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ABSTRACT

Due to the noise and low spatial resolution in automotive
radar data, exploring temporal relations of learnable features
over consecutive 2 radar frames has shown performance gain
on downstream tasks (e.g., object detection and tracking) in
our previous study [1]. In this paper, we further enhance
radar perception by significantly extending the time horizon
of temporal relations. To this end, we propose a scalable con-
nective temporal radar (SCTR) method that consists of 1) a
standard temporal relation layer (TRL), 2) a connective TRL
with shifted window attention, and 3) a window merging op-
eration, to facilitate feature connectivity between radar frames
over an extended time interval. Our complexity analysis and
comprehensive evaluation of the Radiate dataset demonstrate
that the SCTR achieves a great tradeoff between the complex-
ity and downstream detection performance.

Index Terms— Autonomous driving, automotive percep-
tion, ADAS, radars, object detection, temporal attention.

1. INTRODUCTION

Automotive perception entails the interpretation of external
driving surroundings and internal vehicle cabin conditions
with an array of perception sensors to achieve robust safety
and driving autonomy [2]. Compared with the mainstream
camera and Lidar sensors, radar is cost-efficient, friendly to
sensor maintenance and calibration, and has distinctive ad-
vantages in providing long-range perception capabilities in
adverse weather and light conditions [3].

Nevertheless, a notable limitation of radar-assisted auto-
motive perception is the low angular resolution in the azimuth
and elevation domains and the inherent noise including mul-
tipath and ghost reflection. Consequently, its capacity for ob-
ject detection and tracking lags behind the requirements for
fully autonomous driving capabilities. Compared with radar-
assisted multimodal automotive perception [4–6], standalone
radar-only perception has been studied in [1, 7–12]. For in-
stance, Bai et al. [10] introduced a radar transformer that uses
vector and scalar attention mechanisms to establish attention
maps across spatial, Doppler, and radar cross-section (RCS)
domains using only radar information. This approach requires
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Fig. 1: Scalable Connective TempoRadar (SCTR). Compared
to Sequential TR (SeTR), which is a sequential extension of
vanilla TR, SCTR, which correlates with all time points in
both directions, is robust to noise in radar frames.

fewer perception resources and circumvents the need for intri-
cate synchronization processes among multimodal sensors. A
multi-view feature fusion method was proposed in [9] to com-
bine features from range-Doppler, range-angle, and angle-
Doppler radar heatmaps for object classification. As opposed
to single-frame radar feature extraction, our previous study
in [1] proposed a framework referred to as TempoRadar (TR)
to explore temporal attention over features from 2 consecu-
tive radar frames. It has shown promising performance gain
evaluated using the large-scale open Radiate dataset.

One might then postulate: “What are the implications of
extending TempoRadar to cover more radar frames?” The an-
swer might be two-fold. On one hand, one should expect im-
proved performance under the assumption that most radar fea-
tures are present over more than just 2 frames, considering a
typical radar frame rate of over 10 fps. On the other hand, di-
rectly applying temporal attention to a longer time horizon in-
curs a quadratic computation complexity over the number of
features from each frame and the number of frames, compro-
mising its scalability. One straightforward way for a scalable
TempoRadar is to stack temporal feature attention for two
consecutive frames and sequentially connect them, which we
refer to as sequential TR (SeTR). However, the SeTR baseline
may suffer from the noise, object occlusion, and slow conver-
gence to capture temporal relation over a long time horizon as
shown in the left plot of Fig.1.
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Fig. 2: (Left) Overall SCTR framework and (Right) SCTR Layer. This is constructed with three kinds of specific layers, Those
are the vanilla temporal relation layer (TRL), the connective TRL and the window merging.

