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Abstract
Communication of bioelectric signals, such as electroencephalography (EEG) signals, will be
a key technology for smooth interaction between users and remote robots. The existing so-
lutions use an orthogonal transform for EEG signal compression, such as Discrete Wavelet
Transform (DWT) or Discrete Cosine Transform (DCT). This paper proposes a graph-based
compression scheme for EEG signals to improve the quality at the given rate. The proposed
scheme constructs a graph from the positions of the EEG sensors and adopts parameterized
graph shift operators to obtain the graph basis functions for decorrelating the EEG signals.
Graph Fourier Transform (GFT) based on the graph basis functions with the combination of
quantization and entropy coding can send high quality EEG signals with fewer bits. Eval-
uations using the EEG signal dataset show that the proposed GFT-based compression can
send better quality EEG signals than the existing DCT-based and DWT-based schemes at
the same bit rates. In addition, an optimal parameter of the graph shift operator under the
given rate is discussed to maximize the reconstruction quality of the graph-based scheme.
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ABSTRACT Communication of bioelectric signals, such as electroencephalography (EEG) signals, will
be a key technology for smooth interaction between users and remote robots. The existing solutions use an
orthogonal transform for EEG signal compression, such as Discrete Wavelet Transform (DWT) or Discrete
Cosine Transform (DCT). This paper proposes a graph-based compression scheme for EEG signals to
improve the quality at the given rate. The proposed scheme constructs a graph from the positions of the EEG
sensors and adopts parameterized graph shift operators to obtain the graph basis functions for decorrelating
the EEG signals. Graph Fourier Transform (GFT) based on the graph basis functions with the combination
of quantization and entropy coding can send high quality EEG signals with fewer bits. Evaluations using the
EEG signal dataset show that the proposed GFT-based compression can send better quality EEG signals than
the existing DCT-based and DWT-based schemes at the same bit rates. In addition, an optimal parameter
of the graph shift operator under the given rate is discussed to maximize the reconstruction quality of the
graph-based scheme.

INDEX TERMS EEG, Graph signal processing, Parameterized graph shift operator

I. INTRODUCTION

Thanks to rapid advances in robotics, sensors, communica-
tions, and artificial intelligence (AI), human-machine interac-
tion (HMI)-the interaction between users and remote robots
over wireless channels-will be a key technology for realizing
telework, remote operation, and epidemic care. Fig. 1 shows
an example of an end-to-end HMI architecture. For a smooth
interaction with the remote robots, the users in the HMI
systems can send the physiological monitoring data of the
users to the robots. Wearable sensors or monitors can mea-
sure the physiological data. The sensors can track continuous
biosignals from the human body or other organic tissues
such as the heart, brain, muscles, and blood as continuous
bioelectric signals, including electrocardiography (ECG), in-
tracranial/scalp electroencephalography (EEG), electromyo-
graphy (EMG), magnetoencephalography (MEG), func-
tional magnetic resonance imaging (fMRI), functional near-
infrared spectroscopy (fNIRS), and so on. Each robot can
identify the user’s vital signs, physiological data, and biomet-
rics from the bioelectric signals by using signal processing
solutions [1]–[4] to support the user’s activity.

This paper aims to use EEG signals as bioelectric signals to
send the tracked brain information to the remote robots. One
of the key issues in HMI systems is to send high quality EEG
signals for smooth interaction with remote robots. In other
words, the accurate EEG signals should be reconstructed
at the remote robots regardless of the available rate of the
wireless channels. The existing solutions have successfully
integrated source coding and transmission solutions for the
EEG signals. The existing studies can be classified into
signal processing based [5]–[9] and learning based solu-
tions [10, 11]. For example, transform coding approaches
have been proposed in signal processing-based solutions.
The measured signals are transformed into frequency domain
representations using discrete wavelet transform (DWT), dis-
crete cosine transform (DCT), or other orthogonal transform
techniques. Each representation is then quantized and/or
entropy-coded prior to transmission.

