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Abstract
Prototypical part neural networks (ProtoPartNNs), namely PROTOPNET and its deriva-
tives, are an intrinsically interpretable approach to machine learning. Their prototype learn-
ing scheme enables intuitive explanations of the form, this (prototype) looks like that (testing
image patch). But, does this actually look like that? In this work, we delve into why object
part localization and associated heat maps in past work are misleading. Rather than localiz-
ing to object parts, existing ProtoPartNNs localize to the entire image, contrary to generated
explanatory visualizations. We argue that detraction from these underlying issues is due
to the alluring nature of visualizations and an over-reliance on intuition. To alleviate these
issues, we devise new receptive field-based architectural constraints for meaning- ful localiza-
tion and a principled pixel space mapping for ProtoPartNNs. To improve interpretability, we
propose ad- ditional architectural improvements, including a simplified classification head.
We also make additional corrections to PROTOPNET and its derivatives, such as the use
of a validation set, rather than a test set, to evaluate generalization during training. Our
approach, PIXPNET (Pixel-grounded Prototypical part Network), is the only ProtoPartNN
that truly learns and localizes to prototypical object parts. We demonstrate that PIXPNET
achieves quantifiably improved interpretability without sacrificing accuracy.
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Abstract

Prototypical part neural networks (ProtoPartNNs),
namely PROTOPNET and its derivatives, are an intrinsically
interpretable approach to machine learning. Their proto-
type learning scheme enables intuitive explanations of the
form, this (prototype) looks like that (testing image patch).
But, does this actually look like that? In this work, we delve
into why object part localization and associated heat maps
in past work are misleading. Rather than localizing to ob-
ject parts, existing ProtoPartNNs localize to the entire im-
age, contrary to generated explanatory visualizations. We
argue that detraction from these underlying issues is due to
the alluring nature of visualizations and an over-reliance
on intuition. To alleviate these issues, we devise new re-
ceptive field-based architectural constraints for meaning-
ful localization and a principled pixel space mapping for
ProtoPartNNs. To improve interpretability, we propose ad-
ditional architectural improvements, including a simplified
classification head. We also make additional corrections to
PROTOPNET and its derivatives, such as the use of a vali-
dation set, rather than a test set, to evaluate generalization
during training. Our approach, PIXPNET (Pixel-grounded
Prototypical part Network), is the only ProtoPartNN that
truly learns and localizes to prototypical object parts. We
demonstrate that PIXPNET achieves quantifiably improved
interpretability without sacrificing accuracy.

1. Introduction
Prototypical part neural networks (ProtoPartNNs) are an

attempt to remedy the inscrutability and fundamental lack
of trustworthiness characteristic of canonical deep neural
networks [11]. By learning prototypes of object parts, Pro-
toPartNNs make human-interpretable predictions with jus-
tifications of the form: this (training image patch) looks like
that (testing image patch). Since black-box AI systems of-
ten obfuscate their deficiencies [26, 44, 66], ProtoPartNNs
represent a shift in the direction of transparency. With un-
precedented interest in AI from decision-makers in high-
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Figure 1. The two primary issues identified with prototype visual-
ization: here (this embedded patch) does not correspond to there
(this image patch), and this (prototype) does not correspond to just
that (test image patch). In the extreme case, this can actually cor-
respond to the entire image (i.e., when the receptive field is 100%).

stakes industries – e.g., medicine, finance, and law [44, 47,
54, 67] – the demand for explainable AI systems is greater
than ever. Further motivation for transparency is driven by
real-world consequences of deployed black boxes [6,46,52]
and mounting regulatory ordinance [19, 20, 43, 69].

ProtoPartNNs approach explainability from an intrinsi-
cally interpretable lens and offer many benefits over post
hoc explanation. Whereas post hoc explainers estimate
an explanation, ProtoPartNN explanations are part of the
actual prediction process – explanations along the lines
of “this looks like that” follow naturally from the sym-
bolic form of the model itself. This implicit explana-
tion is characteristic of models widely considered to be
human-comprehensible [53]. Moreover, ProtoPartNNs en-
able concept-level debugging, human-in-the-loop learning,
and implicit localization [11, 48, 50]. Being independent of
the explained model, post hoc explainers have been found
to be unfaithful, inconsistent, and unreliable [8, 32, 41, 64]
(see Section 2 for expanded discussion).

When misunderstood or used inappropriately, explain-



able AI (XAI) methods can have unintended conse-
quences [33,41]. This harm arises from unverified hypothe-
ses, whether it is that explanations represent phenomena
faithful to the predictor or meaningful properties of the pre-
dictor. So, why do we see such hypotheses proliferating
throughout both academia and industry [33, 42]? The prob-
lem is very human – there is often an over-reliance on intu-
ition that may lead to illusory progress or deceptive conclu-
sions. Whether it is dependence on alluring visualization or
behavioral extrapolation from cherry-picked examples, XAI
methods often are left insufficiently scrutinized and subject
to “researcher degrees of freedom” [42, 60].

