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Abstract
This paper demonstrates a learning-based THz multi-layer pixel identification for non-destructive
inspection. Specifically, we introduce a recurrent neural network that se- quentially learns
features from THz spectrogram segments with masks from model-based sparse deconvolution.
Initial performance evaluation on a three-layer sample with contents on all surfaces confirms
the effectiveness of the proposed method.
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Abstract—This paper demonstrates a learning-based THz
multi-layer pixel identification for non-destructive inspection.
Specifically, we introduce a recurrent neural network that se-
quentially learns features from THz spectrogram segments with
masks from model-based sparse deconvolution. Initial perfor-
mance evaluation on a three-layer sample with contents on all
surfaces confirms the effectiveness of the proposed method.

I. INTRODUCTION

The use of terahertz (THz) wave for multi-layer material
inspection has been demonstrated in [1]–[6] for contactless
sensing, operations under adversarial conditions (e.g., fire and
smoke), and robustness to dust and dirt.

Nevertheless, inspection results may vary subject to humid-
ity, pixel-to-pixel depth variation due to vibration, and the
lack of layer identification. In this paper, we consider THz
multi-layer content extraction in non-destructive inspection,
screening devices, and quality monitoring systems by utilizing
THz penetration capability through non-conducting materials.
Specifically, we propose a deep learning-based approach to
deal with challenges from 1) depth variation due to the
platform vibration and motion; see the raster scanning mode in
Fig. 1 (a), 2) shadow effect caused by non-uniform penetrating
illumination from front layers to deep layers; see Fig. 1 (b)
for example, and 3) the impact of humidity conditions.

II. PROPOSED NETWORK ARCHITECTURE

In Fig. 2, we consider a hybrid approach that leverages data-
driven feature learning and model-based deconvolution results.

A. Layer Identification by Sparse Deconvolution
The time-domain THz-TDS waveform can be expressed

as a convolution between a sparse depth-wise layer profile
f(t) and the reference signal h(t) as y(t) = h(t) ⊗ f(t) =∫∞
−∞ h(τ)f(t−τ)dτ . By sampling y(t) with a sampling inter-

val Ts, the discrete-time waveform representation is given as
yn = y(nTs) =

∑M
m=0 hmfn−m + en, where hm = h(mTs)

and fn = f(nTs) are the reference sample and depth profile
at corresponding time instances, and en is the measurement
noise. Equivalently, we can express the sampled waveform in a
matrix-vector form as y = Hf+e, where H is the convolution
matrix whose rows are cycle-shifted, reversed versions of the
reference signal hT . We employ the following `1 regularized
least square - LASSO - to identify sparse depth profile [7]

f̂ = argmin
f

1

2
‖Hf − y‖22 + λ‖f‖1, (1)

(a) (b)
Fig. 1. (a) THz-TDS multi-layer imaging with a raster scanning and (b) the
shadow of three letters on the 1st layer is clearly shown on the 2nd layer.

where we resort to the fast iterative shrinkage-thresholding
algorithm (FISTA) [8]; see Fig. 2 for an illustration.

B. Spectrogram Patch Embedding

To extract time-dependent features, we first represent the
time-domain THz-TDS into the time-frequency spectrogram
via the short-time Fourier transform (STFT) Y (t, ω) =∫
y(τ)g∗(τ−t)e−iωτdτ , where g(t) is a time-domain localized

window function and ω is the frequency variable. Then we
divide the spectrogram |Y (t, ω)|2 into time-dependent 2D
patches P(tn) = {|Y (t, ω)|2|t ∈ T (tn), ω ∈ F(ωn)}. In our
case, we use T (tn) = {t|tn − 0.5Tw ≤ t < tn + 0.5Tw}
where Tw is the window size used in (2) and ωn ∈ [0, 0.5ωs]
with ωs is the sampling frequency, rendering a sequence of
2D spectrogram patches sliding over the time (depth) domain
Pn

4
= P(tn, ω), n = 1, 2, · · · , N . We pass Pn through a fea-

ture extraction E(Pn,θ) (e.g., a convolution neural network)
parameterized by θ to produce a latent representation zn ∈ Rd

zn = E(Pn;θ), n = 1, · · · , N. (2)

C. Recurrent State Update with Model-Based Masks

A standard recurrent neural network, e.g., LSTM, can be
used to propagate the above spectrogram patch features over
time [9]. Particularly, the RNN is trained to sequentially update
time-dependent latent (hidden) variables hn using the previous
latent variable hn−1 and the current spectrogram feature zn:
hn = R(hn−1, zn;φ), n = 1, · · · , N , where R represents
an LSTM unit with trainable parameters φ shared over all
time steps. To account for the depth-wise layer structure, we
propose to modify the above RNN update step by utilizing the
sparse deconvolution depth profile f̂ in (1)

hn = R(hn−1,mnzn;φ), n = 1, 2, · · · , N, (3)

where mn ∈ {0, 1} is a scalar mask given by mn = 1(|f̂n| ≥
ε) with ε given as a pre-determined threshold.



Fig. 2. A THz-TDS multi-layer identification framework that sequentially
learns features from THz spectrogram patches and leverages model-based
deconvolution results for temporally masking latent features.

D. Decoder

For the decoder, we enforce the last latent variable hN to
predict the multi-layer binary content labels with a standard
multilayer perceptron (MLP) network as

un =M(hN ;ψ), (4)

where ψ consists of the MLP weight matrices and bias terms.
We use the (weighted) multi-label binary classification with
each label precisely corresponding to a binary label (i.e.,
{0, 1}) for each surface. To this end, the output u is converted
to a score vector s ∈ [0, 1] using the sigmoid function
sn = (1 + e−un)−1. Then, the total loss takes the weighted
average of the N individual losses as

L = − 1

N

N∑
n=1

ωncn log(sn), (5)

where ωn is the weight on the n-th surface. The binary imaging
result is obtained by comparing s with a threshold of 0.5.

III. EXPERIMENTAL RESULTS

Fig. 1 (a) shows a three-layer sample mounted on the raster
scanning stage of a THz-TDS testbed. Both (front and back)
surfaces of each layer are drawn with pencils to cover an area
of 40× 40 mm2 that is divided into 8× 8 = 64 patches. Each
pixel of the size 5 × 5 mm2 corresponds to a unique binary
label c. For instance, c = [1, 0, 1, 0, 1, 0] implies that all front
surfaces are covered by the drawing while the back surfaces
are blank. With a scanning stepsize of 0.5 mm, we have a set
of 10×10 = 100 THz-TDS waveforms for each pixel and then
randomly split them into the training (0.6), validation (0.1),
and test (0.3) datasets. The training dataset is augmented by
shifting the waveform and adding Gaussian noise to improve
the invariance to the depth variation. Fig. 3 shows distinct
spectrogram features for THz-TDS waveforms corresponding
to different content labels. It is clear that brighter features at
the front layers are likely linked to the content covered by the
drawing while, at deep layers, it is critical to account for both

Fig. 3. Distinct spectrogram features for different content labels.

Fig. 4. Comparison between intensity-based and proposed methods.

“current” spectrogram features and propagated latent features
from the front layers.

Fig. 4 shows the distorted intensity image of the traditional
approach due to aggregated reflection from earlier layers
(shadowing effect), the proposed approach provides much
cleaner images of score values s that resemble the true content
over all 6 surfaces. The deep layers show slightly higher
fluctuations of the score values than the front layers.

IV. CONCLUSION

This paper proposed a recurrent neural network that sequen-
tially learns features from THz spectrogram segments with
masks from model-based sparse deconvolution. Earlier results
confirmed its effectiveness.
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