This paper is the first attempt to introduce graph signal pro-
cessing for EEG signal compression to improve the quality of
EEG signals in band-limited networks. This paper proposes
a compression scheme that integrates graph-based decorrela-
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FIGURE 1: An example of an HMI system. A user uni-
casts/multicasts bioelectric signals to robots over band-
limited networks, and each robot identifies the user’s intel-
ligence through biosignal processing.

tion, quantization, and entropy coding. Specifically, the 3D
coordinates of the EEG sensors and the measured time-series
signal at each sensor can be regarded as graph signals [12].
The proposed scheme can obtain the graph basis functions
based on the constructed graph signals and performs Graph
Fourier Transform (GFT) [13] with quantization and entropy
coding for compression. Since the sensors are distributed
unevenly in 3D space to measure brain signals, the GFT-
based compression achieves better energy compaction than
typical decorrelation techniques such as DCT and DWT.
Evaluation results using the dataset of EEG signals show
that the proposed scheme can reconstruct better quality EEG
signals compared to the existing DCT-based and DWT-based
schemes under the same amount of bandwidth.

The contributions of our study are as follows:
• Our study is the first to realize graph-based compression

for bioelectric signals, i.e., EEG signals, to support HMI
systems.

• The parameterized graph shift operators are introduced
for EEG signal decorrelation. The proposed scheme can
adopt the appropriate graph shift operators to recon-
struct high-quality EEG signals at the given rates.

• From the investigation of the graph shift operators,
the optimized parameters for the graph shift operators
perform well in band-limited networks and channels,
while the gap between the optimized and known graph
shift operators becomes negligible in broadband envi-
ronments.

II. RELATED WORK
This study relates to bioelectric signal compression and
graph-based compression and delivery studies.

A. BIOELECTRIC SIGNAL COMPRESSION
Lossless, near-lossless, and lossy compression techniques
have been developed for bioelectric signals such as EEG
and EMG signals. Lossless compression [14]–[18] guaran-
tees no degradation between the original and reconstructed

bioelectric signals. In contrast to lossless compression, near-
lossless compression [15, 19]–[22] uses quantization, i.e.
lossy operation, for efficient compression. However, it lim-
its the quantization distortion according to the given error
values. The lossless and near-lossless compression schemes
can be divided into predictive coding [15, 17]–[19, 22]–[24]
and transform coding [14, 21, 25]. Predictive coding first fits
the measured bioelectric signals to the past signals using
a predictor such as Markov chains, linear prediction, or
artificial neural networks (ANN). The discrepancy between
the measured and fitted signals is then obtained and coded
with a variable length code (e.g., the Huffman code). Trans-
form coding uses frequency conversion techniques for the
bioelectric signals and discards some frequency represen-
tations from all frequency representations for compression.
Finally, it encodes the difference between the original and
reconstructed bioelectric signals from the limited frequency
representations using Huffman coding. However, the lossless
and near-lossless compression schemes do not achieve high
compression ratios and are not well suited for band-limited
wireless channels.

Lossy compression techniques [5, 6, 26]–[29] have been
proposed for EEG signals. The lossy compression tech-
niques introduce a relatively large distortion compared to the
lossless and near-lossless compression techniques. However,
they can achieve much higher compression ratios than the
lossless and near-lossless compression techniques and are
therefore preferable for band-limited channels. For example,
Fourier-based [28], DCT-based [30], DWT-based [5, 6, 26],
and discrete Tchebichef moment based lossy compres-
sion [29] have been proposed for EEG signals. The EEG
signals are transformed into frequency representations using
a certain orthogonal transformation, and the frequency repre-
sentations are quantized and entropy-coded for compression.

This paper proposes a novel compression scheme for bio-
electric signal communication. Unlike the lossy compression
studies, the proposed scheme introduces graph signal pro-
cessing for bioelectric signal compression. It utilizes EEG
sensor correlations to compress the energy of EEG signals.
The graph-based proposed scheme achieves better recon-
struction quality than the typical DCT-based and DWT-based
schemes under the same amount of traffic.

B. GRAPH-BASED COMPRESSION AND DELIVERY
Some recent studies have used Graph Signal Process-
ing (GSP) for lossy compression and communication. In
particular, GSP-based compression and communication is
designed for point cloud content, i.e., holographic-type con-
tent. Recent work has used GFT and Graph Wavelet Trans-
form [31] for energy compression of 3D coordinates and
color components of point clouds [32]–[35]. A new paradigm
of Graph Convolutional Neural Networks (GCNN) [36] has
also been adopted for the energy compression of the graph
signals [37]. Specifically, the graph signals are compressed
into some latent variables using a series of GCNNs, and
the latent variables are delivered over networks. The graph
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FIGURE 2: Overview of the proposed scheme. The proposed scheme decorrelates the EEG signals using the parameterized
GFT followed by quantization and entropy coding.

signals can be decoded from the received latent variables
using the multi-layer perceptron decoder.