Recent evidence indicates that ProtoPartNNs may suffer
from these same issues: PROTOPNET and its variants exhibit
irrelevant prototypes, a human-machine semantic similarity
gap, and exorbitant explanation size [28, 37, 63]. Unfortu-
nately, in our study, we confirm that this is the case – there
are several facets of existing ProtoPartNN explanations that
do not result from the implicit form of the model: image
part localization, pixel space grounding, and heat map vi-
sualizations. Instead, these are founded on unverified as-
sumptions and an over-reliance on intuition, often justified
a posteriori by attractive visuals. We demonstrate that, col-
loquially, this does not actually look like that, and here may
not actually correspond to there – see Figure 1 for illustra-
tion. These issues with ProtoPartNNs are not limited to just
PROTOPNET, but to all of its derivatives.

This work aims to elevate the interpretability of Pro-
toPartNNs by rectifying these facets. In doing so, all aspects
of ProtoPartNN explanations are embedded in the symbolic
form of the model. Our contributions are as follows:
• We identify that existing ProtoPartNNs based on PRO-

TOPNET do not localize faithfully nor actually localize
to image parts, but rather the full image in most cases.

• We propose a novel pixel space mapping based on the
receptive fields of an architecture (we guarantee that here
corresponds to there).

• We propose architectural constraints that we efficiently
discover through a transfer task to enable true image part
localization (this looks like that).

• We devise a novel functional algorithm for the receptive
field calculation of any architecture.

• On several image classification tasks, our approach, PIX-
PNET, achieves competitive accuracy with other Pro-
toPartNNs while maintaining a higher degree of inter-
pretability, as substantiated by functionally grounded
XAI metrics, and being the only ProtoPartNN that truly
localizes to image parts.

2. Background
In this section, we give a brief background of explainable

AI methods, the PROTOPNET formulation, and an overview
of PROTOPNET extensions.

Explainable AI Methods Explainable AI (XAI) solu-
tions can be classified as post hoc, intrinsically inter-
pretable, or a hybrid of the two [59]. Whereas intrinsi-
cally interpretable methods are both the explanator and pre-
dictor, post hoc methods act as an explanator for an inde-
pendent predictor. Unfortunately, post hoc explainers are
known to be inconsistent, unfaithful, and possibly even in-
tractable [5, 8, 12, 22, 41]. Furthermore, they are deceiv-
able [3, 14, 15, 64] and have been shown to not affect, or
even reduce, end-user task performance [31,32]. While this
is the case, post hoc explanations have been shown to possi-
bly increase user trust in AI systems [10], improve end-user
performance for some explanation types and tasks [31], and
explain black boxes in trustless auditing schemes [9]. How-
ever, for high-stakes domains, post hoc explanation is fre-
quently argued to be especially inappropriate [54].

For these numerous reasons, our work concerns intrinsi-
cally interpretable machine learning solutions (see [59] for
a methodological overview). In particular, we are interested
in prototypical part neural networks (ProtoPartNNs) [11].

PROTOPNET Architecture Here, we go over the PROTOP-
NET architecture [11], a type of ProtoPartNN. As much
of the formalism overlaps with our approach, Figure 2
can be referred to for visualization of the architecture.
Let D={(x1, y1), (x2, y2), . . . , (xN , yN )} be the data set
where each sample xi∈R3×H×W is an image with a height
of H and a width of W , and each label yi∈{1, . . . , C} rep-
resents one of C classes.

A PROTOPNET comprises a neural network backbone
responsible for embedding an image. The first compo-
nent of the backbone is the core fcore, which could be a
RESNET [25], VGG [61], or DENSENET [29] as in [11]. Pro-
ceeding, there are the add-on layers fadd that are responsible
for changing the number of channels in the output of fcore.
In PROTOPNET, fadd comprises two 1× 1 convolutional lay-
ers with ReLU and sigmoid activation functions for the first
and second layers, respectively. The full feature embedding
function is denoted by f = fadd ◦ fcore. This function gives
us our embedded patches f(xi) = Zi ∈ RD×Hz×Wz which
have D channels, a height of Hz , and a width of Wz .

In PROTOPNET, we are interested in finding the most sim-
ilar embedded patch z for each prototype. Each prototype
can be understood as the embedding of some prototypical
part of an object, such as the head of a blue jay as in Fig-
ure 2. Each embedded patch can be thought of in the same
way – ultimately, a well-trained network will find that the
most similar embedded patch and prototype will both be,
e.g., the head of a blue jay (this prototype looks like that
embedded patch). This is accomplished using the prototype
layer, g. We use the notation gpj

to denote the unit that com-
putes the most similar patch z∈patches(Zi) to prototype
pj . The function patches(Zi) yields a set of D×Hp×Wp

embedded patches in a sliding window manner (Hp=Wp=1
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Figure 2. (a) Our proposed architecture, PIXPNET. (b) An example of an explanation with PIXPNET for a Groove-billed Ani. The
following are important deviations from PROTOPNET: the backbone f receptive field is constrained, the readout layer h is simplified, both
prototypes and embedded patches truly localize to image parts, and the pixel space mapping is corrected (see Figure 3).