In this paper, we propose a scalable connective Tempo-
Radar (SCTR) method that enables scalable inference over
consecutive radar frames at a long time horizon (e.g., 8
frames) while facilitating connective attention across all con-
sidered frames; see the right plot of Fig.1. This is achieved
by using the standard temporal relation layer (TRL) of [1] as
a base layer, then partitioning top-K features from the TRL
outputs into shifted overlapping windows, designing attention
mechanisms to maintain connectivity across time frames, and
a window merging operation. Through our complexity anal-
ysis and performance evaluation on the Radiate dataset [13],
the proposed SCTR shows competitive object detection per-
formance with affordable complexity over a list of baseline
methods including the TR and SeTR.

2. RADAR PERCEPTION WITH TEMPORAL
RELATIONS FRAMEWORK

Denote multiple radar frames as I = {I1, · · · , It, · · · IT } ∈
RT×H×W where It ∈ R1×H×W is a radar frame, and T ,
H and W represent the number of frames, height and width,
respectively. Following the procedures of [1], we obtain the
feature representations Zt := Fθ (It,t−1) with a backbone
Fθ (·). It is built in standard convolutional neural networks
such as ResNet [14] which has shared model parameters θ for
processing an input It,t−1, which It,t−1 = {It, It−1} if the t
is even and It,t−1 = {It−1, It} if t is odd. The final represen-
tations of the features result in Zt ∈ RC×H

s ×W
s where C is

the number of channels and s is the downsampling ratio over
the spatial dimension.

To localize objects, the 2D coordinates of the top-K peak
values in the heatmap, those width & length, orientation, and
offset for compensating for the shifts are predicted as the
bounding box of an object. The heatmap is obtained by a fil-
tering module Ghm

θ : RC×H
s ×W

s → R1×H
s ×W

s : Zt 7→ Zhm
t

with parameters θ that is built with standard fully connected
neural networks (FNN), and it is followed by a sigmoid func-
tion. The width w & length h are predicted through a head
Gb
θ : Zt

[
P hm
t

]
7→ (w, h) for each top-K features, where P hm

t

is the set of coordinates defined as follows:

P hm
t :=

{
(x, y)

∣∣∣ Ghm
θ (Zt)xy ≥

[
Ghm
θ (Zt)

]
K

}
, (1)

where
[
Ghm
θ (Zt)

]
K

is the K-th largest value in Ghm
θ (Zt) over

the spatial space H
s × W

s , and the subscript xy denotes taking
value at coordinate (x, y). The orientation ϑ = tan−1

(
sinϑ
cosϑ

)
is predicted through the orientation head Gr

θ : Zt

[
P hm
t

]
7→

(cosϑ, sinϑ), and the offset is obtained by a offset head Go
θ :

Zt

[
P hm
t

]
7→ (ox, oy).

3. SCALABLE CONNECTIVE TEMPORALITY

We show the SCTR framework on the left side of Fig.2.
SCTR employs an encoder to transform input into high-level
features. The SCTR layer accentuates object positions. Then,
the decoder estimates the bounding boxes. Subsequent sub-
sections detail the constituents of the SCTR layer (Fig.2).

3.1. Temporal Relational Layer

TRL receives multiple feature vectors from the two frames.
By taking the coordinate sets P pre-hm

t , which is obtained
from (1) with Gpre-hm

θ ∈ RC×H
s ×W

s → R1×H
s ×W

s , into
feature representations, we have the selective top-K fea-
tures matrix Ht := Zt

[
P pre-hm
t

]
∈ RC×K . Let Ht,t−1 :=

{Ht,Ht−1}⊤ ∈ R2K×C denote the matrix concatenation
that forms the input to the TRL. Furthermore, the posi-
tional encoding Penc

t = Eθ
(
P pre-hm
t

)
∈ RK×Dpos in the

feature vectors, which Eθ (·) is built in FNN, is used be-
fore passing Ht,t−1 into the TRL, so we get Hpos

t,t−1 ={
Ht,t−1,P

enc
t,t−1

}
∈ R2K×(C+Dpos). In computing the TRL,

we follow [15–18] by including a temporal inductive bias
with a masking matrix M to each head:

A (V,X) := softmax

(
M+ q (X) k (X)

⊤
√
d

)
v (V) , (2)

where q (·), k (·) and v (·) are linear transformation layers and
are referred as query, keys and values respectively. d is the



dimension of the query and the keys and is used to scale the
dot product between them. In the TRL of layer l, we obtain
the attention A

(
Hl

t,t−1,H
l,pos
t,t−1

)
with the following masking

matrix Ml:

Ml :=

[
IK ,1K

1K , IK

]
+ σ

([
1K ,0K

0K ,1K

]
− I2K

)
, (3)

where a block IK is the identity matrix of size K, 1K and 0K

are the all-one and all-zero matrix with size K × K respec-
tively, and σ is a negative constant that is set to −1010 in our
implementation to guarantee a near-zero value in the output
through softmax. Diagonal blocks disable attention between
features of the same frame, while off-diagonal blocks allow
for cross-frame attention.

3.2. Connective TRL

CTRL uses the window shifting technique employed in the
Swin Transformer [19] to establish interframe connections
for each time step, while mitigating computational complex-
ity. This allows the CTRL to achieve high inference per-
formance even when radar frames containing low SNR are
present. Initially, we divide the top-K selected feature vec-
tors calculated at the l-th layer into Ω =

⌊⌈
K
S

⌉
− M

S

⌉
+ 1

windows using a window shifting with a stride S =
⌊
M
2

⌉
,

where ⌊·⌉ denotes the round function and M =
⌊
4K
T

⌉
de-

notes the size of the shifted window. Subsequently, for each
window w = I, II, · · · ,Ω, the odd indexed frames and even
indexed frames in the temporal direction are separated to cre-
ate two subsets Hl+1

teven,w
,Hl+1

todd,w
∈ RTM

2 ×C . The above divi-
sion process ensures that the computational complexity of the
attention remains at a low level and is scalable for the time
domain, since the size of the attention is TM

2 × TM
2 ≈ 2K ×

2K. In CTRL, we apply (2) to each of these subsets to ob-
tain attentions A

(
Hl+1

teven/odd,w
,Hl+1,pos

teven/odd,w

)
, where Hl+1,pos

teven/odd,w
={

Hl+1
teven/odd,w

,Penc
teven/odd,w

}
, with Ml+1:

Ml+1 := B+ σ
(
B
)

s.t. B=

 IM 1
. . .

1 IM

 , (4)

where B is formed by changing the values of 1 within set
B to 0, while simultaneously inverting the values of 1 to 0.
Next, we sequentially apply a feed-forward function that con-
sists of two linear layers, layer normalization and shortcut on
features. The relational modeling is built with multiple SCTR
layers with identical design. We obtain the updated features
Hl+2

t,w ∈ RC×M by dividing Hl+2⊤
teven,w and Hl+2⊤

todd,w.

3.3. Window Merging

Due to the use of window shifting, there exists overlap in
the updated feature vectors. Consequently, feature vectors in

overlapped positions must be integrated. Various integration
methods such as summation or maximization can be consid-
ered, and in this paper, based on preliminary experiments, we
have opted to use maximization. Applying the integration, we
obtain the features Hl+2

t ∈ RC×K . Finally, we refill the fea-
ture vector to Zt in the corresponding spatial coordinates of
P pre-hm
t .

3.4. Learning

We pick the object’s center coordinates from the heatmap,
and learn its attributes from feature representations through
regression. Regression functions, which are heatmap loss Lh

t ,
width & Length loss Lb

t , orientation loss Lr
t, and offset loss

Lo
t , compose the training objective by a linear combination:

min
θ

L :=

T∑
t=1

 1

Ngt

Ngt∑
k=1

(
Lb
t,k + Lr

t,k + Lo
t,k

)
− 1

N

N∑
i=1

Lh
t,i

 ,

(5)
where k denotes k-th ground truth object and the total num-
ber is Ngt, and N denotes the total number of pixels in the
heatmap. Each loss is as follows:

Lh
t,i :=1{ht,i=1}

(
1− ĥt,i

)α
log
(
ĥt,i

)
+ 1{ht,i ̸=1} (1− ht,i)

β
ĥα
t,i log

(
1− ĥt,i

)
, (6)

Lb
t,k :=SL1

(∥∥∥Gb
θ

(
Zt

[
P gt
t,k

])
−(wt,k, ht,k)

⊤
∥∥∥) , (7)

Lr
t,k :=SL1

(∥∥∥Gr
θ

(
Zt

[
P gt
t,k

])
−(cosϑt,k, sinϑt,k)

⊤
∥∥∥) , (8)

Lo
t,k :=SL1

(∥∥∥Go
θ

(
Zt

[
P gt
t,k

])
−(ox,t,k, oy,t,k)

⊤
∥∥∥) , (9)

where ht,i and ĥt,i denote the ground-truth and predicted
value at i-th coordinate in Zhm

t , and α and β are hyper-
parameters and are chosen empirically with 2 and 4, respec-
tively. P gt

t,k denotes the coordinate (cx,t,k, cy,t,k) of the center
of k-th ground truth object, (wt,k, ht,k) is the width & length,
(ox,t,k, oy,t,k) = (cx,t,k/s − ⌊cx,t,k/s⌉ , cy,t,k/s − ⌊cy,t,k/s⌉),
and SL1

(·) is a smooth L1 loss [20]. For each training step,
our training procedure calculates L and does the backward
for both t = 1 to t = T and t = T to t = 1 simultaneously.
Therefore, optimization can be viewed as a bidirectional
backward-forward training through T frames.

3.5. Complexity Analysis

The computational complexity of SCTR depends on the num-
ber of frames T and K, and the number of layers L. Com-
pared to vanilla TR, SeTR and SCTR have less complexities
as follows:

TR : (TK)
2
L · · · O

(
T 2K2

)
, (10)

SeTR : 4K2 (T − 1)L · · · O
(
K2
)
, (11)

SCTR : 2K2 (3T − 4)L · · · O
(
K2
)
. (12)



Table 1: Experimental results of object detection on Radiate dataset.

Split: train good weather Split: train good and bad weather

mAP@0.3 mAP@0.5 mAP@0.7 mAP@0.3 mAP@0.5 mAP@0.7

BBAVectors-ResNet18 59.38± 3.47 50.53± 2.07 19.72± 1.10 56.84± 3.45 45.43± 2.87 15.07± 1.76
BBAVectors-ResNet34 60.88± 1.79 51.26± 1.99 19.86± 1.36 55.87± 2.90 44.61± 2.57 14.67± 1.45
TR-ResNet18 2 frames 62.79± 2.01 53.11± 1.96 20.57± 1.47 58.87± 3.31 46.42± 3.24 15.59± 2.31
TR-ResNet34 2 frames 63.63± 2.08 54.00± 2.16 21.08± 1.66 56.18± 4.27 43.98± 3.75 14.35± 2.15

TR-ResNet18 4 frames 66.37± 1.62 53.23± 1.67 19.59± 0.78 65.10± 1.67 52.47± 1.21 19.62± 1.33
TR-ResNet34 4 frames 67.48± 0.94 57.01± 1.03 22.46± 1.76 64.60± 2.08 51.99± 1.94 19.03± 1.10
SeTR-ResNet18 4 frames 65.97± 2.03 55.79± 2.12 21.90± 1.12 64.62± 1.79 51.78± 1.81 19.65± 0.84
SeTR-ResNet34 4 frames 67.30± 1.80 56.61± 1.83 21.68± 1.24 65.51± 1.52 52.43± 1.51 19.63± 1.29
SCTR-ResNet18 4 frames 66.08± 2.52 55.45± 2.07 21.49± 1.19 65.16± 2.50 52.55± 2.14 19.22± 0.95
SCTR-ResNet34 4 frames 68.06± 1.60 57.03± 1.34 22.62± 1.18 66.01± 1.05 52.55± 0.96 19.18± 1.02

Table 2: Ablation study of various number of frames T .