In bioelectrical signals, GSP-based solutions have been
proposed for bioelectrical signal analysis [38, 39]. This paper
is the first study on GFT-based compression for EEG signal
communication. According to the positions of the bioelectric
sensors, the proposed scheme constructs the graph basis
functions from the parameterized graph shift operators for
signal decorrelation. From the investigation of the parame-
terized graph shift operators, the regular graph shift operator
achieves almost the same quality as the optimized graph shift
operator regardless of the subjects.

III. PROPOSED SCHEME
A. OVERVIEW
Fig. 2 shows an overview of the proposed scheme. The
proposed scheme first divides the measured EEG signals over
EEG sensors into signal blocks of T length. In this paper, the
length of each signal block is fixed to be 1024. The proposed
scheme compresses the measured EEG signals using GFT
for each signal block. To realize the GFT for the signals, an
undirected graph is constructed from the positions of the EEG
sensors. The GFT basis functions are then derived from the
parameterized graph shift operator based on the undirected
graph. The measured EEG signals are converted to frequency
domain representations, i.e., GFT coefficients, using the GFT
basis functions. The GFT coefficients are then binarized for
transmission using quantization and entropy coding, which is
the same operation in existing lossy compression techniques.
The compressed bit stream is transmitted over wireless chan-
nels to the remote robot. Each robot reconstructs the EEG
signals in each block by performing the inverse operation at
the transmitter side and can recognize the user’s intelligence
from the reconstructed EEG signals.

B. GRAPH-BASED EEG COMPRESSION

EEG sensors are placed on the user’s head in 3D space,
and each sensor measures a time series of EEG signals.
The GFT can be used to decorrelate the EEG signals across
the sensors. There are several definitions of the GFT de-
pending on the directed/undirected graph, edge weight, and
graph shift operators [12, 13]. In this paper, a weighted and
undirected graph is defined from the 3D coordinates of the
deployed EEG sensors. Specifically, the graph is defined as
G = (V ,E,W ), where V , E, and W are the vertex
set, edge set, and adjacency matrix, respectively. Here, each
vertex has two attributes of the 3D coordinates of N EEG
sensors p(t) = [xi, yi, zi]

T ∈ R3×N and the measured EEG
signal from N EEG sensors s(t) = [mi] ∈ R1×N at each
time t.

Fig. 3 shows an overview of the graph structure for the
EEG signals. This graph structure consists of two subgraphs
Ĝ and Ḡ. One subgraph Ĝ represents the graph structure for
the EEG sensors at each time instant, and one subgraph Ḡ
represents the graph structure for the time series of the EEG
signals at each sensor. Each vertex of the graph represents
each bioelectric sensor. For the subgraph Ĝ, each element
Ŵ

(t)
i,j in the adjacency matrix Ŵ

(t)
represents the edge

weight between vertices i and j in the subgraph at time t.
The edge weights are usually defined as the distance between
the 3D coordinates of vertices i and j as follows:

Ŵ
(t)
i,j = exp

(
−
∥p(t)

i − p
(t)
j ∥22

ϵp

)
, (1)

where ϵp is the standard deviation. In the following part, the
operations are performed in each time instance. Therefore,
the time index t is omitted for simplicity.
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(a) Overall graph structure G

(b) Subgraph Ĝ for EEG sensors at each time instant (c) Subgraph Ḡ for the time series of the EEG signals at
each EEG sensor

FIGURE 3: Graph structure of EEG sensors in the proposed scheme.