in PROTOPNET). First, the pairwise distances between
patches(Zi) and prototypes P={pj}Pj=1 are computed
using a distance function φ where pj∈RD×Hp×Wp , Hp

is the prototype kernel height, Wp is the prototype kernel
width, and P is the total number of prototypes. Each proto-
type is class-specific and we denote the set of prototypes be-
longing to class yi as Pyi⊆P . Subsequently, a min-pooling
operation is performed to obtain the closest embedded patch
for each prototype – each prototype (this) is “assigned” a
single embedded patch (that). Finally, the distances are con-
verted into similarity scores using a similarity function v.
Putting this process altogether for unit gpj , we have

gpj
(Zi) = v

(
min

z∈patches(Zi)
φ(z,pj)

)
. (1)

We denote the vector of all similarity scores for a sample as
si = g(Zi) ∈ RP .

The architecture ends with a readout layer h that pro-
duces the logits as ŷi = h(si). In PROTOPNET, h is a fully-
connected layer with positive weights to same-class proto-
type units and negative weights to non-class prototype units.
Each logit can be interpreted as the sum of similarity scores
weighed by their importance to the class of the logit. Note
that this readout layer is not reflected in Figure 2. The full
PROTOPNET output for a sample is given by (h ◦ g ◦ f)(xi).

ProtoPartNN Desiderata and PROTOPNET Variants
Many extensions of PROTOPNET have been proposed, some
of which make altercations that fundamentally affect the in-
terpretability of the architecture. To differentiate these ex-
tensions, we propose a set of desiderata for ProtoPartNNs:

1. Prototypes must correspond directly to image patches.
This can be accomplished via prototype replacement,
which grounds prototypes in human-interpretable pixel
space (see Section 4 for details).

2. Prototypes must localize to image parts.
3. Case-based reasoning must be describable by linear

or simple tree models.
Architectures that satisfy all three desiderata are considered

to be 3-way ProtoPartNNs – satisfying fewer diminishes the
interpretability of the algorithm.

The idea of sharing prototypes between classes has been
explored in PROTOPSHARE [56] (prototype merge-pruning)
and PROTOPOOL [55] (differential prototype assignment). In
PROTOTREE [51], the classification head is replaced by a dif-
ferentiable tree, also with shared prototypes. An alterna-
tive embedding space is explored in TESNET [72] based on
Grassmann manifolds. A ProtoPartNN-specific knowledge
distillation approach is proposed in PROTO2PROTO [34] by
enforcing that student prototypes and embeddings should be
close to those of the teacher. DEFORMABLE PROTOPNET [17]
extends the PROTOPNET architecture with deformable pro-
totypes. ST-PROTOPNET [71] learns support prototypes that
lie near the classification boundary and trivial prototypes
that are far from the classification boundary.

In an attempt to improve PROTOPNET visualizations, an
extension of layer-wise relevance propagation [2], Proto-
typical Relevance Propagation (PRP), is proposed to create
more model-aware explanations [23]. PRP is quantitatively
more effective in debugging erroneous prototypes and as-
signing pixel relevance than the original approach.

ProtoPartNN-Like Methods The following papers are
inspired by PROTOPNET but cannot be considered to be the
same class of model. This is due to not fulfilling the pro-
posed ProtoPartNN desiderata #1 (prototypes must corre-
spond directly to image patches) and/or #3 (case-based rea-
soning must be describable by linear or simple tree models).

VIT-NET [36] combines a vision transformer (ViT)
with a neural tree decoder that learns prototypes. In an-
other transformer-based approach, PROTOPFORMER [73] ex-
ploits the inherent architectural features (local and global
branches) of ViTs. SEMI-PROTOPNET [65] fixes the read-
out weights as NP-PROTOPNET [62] does and is used
for power distribution network analysis. In SDFA-SA-
PROTOPNET [30], a shallow-deep feature alignment (SDFA)
module aligns the similarity structures between deep and



shallow layers. In addition, a score aggregation (SA) mod-
ule aggregates similarity scores to avoid learning inter-class
information. Unfortunately, each of these networks omits
prototype replacement with the typical justification being
that doing so improves task accuracy. In addition, VIT-NET
has additional layers after g that break the mapping back to
pixel space and complicate its case-based reasoning.

3. The Problem with Existing ProtoPartNNs

Despite the many extensions of PROTOPNET, there are
still fundamental issues with image part localization, pixel
space grounding, and heat map visualizations, which pre-
clude any existing ProtoPartNN from satisfying all three
desiderata – all ProtoPartNNs violate desideratum #2: pro-
totypes must localize to image parts. The underlying issues
with existing ProtoPartNNs arise from 1) their pixel space
mapping being reliant on spatial correlation between em-
bedded patches and the input space, which is dubious; 2)
their pixel space mapping being receptive field-invariant, ar-
bitrarily localizing to some area in the input. Rather, intrin-
sically interpretable models should produce explanations
implicit in the symbolic form of the model itself [53, 59].

