR
source flood-illuminates the region of interest. The light is absorbed
by the gas plume but reflected from the backscatter surface. The re-
flected light is focused with lens L1 onto the DMD, which modulates
the light by angling the micro-mirrors to reflect some of the light to-
wards lens L2, which is focused onto the single-pixel MIR detector.

reconstruct x(t), and by proxy z(t), additional structural sparsity or
priors may be introduced, such as joint training of the sampling ma-
trices and the decoder [7]. In this work we take a different route and
supplement the encoder ψ(z) with prior knowledge of the dynamics
of z(t) on the manifold over time.

3.2. Reduced-Order Model with Non-Linear Latent Dynamics

Let x(t) be modelled as an autonomous dynamical system on a finite
space X ⊆ Rn:

d

dt
x(t) = f(x(t)). (3)

Considering the high dimensionality of x(t), it is often expensive to
directly use the relationship (3) for predicting the behaviour of the
system even when f(x) is known. However, many physical systems
tend to evolve on a lower-dimensional manifold Z . In that space, the
dynamics evolve according to a (generally unknown) function h(z):

d

dt
z(t) = h(z(t)). (4)

Thus, one can predict the dynamics of the system x at a future
time T by projecting the initial condition x(0) into the latent space,
performing an integration there, and mapping the resulting trajectory
back to the observable space:

z(0) = ψ−1(x(0))

z(T ) = z(0) +

∫ T

0

h(z(t))dt

x(T ) = ψ(z(T )).

(5)

When m ≪ n we refer to the triplet (ψ,ψ−1,h) as a Reduced-
Order Model (ROM) of f . It is often the case that for a given system
f there exists no reduced-order representation (ψ,ψ−1,h) such that
the relation (5) holds exactly. In this case, we seek an approxima-
tion ROM (ψθ∗ , ϕθ∗ , hθ∗) that minimizes the difference between
the data x(t) and the prediction x̂(t) over a chosen class of models
(ψθ, ϕθ, hθ) parameterized by θ. We model ψ, ψ−1 with a neural
network autoencoder ψθ , ϕθ , and h is modeled by a fully connected
network hθ . The exact constitution of the networks ψθ , ϕθ , and
hθ are problem-dependent and discussed more closely in the related
sections.



We define a training loss L as a sum of the reconstruction and
prediction losses. The former ensures that ϕθ and ψθ are inverse
mappings of each other, whereas the latter matches the model’s pre-
dictions to the available data. Formally, for a given set of trajectories
Xi, i ∈ {1, . . . , N}, where each trajectory Xi ∈ Rn×K is a set
of K snapshots Xi(tj) ∈ Rn of the system, for K time-steps, tj ,
j ∈ {0, . . . ,K − 1}, the loss function Ldata

θ is defined as:

L(θ) =
N∑
i=1

[
K−1∑
j=0

∥Xi(tj)− ψθ(ϕθ(Xi(tj)))∥2

+

K−1∑
j=1

∥∥∥∥ψθ

(
ϕθ(Xi(t0)) +

∫ tj

t0

h(z(t))dt

)
−Xi(tj)

∥∥∥∥2
]
.

(6)

To obtain a ROM (ψθ∗ , ϕθ∗ , hθ∗), we minimize the loss above with
respects to the network parameters θ. We note that each trajectory
Xi may be captured over its own time-frame and use a distinct, pos-
sibly non-uniform, step-size, in which case the loss function should
be modified accordingly1. To simplify the notation, without loss of
generality, in the rest of the paper we assume that all trajectories
were recorded over the same time-frame with an equal and uniform
step-size ∆t.