TABLE 1: Well-known graph shift operators based on param-
eter tuples

M = (m1,m2,m3, e1, e2, e3, a) Operator Description
(1,−1, 0, 1, 0, 0, 0) D − W Regular
(1, 1, 0, 1, 0, 0, 0) D + W Signless

(0,−1, 1, 0,− 1
2 ,−

1
2 , 0) I − D− 1

2 WD− 1
2 Combination

(0, 1, 0, 0,−1, 0, 0) D−1W Transition
(0,−1, 1, 0,−1, 0, 0) I − D−1W Random-walk

Based on the adjacency matrix, the diagonal degree matrix
D̂ can be derived as follows:

D̂ = diag(D̂1, . . . , D̂N ), D̂i =

N∑
n=1

Ŵi,n. (2)

The graph shift operator that uniquely characterizes the graph
topology is then derived from the graph shift operator L.
Many graph shift operators have been discussed in the graph
signal processing literature, and the parameterized graph shift
operator L has been proposed in the recent literature [40]:

L = m1D̂
e1
a +m2D̂

e2
a Ŵ aD̂

e3
a +m3I, (3)

where Ŵ a = Ŵ + aI , D̂a is the diagonal degree matrix
of Ŵ a, and I is the N ×N identity matrix. In addition, m1

through m3 are scalar multiplicative parameters, e1 through
e3 are scalar exponential parameters, and a is an additive

parameter. Table 1 lists the known graph shift operators. The
GFT basis functions are the right singular vectors of the
graph shift operator. The right singular vectors Φ ∈ RN×N

and the corresponding diagonal singular values Λ can be
obtained from the singular value decomposition for the graph
shift operator as follows:

L = ΨΛΦ−1. (4)

where Ψ denotes the left singular vector matrix. Here, the
associated frequencies of the singular vectors are the cor-
responding singular values. The GFT coefficients f of a
given graph signal can be obtained by projecting the graph
signal onto the GFT basis functions. The projection is derived
by multiplying the singular vectors by the measured EEG
signals over the EEG sensors s as follows:

f = s Φ. (5)

The GFT coefficients corresponding to smaller singular val-
ues reflect the lower frequency of the graph signals, i.e., less
variation in the graph.

For the subgraph Ḡ, a line graph with uniform edge
weights is considered to represent the time series of EEG
signals at each sensor. In this case, the GFT for the line
graph with uniform edge weights is the same as the DCT, and
thus 1D-DCT is performed on the time series of EEG signals
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TABLE 2: Optimal graph shift operators at different bit rates

Bit rate (Kbps) m1 m2 m3 e1 e2 e3 a
40 -1.0 -1.0 0.5 1.0 0.5 0.5 -0.5
80 0.5 -1.0 -0.5 0.5 0.5 -1.0 1.0
120 -1.0 -0.5 0 -1.0 -0.5 -1.0 0

at each EEG sensor. In summary, energy compaction in the
graph G can be realized by integrating the GFT in Eq. (5)
over the EEG sensors at each time instant and the DCT on
the time series of EEG signals at each EEG sensor.

The GFT coefficients are uniformly quantized into sym-
bols c using the quantization factor δi as c = round(f/δi).
After quantization, the symbols corresponding to the high-
frequency GFT coefficients become zero. The proposed
scheme integrates zero run-length coding with Huffman cod-
ing to compress the symbols into the bitstream. The inte-
gration is a well-known solution to represent the zero-value
symbols with few bits.

The receiver side decodes the symbols from the received
bitstream and obtains the quantized GFT coefficients as f̂ =
c · δi. The receiver finally reconstructs the EEG signals by
taking the inverse GFT for the quantized GFT coefficients.

IV. EVALUATION
A. EVALUATION SETTINGS
EEG Dataset
An EEG dataset from Motor-Imagery [41] is used for anal-
ysis. The dataset contains EEG signals from 52 subjects (19
females, mean age ± SD age = 24.8 ± 3.86 years). The EEG
signals are measured with 64 Ag/AgCl active electrodes at a
sampling rate of 512 kHz. The 3D coordinates of the EEG
electrodes are recorded in the data set. The hand movement
experiments are performed for six seconds with 20 trials, and
the EEG signals from the first trial are used for evaluation.

Metric
Two metrics are considered for the reconstruction quality of
the EEG signals: Normalized MSE (NMSE) and Percentage
Root Mean Square Difference (PRD). NMSE is defined as:

NMSE = 10 log10
εMSE∑N

i s2i
, (6)

where εMSE is the MSE between the original and decoded
EEG signals. PRD represents the normalized sum of squared
errors as a percentage and is derived as follows:

PRD =
√
NMSE ∗ 100. (7)

A lower PRD represents a better quality of the reconstructed
EEG signal.