As a refresher, the original visualization process involves
three steps. First, a single similarity map Sij=πpj

(Zi) ∈
RHz/Hp×Wz/Wp is selected for visualization where πpj

gives the similarity map for prototype pj . Each element of
Sij is given by v (φ(z,pj)) where z∈patches(Zi). Sub-
sequently, this map is upsampled from Hz/Hp×Wz/Wp to
H×W using bicubic interpolation, producing a heat map
Mij∈RH×W . To localize within the image, the smallest
bounding box is drawn around the largest 5% of heat map
elements – this box is of variable size. While no justifica-
tion is provided for this approach in the original paper [11],
we believe that the intuition is that the embedded patches
Zi maintain spatial correlation with the input. Finally, Mij

and the bounding box can be superimposed on the input im-
age for visualization. From here on out, we will refer to this
as the original pixel space mapping, which is visualized in
Figure 3a. It should also be noted that while this pixel space
mapping is crucial in establishing interpretability, it is left
undiscussed in the vast majority of PROTOPNET extensions.
Immediately, we can see several issues with this approach.

Here Does Not Correspond to There The original pixel
space mapping is based on naive upsampling, which is in-
variant to architectural details. The approach will always
assume that all similarity scores can be mapped to pixel
space with a single linear transformation – an embedded
patch at position ⟨tx, ty⟩ is effectively localized to posi-
tion ⟨tx·W ·Wp/Wz, ty·H·Hp/Hz⟩ in pixel space. This as-
sumption of spatial correlation from high to low layers is
easy to invalidate. For instance, even a simple latent trans-
pose eradicates this correlation. The similarity scores of

embedded patches do not determine where the architec-
ture “looked” in the image. Rather, the architecture de-
termines where the similarity scores correspond to in the
image. Figure 1 demonstrates this discrepancy. Very re-
cently, evidence in [27, 57] strongly corroborates our argu-
ments about poor localization. We correct this pixel space
mapping according to the receptive fields of the underlying
neural architecture. The original approach also only pro-
vides a way to localize a prototype rather than any embed-
ded patch – our method enables us to do so. Our approach
is described in detail in Section 4 and we validate its cor-
rectness over the original approach in Section 5.

This Does not Correspond to Just That PROTOPNET and
its derivatives all elect to localize to a small region of the
input by drawing a bounding box around the largest 5% of
values of heat map Mij as shown in Figure 3a. While this
produces alluring visualizations, most of the architectures
evaluated in all prior approaches have a mean receptive field
of 100% at the embedding layer1. A mean receptive field of
100% means that every element of the embedding layer
output is a complex function of every pixel in the input
space. Is it fair to say that only ∼5% of the input con-
tributed to some part of a decision? Attribution within the
input space spanned by a receptive field is unverifiable from
both the feature-selectivity and feature-additivity points of
view [7, 42]. This issue is visualized in Figure 1 for an ar-
chitecture with a mean receptive field under 100%. More-
over, while selecting the top 5% of Mij may localize in
accordance with its (faulty) intuition, it can actually local-
ize to wildly inaccurate parts of the image (e.g., if multiple
top values in Sij are all close), breaking the intuition of the
(unfaithful) pixel space mapping. We go on to discuss our
solution to this problem in Section 4.

The Allure of Visualization The original pixel space
mapping appears to satisfy human intuitions. However, it
is not based on well-justified aspects of explainability. Be-
yond the assumption of spatial correlation and naive local-
ization, bicubic interpolation artificially increases the reso-
lution of maps (see Figure 3a), which leads non-experts to
believe that per-pixel attributions are estimated. In our pro-
posed approach, these explanation aspects follow naturally
from the symbolic interpretation of the model itself.

4. Fixing ProtoPartNNs

As discussed in Section 3, the underlying issues with
ProtoPartNNs arise from 1) the original pixel space map-
ping being reliant on spatial correlation between embed-
ded patches and the input space, which is dubious; 2) the
original pixel space mapping being receptive field-invariant,

1The lowest mean receptive field of an evaluated architecture is from
VGG19 (∼70%) [11].
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arbitrarily localizing to some area in the input. Our pro-
posed architecture, PIXPNET (Pixel-grounded Prototypical
part Network), is largely based on PROTOPNET but mit-
igates these issues through symbolic interpretation of its
architecture – see Figure 2 for an overview. In this sec-
tion, we first describe a new algorithm for the calculation of
receptive fields, describe our proposed fixes for prototype
visualization and localization, and proceed with additional
ProtoPartNN corrections and improvements. With the pro-
posed improvements, PIXPNET is the only ProtoPartNN that
truly localizes to image parts, satisfying all three desiderata.