3.3. Recovery Algorithm

We use the approximate ROM (ψθ∗ , ϕθ∗ , hθ∗) above to regu-
larize the latent-space dynamics of the single-pixel imaging re-
constructions. Specifically, we obtain the reconstruction x∗ =
ψ(z∗) by minimizing the following loss with respect to Z =
[z0, . . . , zK−1] ∈ Rm×K :

Lrecon
θ∗ (z) =

K−1∑
j=0

∥yj −Aψθ∗(zj)∥22

+ λ

∥∥∥∥z0 + ∫ tj

t0

hθ∗(z)dz − zj

∥∥∥∥2

2

,

(7)

where the parameter λ controls the degree to which the compressing
sensing algorithm relies on the latent dynamics hθ∗ during the signal
reconstruction phase. We minimize the loss (7) using a gradient-
based automatic differentiation.

4. EXPERIMENTS

4.1. Burgers’ Equation

We first study the performance of our framework on flows governed
by Burgers’ equation with [−π, π]-periodic boundary conditions:

ut + uux = νuxx

u(−π, t) = u(π, t), ∀t ∈ [0, T ],
(8)

where ut, ux, and uxx represent partial derivatives in time, the first,
and second spatial derivatives, respectively.

ROM Training. To obtain a training dataset for the ROM we repli-
cate the experimental setup from [9, Section 3], generating 1024

1The implementation is affected only in evaluating the integral in (6).
This part is handled by the torchdiffeq [29] library, which supports non-
uniform time-frames within a batch.

trajectories on a discretized spatial domain [−π, π] with 128 grid-
points. To generate a diverse set of initial conditions we sum the first
10 harmonic terms with random coefficients:

u(x, 0) =
1

10

10∑
k=1

ak cos(kx) + bk sin((k + 1)x), (9)

where ak, bk ∼ N (0, 1). We solve Equation 8 for t ∈ [0, 2] with
∆t = 0.1 using a spectral solver [30] resulting in trajectories of
length K = 201 time-steps each.
Architecture. We define ϕθ and ψθ to be fully-connected neural
networks. Both functions had 3 hidden layers 512 neurons wide
each, with ReLU activations after all but the output layers. We set the
observable space dimension n = 128 and the latent space dimension
m = 16. The network hθ is a fully-connected network with 3 layers
256 neurons wide each with ReLU activation after each hidden layer
except for the output layers.
SPI Recovery. For the recovery phase, we generate 128 trajectories
with “bump” initial conditions – a smooth approximation of a bump
with two opposing steeply-curved sigmoids:

u(x, 0) =
1

1 + exp(−k(x− a))
− 1

1 + exp(−k(x− b))
, (10)

where a < b are sampled uniformly in [−π, π] and k = 20. We
choose this shape to ensure that the training and sensing trajectories
are sufficiently different to prevent memorization effects. Every row
in the sensing matrix At is a 128 binary {0, 1} vector with 64 non-
zero components sampled uniformly.
Performance Evaluation. We compare our SPI-NODE regulariza-
tion approach with four alternatives: an autoencoder-enhanced vari-
ation of differential ghost imaging [27](DGI+Conv. Decoder, [7]),
Total Variation regularization (TVR, [15]), Fourier-domain regular-
ized inversion (FDRI, [28]), and an approach which uses an autoen-
coder (AE, [31]). We treat the Burgers’ trajectories as 2D-images
in the spatial and temporal domains and measure reconstruction ac-
curacy with three commonly-used metrics: the normalized mean-
squared error (MSE), the peak signal-to-noise ratio (PSNR), and the
structural similarity index measure (SSIM) [32]. The reconstruc-
tion performance is evaluated as a function of the samples-per-frame
(SPF) rate, i.e., the number of SPI measurements divided by the
number of grid points n = 128 in every frame that is recovered.
Results. An example Burgers’ trajectory that was recovered from
2% samples per frame SPI measurements is shown in Fig. 2. The
results in the figure demonstrate that benchmark methods, which re-
construct each snapshot separately, fail to recover the trajectory be-
cause of the extremely low SPF rate. On the other hand, SPI-NODE
reconstructs the trajectory as a whole, and since the reduced-order
model serves as a strong prior for the dynamics across time, the tra-
jectory is recovered with much lower error. Quantitative SPI recov-
ery results, presented in Fig. 3, show the median PSNR, MSE, and
SSIM over different numbers of samples per frame taken. We ob-
serve that SPI-NODE regularization achieves ≈ 25% higher PSNR
and up to ≈ 33% times higher SSIM relative to FDRI when the SPF
rate is low. It also achieves ≈ 70% better PSNR and 2× higher
SSIM relative to the autoencoder-based algorithm, which highlights
the importance of modeling the temporal dynamics as in SPI-NODE.