Split: train good weather mAP@0.3 mAP@0.5 mAP@0.7

TR-ResNet34 6 frames 65.33± 1.72 54.29± 1.56 20.56± 1.14
SeTR-ResNet34 6 frames 66.81± 2.04 56.16± 2.35 22.37± 1.39
SCTR-ResNet34 6 frames 68.22± 1.23 56.53± 1.06 21.01± 1.12

TR-ResNet34 8 frames 65.89± 3.06 55.16± 3.04 21.04± 1.63
SeTR-ResNet34 8 frames 66.33± 2.39 55.98± 2.11 22.05± 1.60
SCTR-ResNet34 8 frames 67.67± 1.18 56.47± 1.54 20.68± 2.19

TR-ResNet34 10 frames 65.78± 2.08 55.05± 1.72 21.25± 1.42
SeTR-ResNet34 10 frames 66.78± 2.22 55.43± 2.11 20.91± 2.08
SCTR-ResNet34 10 frames 67.17± 1.57 56.07± 1.61 21.24± 0.93

4. EXPERIMENTS

We use the radar dataset: Radiate [13] in our experiments as
same as Li et al. [1]. It consists of video sequences recorded
in adverse weathers, including sun, night, rain, fog and snow,
and adopts the mechanical scan of the Navtech CTS350-
X, which employs a FMCW radar, providing 360◦ range-
azimuth images at 4 Hz. We follow the official 3 splits: train
in good weather (22383 frames), train good and bad weather
(9749 frames), and test (11305 frames, all kinds of weather
conditions).

We implemented several detectors that have been well
demonstrated in object detection for comparison. These de-
tectors include the following: BBAVectors [21], vanilla TR
[1] and SeTR that stacks self-attention for two frames and se-
quentially connects them through T frames. Comparison is
carried out with different numbers of layers with the ResNet
backbone. For all numerical results, we apply a center crop
with size 256×256 upon input images and exclude the targets
outside this scope. The position dimension Dpos = 64, s = 4,
K = 8, L = 2, the batch size is 16, the learning rate is 5e-4,
and weight decay is 1e-2 for Adam optimizer with ten train-
ing epochs. We adopt mean Average Precision (mAP) with
thresholds.

4.1. Result

We report the detection results in Tables 1 and 2. First, by
using more than four frames, each method consistently out-
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Fig. 3: Visualizations on Rain-4-0 in Radiate, with green de-
noting the ground truth and red denoting the predictions.

performs the conventional approach that considers only two
frames in both training splits with different IoU thresholds.
In particular, our SCTR achieves outstanding mAP among
them. Moreover, while the performance of TR and SeTR de-
teriorates with an increase in the number of frames T beyond
six, SCTR demonstrates a performance improvement even for
longer frame sequences. In contrast, SeTR outperforms the
other two methods in terms of mAP@0.7. This is attributed
to its ability to fine-tune the object’s position by sequentially
tracking vehicle features. Fig.3 shows the visualization re-
sults from bad weather: Rain-4-0, with green denoting the
ground truth and red denoting the predictions. Our SCTR
outperforms SeTR in accurate vehicle detection. However,
alongside correct predictions, our model introduces false pos-
itives, often appearing as clusters of reflections resembling
ghost objects within boxes. Reducing false positives is an in-
triguing challenge for future exploration.

5. CONCLUSION

In the realm of autonomous driving, we focused on object
detection using radar. Our approach aimed to improve radar
perception by integrating temporal information from multi-
ple frames. To achieve this, we introduced a comprehensive
SCTR framework that captures and models object-level co-
herence. This layer effectively captured and modeled object-
level coherence across extended time frames. The experimen-
tal results in object detection provided evidence of the effec-
tiveness of our approach.
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