Receptive Field Calculation Algorithm Before delving
into our proposed remedies, we describe our approach to
computing receptive fields precisely for any architecture.
Our proposed algorithm, FunctionalRF, takes a neural
network as input and outputs the exact receptive field of
every neuron in the neural network. Recall that a neu-
ron is a function of a subset of pixels defined by its re-
ceptive field. FunctionalRF represents receptive fields
as hypercubes (multidimensional tensor slices). For in-
stance, the slices for a 2D convolution with a 5×5 kernel,
stride of 1, and cin channels at output position 3, 3 would be
{{J1, cinK, J1, 5K, J1, 5K}} where Ja, bK denotes the slice be-
tween a and b. We can compute the mean receptive field of
a layer as the average number of pixels within the receptive
field of each hypercube element of a layer output. The algo-
rithm does not rely on approximate methods nor architec-
tural alignment assumptions like other approaches [1, 45].
The full algorithmic details are provided in Appendix C.

Corrected Pixel Space Mapping Algorithm
From Embedding Space to Pixel Space For each prototype
pj , we have some z ∈ Zi that is most similar. We are in-
terested in knowing where z localizes to in an image xi.
With FunctionalRF applied to the backbone, we have the
precise pixel space region that z is a function of – this ex-
actly corresponds to that. This can also be done for any pj

after prototype replacement. Additionally, this process can
actually be used to visualize any z ∈ Zi, unlike the proce-

dure specified in the original pixel space mapping [11]. See
Figure 3b for intuition as to how this process works.
Producing a Pixel Space Heat Map In order to compute
a pixel space heat map, we propose an algorithm based on
FunctionalRF rather than naively upsampling an embed-
ding space similarity map Sij . Our approach uses the same
idea as going from embedding space to pixel space. Each
pixel space heat map Mij ∈ RH×W is initialized to all
zeros (0H×W ), and corresponds to a sample xi and a pro-
totype pj . Let MS

ij be the region of Mij defined by the
receptive field of similarity score S ∈ Sij . For each S, the
pixel space heat map is updated as MS

ij ← max(MS
ij , S)

where max(·) is an element-wise maximum that appropri-
ately handles the case of overlapping receptive fields. We
take maxima instead of averaging values due to Eq. (1).
Again, see Figure 3b for a visualization of this procedure.
Further algorithmic details are provided in Appendix D.

Improved Localization & the “Goldilocks” Zone To re-
iterate, the region localized by a ProtoPartNN is controlled
by the receptive field of the embedding layers of f . A fun-
damental goal of ProtoPartNNs is to identify and learn pro-
totypical object parts. We propose to achieve this by con-
straining the receptive field of f to a range that yields image
parts that are both meaningful and interpretable to humans.

It is well known that the receptive field of a neural net-
work correlates with performance [1, 45] to an extent –
too small or large a receptive field can harm performance
due to bias-variance trade-offs [39]. We hypothesize that
there is a “Goldilocks” zone where the desired receptive
field localizes to intelligible image parts without diminish-
ing task performance. To corroborate this, we evaluate var-
ious backbone architectures at intermediate layers on Im-
ageNette [21], a subset of ImageNet [13]. The evaluation
aims to produce architectures suitable for the backbone of
PIXPNET according to the criteria outlined prior. We pro-
pose this approach as performance on subsets of ImageNet
has been shown to be reflective of performance on the full
dataset [16], and ImageNet performance strongly correlates
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with performance on other vision datasets [38]. We detail
the full experiment setup in Appendix F. The Pareto front
of mean receptive field and accuracy for the evaluated ar-
chitectures is shown in Figure 4. This front informs our
backbone selection as detailed in Section 5.
Simplified Classification Head While the original fully-
connected classification head h is human-interpretable, it
has several weaknesses – its explanation size limits its com-
prehension [37, 63] and it requires an additional training
stage, adding up to 100 additional epochs in PROTOPNET2.
We quantify explanation size in terms of positive reasoning
and negative reasoning about the prediction of a class. For
positive reasoning, the number of elements in an explana-
tion with the original fully-connected layer is 2P/C: one
similarity score per class-specific prototype and a positive
weight coefficient. However, considering both positive and
negative reasoning involves 2P total explanation elements.

To address these limitations, we propose to replace the
linear layer with a class-wise summation. This operation
simply produces the logit of each class as the sum of class-
specific similarity scores as ŷic =

∑
j:pj∈Pc

sij where ŷic
is the logit for class c and sij is the similarity score for pro-
totype pj . The layer is visualized in Figure 2. Our new
parameter-free readout layer removes the additional train-
ing stage and comprises only P/C explanation elements for
both positive and negative reasoning. Substituting our layer
in the original PROTOPNET configuration for the CUB-200-
2011 dataset [11, 70] reduces the number of explanation el-
ements for a class prediction from 4,000 down to just 10.
Other Improvements We also make a few smaller con-
tributions. In prototype replacement, we remove dupli-
cate prototypes (by image or sample) to encourage diver-
sity. If duplicates are found, the next most-similar embed-
ded patch is used in replacement instead. We also reformu-

2In the original PROTOPNET implementation, as well as subsequent
extensions, the last layer is optimized 5 times, each for 20 epochs [11].

late the similarity function v to have lower numerical error
(see Appendix G for details) as v(d)= log( 1

d+ε+1) where ε
is mitigates division by zero and the distance d=φ(z,pj).
While PROTOPNET uses φ(z,pj)=∥z − pj∥22, we elect to
use φ(z,pj)=1 − z·p

∥z∥2∥p∥2
(cosine distance), which has

a desirable normalizing factor. This distance is also used
in [4, 17, 35, 72]. In implementation, the distances are com-
puted using generalized convolution [11, 24, 49].