B. BASELINE PERFORMANCE
This section discusses the baseline performance of the pro-
posed scheme against the existing schemes for EEG sig-
nal compression. 1D-DCT-based [30], 2D-DCT-based, and
DWT-based [6] baselines are prepared for comparison. The
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FIGURE 4: Average reconstruction quality of EEG signals
for 64 EEG sensors and 52 subjects as a function of bit rates.

1D-DCT-based schemes take 1D-DCT for the time series of
EEG signals from each sensor and uniform quantization for
the DCT coefficients. Finally, the quantized DCT coefficients
are entropy coded using the combination of zero run length
and Huffman coding, the same as the proposed scheme. The
2D-DCT based schemes perform 2D-DCT for EEG signals
across sensors to exploit the correlations between the EEG
sensors. The same operation of quantization and entropy
coding is used for the 2D-DCT coefficients. The DWT-based
scheme uses 1D DWT with level 6 for the EEG signals.
The DWT coefficients are then compressed using set par-
titioning in hierarchical trees (SPIHT). Note that the recent
discrete Tchebichef momentum-based scheme [29] requires
even more traffic for sending EEG signals compared to other
schemes, and thus this paper skips the comparison with the
recent scheme [29].

Fig. 4 (a) and (b) show the average reconstruction quality
of the baseline and proposed schemes over 64 sensors and
52 subjects as a function of bit rates. The proposed scheme
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quantized symbols from 64 EEG sensors for DCT-based and
proposed schemes under different quantization factors δi.
Here the subject ID is 1.

considers the regular graph shift operator for signal decor-
relation. The evaluation results show that the reconstruction
quality of the proposed graph-based scheme is higher than the
existing DCT-based and DWT-based baselines at the same bit
rates. Based on the results in Fig. 4 (a), we measure the Bjøn-
tegaard delta (BD)-rate [42] between the NMSE of -67.0 dB
and -80.0 dB to discuss the compression performance in
detail. Note that a negative BD-rate indicates an improvement
in performance over the baselines. The BD-rates between the
proposed scheme and the 1D-DCT-based, 2D-DCT-based,
and DWT-based baselines are -27.0%, -25.0%, and -82.0%,
respectively. This means that the proposed scheme reduces
the bit rate by at least 25% with the same reconstruction
quality.

To clarify the reason for the performance gain of the
proposed scheme, Fig. 5 shows the average NMSE perfor-
mance and the entropy of the quantized signals of 64 EEG
sensors for DCT-based baselines and the proposed schemes
with other graph shift operators under different quantization
factors δi. There are two findings from the evaluation results
as follows:

• The proposed graph-based schemes achieve lower en-
tropy than the DCT-based baselines for the same NMSE
performance. Such a lower entropy results in traffic
reduction using the combination of quantization and
entropy coding.

• The performance of the proposed scheme is highly
dependent on the chosen graph shift operators.

C. DISCUSSION ON GRAPH SHIFT OPERATOR
As mentioned in the previous section, the performance of
the proposed scheme depends on the graph shift operators
of the graph basis matrix. To investigate the effect of the
graph shift operators, we discuss the performance of the
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FIGURE 6: Average reconstruction quality of the proposed
schemes over 64 EEG sensors under the different graph shift
operators. Here, the subject ID is 1.

proposed scheme using the known and optimized graph
shift operators for Subject 1. Here, the optimal graph shift
operators were obtained by sweeping the parameter tuple
of M = (m1,m2,m3, e1, e2, e3, a) in the range of [-1,
1] with an interval of 0.5. For each parameter tuple under
the given quantization factor, we can measure the bit rate
frate(M) (Kbps) and the PRD gPRD(M) (%) of the pro-
posed scheme. We define the cost function for each parameter
tuple C(M) as follows:

C(M) = gPRD(M) + λfrate(M), (8)

where λ is a weight to adjust the range of bitrate and PRD
values, and we set it to 0.001. We consider the parameter
tuple with the lowest cost to be the optimized graph shift
operator for the quantization factor. Table 2 shows the op-
timal parameter tuples at the bit rate of 40 Kbps, 80 Kbps,
and 120 Kbps, respectively.