4.2. Application to Real Data: Reconstruction of a Gas Plume

In this section we use our technique to reconstruct videos of gas
leaks using observations from a simulated single-pixel camera from
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Fig. 2: Example reconstruction of a trajectory governed by Burgers’ equation at SPF = 2/128 ≲ 2%. All algorithms except the proposed
SPI-NODE method fail to recover the trajectory due to an insufficient number of samples per frame.
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Fig. 3: Reconstruction performance for trajectories governed by
Burgers’ equation, shown as median PSNR, MSE, and SSIM with
95% confidence intervals. We see that SPI-NODE achieves ∼ 25%
higher PSNR and up to ∼ 33% times higher SSIM relative to other
algorithms when the SPF rate is low relatively to its strongest com-
petitor (FDRI).

a real-world dataset: ScalarFlow [33]. The physical problem at hand
is an ascending turbulent plume in an environment of larger density.
The dataset consists of 3D reconstructions of density and velocity of
104 smoke plumes, each 150 frames long. Similar to the Burger’s
equation setting, the ROM consists of an encoder ϕ(u), a decoder
ψ(z), and latent dynamics operator h(z). However in this setting,
the pair ϕ(u) and ψ(z) are represented by a convolutional autoen-
coder to capture spatial patterns, and the function h(z) is represented
by a fully-connected network. We assemble our dataset by taking
the front views (2D) of the reconstructions and compressing their
resolution to 320 × 192 pixels. We then split the trajectories into
non-overlapping sets: train (92), dev (5), test (5), and reconstruction
(2) respectively. We use the first three sets to train, fine-tune, and
select a final ROM, respectively. After obtaining the ROM, we use
the fourth set of data for SPI reconstruction. For our simulated SPI
experiments, we sample 2 to 128 single-pixel observations per frame
which corresponds to SPF rates ranging from 3× 10−3% to 0.2%.

The results are presented on Figure 4(a), the average MSE and
SSIM are displayed on Figure 4(b). We see that SPI-NODE con-
sistently outperforms FDRI by both metrics within the given ranges
of SPF rates. For example, on Figure 4(a) we see that FDRI recon-
structs a blurry image with 32 samples per frame available (SPF rate
of 0.05%), whereas our method is able to reconstruct considerably
more accurate image.

5. CONCLUSION

In this paper, we introduced a ROM-based regularization that can
be used for single-pixel imaging of scenes with spatio-temporal dy-
namics governed by an ODE. By training a reduced-order model
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Fig. 4: SPI reconstructions of gas plumes from the ScalarFlow
dataset [33]. The left panel shows SPI reconstructions by three al-
gorithm using 16 samples per frame (0.026% SPF rate). Right panel
presents mean PNSR, NRMSE, and SSIM with 95% confidence in-
tervals.

with a neural ODE, we learn an efficient representation of spatio-
temporal flows that can act as a strong prior for SPI reconstruction.
SPI-NODE is a good fit for settings when large amounts of clean
and representative data are available for training, and when the ap-
plication in question necessitates a low sample-per-frame ratio (e.g.,
< 1%). In such settings, our method leverages the ROM to com-
pensate for severly under-sampled measurements with a strong data-
driven prior and yields superior recovery quality. Our approach to
SPI regularizaton has promise for applications such as gas leak mon-
itoring that are limited by the cost of mid-infrared pixel arrays and
the slow speed of raster-scanned methods.
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