Training Our multi-stage training procedure is similar to
that of PROTOPNET. The first stage optimizes the full net-
work, except for the readout layer, by minimizing Eq. (2)
via stochastic gradient descent

1

N

N∑
i=1

Lxent(ŷi, yi)+λclsLcls(P ,Zi)+λsepLsep(P ,Zi) (2)

where Lxent is the categorical cross-entropy loss function,
λcls and λsep are auxiliary loss weights, and the auxiliary
loss functions, Lcls and Lsep, are defined as

Lcls(P ,Zi) =
1

N

N∑
i=1

min
pj∈Pyi

z∈patches(Zi)

φ(z,pj) (3)

Lsep(P ,Zi) = −
1

N

N∑
i=1

min
pj /∈Pyi

z∈patches(Zi)

φ(z,pj). (4)

The goal of Lcls is to ensure that at least one embedded
patch of every training image is similar to at least one pro-
totype belonging to the class of the image. In contrast, the
goal of Lsep is to ensure that the embedded patches of every
training image are dissimilar from prototypes not belonging
to the class of the image.

Subsequently, the prototypes are replaced, which is ar-
guably the most important stage of training as it grounds
prototypes in human-comprehensible pixel space. The pro-
cess involves replacing each prototype pj with an embed-
ded patch z of a training sample of the same class – the most
similar embedded patch replaces the prototype. In the liter-
ature, prototype replacement is also referred to as prototype
“pushing” or “projection.” We stick with “replacement” for
the sake of clarity. Formally, this update can be written as
pj← argminz∈patches(Zi) φ(z,pj), s.t. pj ∈Pyi . With-
out this update, the human interpretation of prototypes is
unclear as prototypes are not grounded in pixel space.

In PROTOPNET and its variants, a third stage optimizes
the linear readout layer. However, we do not employ this
stage as our readout layer is parameter-free. The multi-stage
optimization process can be repeated until convergence.

5. Experiments & Discussion

To validate our proposed approach, PIXPNET, we eval-
uate both its accuracy and interpretability on CUB-200-
2011 [70]. We also show evaluation results on Stanford



BBox D1 D2 D3 Model f
Expl.

Size +
Expl.

Size ± P MRF Acc. ± Scon Ssta
Code
Avail.

Val.
Set

✗
✓ ✓ ✓

PIXPNET (Ours) ResNeXt@layer3 10 10 2000 100 81.76 0.2 56.4 64.7 ✓ ✓

PIXPNET (Ours) VGG19@maxpool5 10 10 2000 70.4 80.10 0.1 47.6 64.2 ✓ ✓

PIXPNET (Ours) VGG16@maxpool5 10 10 2000 52.5 79.75 0.2 69.5 51.6 ✓ ✓

PIXPNET (Ours) VGG13@maxpool4 10 10 2000 9.69 75.32 0.2 66.9 45.0 ✓ ✓

✓ ✗ ✓ ST-PROTOPNET [71] DenseNet161 20 4000 2000 100 80.60 – – – ✓ ✗

✓ ✓ ✗ ✓

ST-PROTOPNET [71] DenseNet161 20 4000 2000 100 86.10 0.2 – – ✓ ✗

TESNET [72] DenseNet121 20 4000 2000 100 84.80 0.2 63.1 66.1 ✓ ✗

PROTOPOOL [55] ResNet152 20 404 202 100 81.50 0.1 35.7 58.4 ✓ ✗

PROTOPNET [11] DenseNet121 20 4000 2000 100 80.20 0.2 24.9 58.9 ✓ ✗

PROTO2PROTO [34] ResNet34 20 4000 2000 100 79.89 – – – ✓ ✗

PROTOPSHARE [56] DenseNet161 1200 1200 600 100 76.45 – – – ✓ ✗

PROTOTREE [30, 51] DenseNet121 18 404 202 100 73.20 – 21.5 24.4 ✓ ✗

✗
✗ ✗ ✓ PROTOPFORMER [73] DeiT-S 40 8000 4000 100 84.85 – – – ✓ ✗

✗ ✗ ✗ VIT-NET [36, 73] CaiT-XXS-24 8 30 15 100 84.51 – – – ✓ ✗

✓
✗ ✗ ✗ VIT-NET [36] SwinT-B 10 62 31 100 91.60 – – – ✓ ✗

✗ ✗ ✓ SDFA-SA [30] DenseNet161 20 20 2000 100 86.80 – 73.2 73.5 ✓ ✗

Table 1. ProtoPartNN results on CUB-200-2011 with ImageNet used for pre-training. Columns D1, D2, and D3 correspond to the three
desiderata established in Section 2. Our approach, PIXPNET, is the only method that is a 3-way ProtoPartNN, satisfying all three desiderata.
“BBox” indicates whether a method crops each image using a bounding box annotation. The best results of ProtoPartNNs with and without
such annotations are bold and underlined, respectively. The table is split based on whether the method meets at least two desiderata. The
Scon and Ssta scores for other methods are taken from [30] and the top reported accuracy score is taken for each method.