Figs. 6 (a) and (b) show the average reconstruction quality
of the proposed schemes with different graph shift operators
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(a) Original (b) 1D-DCT-based
NMSE:-36.0 dB, PRD:1.59%

(c) 2D-DCT-based
NMSE:-35.4 dB, PRD:1.70%

(d) DWT-based
NMSE:-29.7 dB, PRD:3.27%

(e) Proposed (Regular)
NMSE:-36.3 dB, PRD:1.53%

(f) Proposed (Optimal graph shift
operator at 40 Kbps)
NMSE:-36.9 dB, PRD:1.43%

FIGURE 7: Snapshots of the reconstructed EEG signals for baseline and proposed schemes at the bit rate of 40 Kbps. Here, the
subject ID is 1 and the EEG sensor ID is 41.

in Tables 1 and 2 over 64 sensors for Subject 1 as a function
of bit rates. We can see the following two observations:

• The proposed scheme with the graph shift operator
optimized for 40 Kbps achieves the best reconstruction
quality at low bit rates.

• Although the proposed schemes with the graph shift
operators optimized for 80 Kbps and 120 Kbps achieve
the best reconstruction quality at the bit rate, the re-
construction quality is almost the same as the proposed
scheme with the regular graph shift operator.

• Among the known graph shift operators, the regular
graph shift operator performs well.

Although the optimized graph shift operator has the best
quality, it needs to find the best parameter tuple from the
57 = 78125 combinations. The regular graph shift operator
is sufficient for decorrelating EEG signals with little compu-
tation.

D. VISUAL QUALITY
Finally, Fig. 7 (a)-(f) and Fig. 8 (a)-(f) show the snapshots of
the reconstructed EEG signals in the baseline and proposed
schemes under the bit rate of 40 Kbps. Here, the subject ID is
1, and we select sensor IDs 41 and 57 for comparison. Due to
the low coding efficiency, the DWT-based scheme lacks the
details of the EEG signals under the same bit rate. In sensor
ID 41, the gap between the DCT-based scheme and the pro-

posed scheme is not quite large, although the reconstruction
quality of the proposed scheme is high. In sensor ID 57, the
1D-DCT-based scheme loses high frequency details and the
2D-DCT-based scheme causes large noise after compression.
The proposed scheme can reconstruct clean EEG signals
at the same bit rate even in both sensors. In addition, the
visual gap between the proposed schemes with the regular
and optimized graph shift operators is small.

V. CONCLUSION

This paper proposes a novel graph-based EEG signal com-
pression scheme to transmit high-quality EEG signals to
multiple robots over band-limited networks and channels.
The proposed scheme constructs the graph structure based
on the 3D coordinates of the deployed EEG sensors and
performs the parameterized graph basis function based on the
graph structure for signal decorrelation. Evaluations using
the EEG signal dataset show that the proposed graph-based
scheme achieves better reconstruction quality than the typical
DCT-based and DWT-based schemes at the same bit rates.
In addition, the effect of the graph shift operators on the
reconstruction quality is discussed. It is found that the graph
shift operators optimized for low bit rates perform well
in band-limited environments, and the regular graph shift
operator has almost the same performance as the optimized
graph shift operators at high bit rates.
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(a) Original (b) 1D-DCT-based
NMSE:-35.2 dB, PRD:1.73%

(c) 2D-DCT-based
NMSE:-36.5 dB, PRD:1.50%

(d) DWT-based
NMSE:-33.0 dB, PRD:2.23%

(e) Proposed (Regular)
NMSE:-38.6 dB, PRD:1.18%

(f) Proposed (Optimal graph shift
operator at 40 Kbps)
NMSE:-38.7 dB, PRD:1.16%

FIGURE 8: Snapshots of the reconstructed EEG signals for baseline and proposed schemes at the bit rate of 40 Kbps. Here, the
subject ID is 1, and the EEG sensor ID is 57.

In future work, we will evaluate the effect of the recon-
structed EEG signals on the recognition performance through
biosignal processing. In addition, the discussion of the effect
of EEG sensor distributions on the reconstruction quality and
the fast finding of optimal graph shift operators are also left
for future work.
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