Cars [40] in Appendix B. We draw comparisons against
other ProtoPartNNs with a variety of measures. We elect
to not crop images in CUB-200-2011 by their bounding
box annotations to demonstrate the localization capability
of PIXPNET. Hyperparameters, software, hardware, and
other reproducibility details are specified in Appendix E.

Lastly, upon inspection of the original code base3, we
discovered that the test set accuracy is used to influence
training of PROTOPNET. In fact, neither PROTOPNET nor
its extensions for image classification that are mentioned in
Section 2 employ a validation set in provided implementa-
tions. See Appendix H for further details. In our implemen-
tation, we employ a proper validation set and tune hyperpa-
rameters only according to accuracy on this split.

Accuracy The experimental results in Table 1 show
that PIXPNET obtains competitive accuracy with other ap-
proaches regardless of whether images are cropped by bird
bounding box annotations – while we trade off network
depth for interpretability, we outperform PROTOPNET and
several of its derivatives. This is quite favorable as PIXP-
NET is the only method that truly localizes to image parts.

Interpretability We evaluate the interpretability of our
approach with several functionally grounded metrics [18].
See Figure 2b for an example of a PIXPNET explanation.
Relevance Ordering Test (ROT) The ROT is a quantitative
measure of how well a pixel space mapping attributes indi-

3https://github.com/cfchen-duke/ProtoPNet

vidual pixels according to prototype similarity scores [23].
First, a pixel space heat map Mij is produced for a single
sample xi and prototype pj . Starting from a completely
random image, pixels are added back to the random image
one at a time in descending order according to Mij . As
each pixel is added back, the similarity score for pj is eval-
uated. This procedure is averaged over each class-specific
prototype over 50 random samples. The faster that the orig-
inal similarity score is recovered, the better the pixel space
mapping is. Assuming a faithful pixel space mapping, a
network with a mean receptive field of, e.g., 25%, will re-
cover the original similarity score after 25% of the pixels
are added back in the worst-case scenario.

We also introduce two aggregate measures of the ROT.
First is the area under the similarity curve (AUSC) which
is normalized by the difference between the original sim-
ilarity score and the baseline value (similarity score for a
completely random image)4. Second is the percentage of
pixels added back to recover the original similarity score:
pixel percentage to recovery (%2R).

We compare our pixel space mapping to the original up-
sampling approach and PRP [23]. However, the PRP imple-
mentation only supports RESNET architectures5, so it is not
included in all experiments. The results in Table 2 demon-
strate that our pixel space mapping best identifies the most

4AUSC>1 is possible as the maximum possible similarity is unknown.
5The hard-coded and complex nature of the PRP code base precludes

simple extension to other architectures.

https://github.com/cfchen-duke/ProtoPNet


Backbone MRF
Acc.

↑ PSM
Scon

↑
Ssta

↑
AUSC

↑
%2R

↓

VGG11
@maxpool4

8.31 72.9
Ours 65.3 48.3 0.99 11.2
Orig. 45.8 44.0 0.90 30.5

VGG13
@maxpool4

9.69 75.3
Ours 66.9 45.0 0.97 13.0
Orig. 48.1 41.8 0.88 84.1

VGG16
@maxpool4

15.7 76.4
Ours 62.0 46.4 1.02 6.98
Orig. 46.8 42.2 0.89 35.5

VGG19
@maxpool4

22.8 77.1
Ours 60.1 42.5 0.94 21.4
Orig. 48.4 41.3 0.80 99.9

VGG13
@maxpool5

33.5 78.1
Ours 67.0 42.5 0.90 29.5
Orig. 43.7 39.9 0.81 99.2

VGG16
@maxpool5

52.5 79.8
Ours 69.5 51.6 0.90 32.0
Orig. 44.1 42.4 0.82 55.5

WRN50
@layer3

69.9 80.1
Ours 56.4 64.7 0.93 13.0
Orig. 56.4 47.6 0.85 39.6

VGG19
@maxpool5

70.4 80.1
Ours 47.6 64.2 0.92 43.4
Orig. 45.8 46.0 0.85 92.9

ResNet18
@layer2

15.4 57.2
Ours 59.2 46.6 0.98 4.10
Orig. 25.2 45.6 0.88 96.8
PRP – – 0.95 25.4

ResNet50
@layer3

69.8 76.6
Ours 47.9 62.0 0.58 72.8
Orig. 53.5 42.7 0.42 97.8
PRP – – 0.34 100.0

Table 2. Evaluation of pixel space mapping (PSM) methods with
functionally-grounded interpretability metrics. Methods are com-
pared on PIXPNET with “Goldilocks” zone and RESNET back-
bones on CUB-200-2011 (no BBox cropping). Our PSM outper-
forms both the original and PRP PSMs across all backbones.

important pixels in an image. Naturally, the mean receptive
field correlates with both ROT scores.

Explanation Size Recall from Section 4 that the explana-
tion size is the number of elements in an explanation, i.e.,
similarity scores and weight coefficients. This number dif-
fers when considering positive or negative reasoning. Due
to the original classification head being fully-connected,
most ProtoPartNNs have large explanation sizes when con-
sidering both positive and negative reasoning, as shown in
Table 1. In contrast, our explanation size comprises just
10 elements when reasoning about a decision. Our pro-
posed classification head helps to prevent overwhelming
users with information, which has been shown to be the case
with other ProtoPartNNs [37].

Consistency The consistency metric [30] quantifies how
consistently each prototype localizes to the same human-
annotated ground truth part. It evaluates both semantic sim-
ilarity quality and the pixel space mapping to a degree. For
a sample xi with label yi, the pixel space mapping is com-
puted for each prototype pj ∈ Pyi . Let opj (xi) ∈ RK be
a binary vector indicating which of K object parts are con-
tained within the region localized by the pixel space map-
ping. Let u(xi) ∈ RK be a binary vector indicating which

of the K object parts are actually visible in xi. A single
object part is associated with pj by taking the maximum
frequency of an object part present in the pixel space map-
ping region across all applicable images. A prototype is said
to be consistent if this frequency is at least µ, i.e.,

Scon =
1

P

P∑
j=1

1

[
max

( ∑
xi∈Xcj

(
opj

(xi)⊘ u(xi)
))
≥ µ

]
where Xcj are samples of the same class allocated to pj , ⊘
denotes element-wise division, and 1 is the indicator func-
tion. To compare with results reported in [30], we change
the receptive field size in our pixel space mapping to equal
this, as well as set µ = 0.8. A notable weakness of the
evaluation approach is that it uses a fixed 72 × 72 pixel re-
gion independent of the architecture. While the approach
is not perfect, it allows for reproducible and comparative
interpretability evaluation between ProtoPartNN variants.

Results are shown in Tables 1 and 2 for CUB-200-2011,
which provides human-annotated object part annotations.
We outperform PROTOPNET and many of its variants, as
well as the original pixel space mapping (Table 2).
Stability The stability metric [30] measures how robust
object part association is when noise is added to an image.
Simply, some noise ϵ ∼ N (0, σ2) is added to each sample
xi and the object part associations are compared as

Ssta =
1

P

P∑
j=1

∑
xi∈Xcj

1
[
opj

(xi) = opj
(xi + ϵ)

]
|Xcj |

.

Following [30], we set σ=0.2. Results in Tables 1 and 2
support the robustness of PIXPNET compared to other Pro-
toPartNNs and the original pixel space mapping. There is a
marginal decrease in stability as the receptive field lessens.

6. Limitations and Future Work

The receptive field constraint is a design choice and is in-
herently application-specific, subject to data characteristics
and interpretability requirements. Future work should in-
vestigate multi-scale receptive fields and automated recep-
tive field design techniques. Nevertheless, we trade off net-
work depth for significant gains in interpretability with very
little penalty in accuracy. Prior studies have shown that
ProtoPartNNs have a semantic similarity gap with humans,
prototypes can be redundant or indistinct, and limited utility
in improving human performance [27,28,37,63]. Moreover,
the consistency and stability evaluation metrics are imper-
fect. Although we improve upon interpretability over other
networks, human studies are needed to understand other
facets of interpretability, such as trustworthiness, accep-
tance, and utility [59]. In the future, architectural improve-
ments should be made, e.g., the enriched embedding space
of TESNET, prototype diversity constraints [58, 68, 71], and
human-in-the-loop training [48].
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Moustapha Cissé, Giovanni Maria Farinella, and Tal Has-
sner, editors, European Conference on Computer Vision,
ECCV, volume 13672 of Lecture Notes in Computer Science,
pages 351–368. Springer, 2022. 3, 7

[56] Dawid Rymarczyk, Lukasz Struski, Jacek Tabor, and Bar-
tosz Zielinski. Protopshare: Prototypical parts sharing for
similarity discovery in interpretable image classification. In
Feida Zhu, Beng Chin Ooi, and Chunyan Miao, editors,
SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD, pages 1420–1430. ACM, 2021. 3, 7

[57] Mikołaj Sacha, Bartosz Jura, Dawid Rymarczyk, Łukasz
Struski, Jacek Tabor, and Bartosz Zieliński. Interpretability
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