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Dual Parametric and State Estimation for Partial Differential Equations

Saviz Mowlavi1 and Mouhacine Benosman2

Abstract— Designing estimation algorithms for systems gov-
erned by partial differential equations (PDEs) such as fluid
flows is challenging due to the high-dimensional and oftentimes
nonlinear nature of the dynamics, as well as their dependence
on unobserved physical parameters. In this paper, we propose
two different lightweight and effective methodologies for real-
time state estimation of PDEs in the presence of parametric
uncertainties. Both approaches combines a Kalman filter with
a data-driven polytopic linear reduced-order model obtained by
dynamic mode decomposition (DMD). Using examples involving
the nonlinear Burgers and Navier-Stokes equations, we demon-
strate accurate estimation of both the state and the unknown
physical parameter along system trajectories corresponding to
various physical parameter values.

I. INTRODUCTION

Active control of fluid flows has many potential benefits,
from drag reduction in aircrafts and ships to improved
efficiency of heating and air-conditioning systems, among
many other examples [1]. But real-time feedback control
requires inferring the state of the system from sparse mea-
surements using a state estimation algorithm, which typically
relies on a model for the underlying dynamics [2]. Among
estimation algorithms, the Kalman filter is by far the most
well-known thanks to its optimality for linear systems, which
has led to its widespread use in numerous applications [3],
[4]. However, systems such as fluid flows are governed by
partial differential equations (PDEs) which, when discretized,
yield high-dimensional and oftentimes nonlinear dynamical
models with hundreds or thousands of state variables. These
high-dimensional models are too expensive to integrate with
common state estimation techniques, especially in the context
of embedded systems. Thus, for control purposes, a com-
mon practice is to design state estimators from a reduced-
order model (ROM) of the system, in which the underlying
dynamics are projected to a low-dimensional subspace that
is computationally tractable [5], [6]. In particular, recent
papers have demonstrated the efficacy of combining a data-
driven ROM constructed using dynamic mode decomposition
(DMD) with a Kalman filter to estimate unsteady fluid flows
using sparse sensor measurements in the absence of model
uncertainties [7], [8].

The dynamics of physical systems such as fluid flows
is oftentimes sensitive to various physical parameters such
as wind speed, viscosity, etc. When these parameters are
unknown, the accuracy of the estimate is adversely impacted
by the uncertainty in the model and, thus, the ROM. To
deal with these model uncertainties, an extension of the
previously referenced studies was recently proposed, wherein
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a bank of local DMD models for multiple parameter values
was utilized in a multiple model Kalman filter framework,
in which the estimate is a weighted average of individual
estimates produced by independent Kalman filters running
separately for each parameter value [9]. This latter frame-
work belongs to a broader class of multiple model techniques
addressing parameter uncertainties [10], [11], which also
include polytopic models where a single state or estimate
is produced by a weighted average of the local models
themselves [12], [13], [14], [15].

In this paper, we adopt the polytopic modeling approach
to formulate an adaptive estimator for systems governed by
PDEs in the presence of parameter uncertainties. Specifically,
we construct a data-driven polytopic ROM from a bank of
local DMD models for multiple parameter values, which we
combine with a joint or modular Kalman filter algorithm to
simultaneously learn online an estimate for both the state
and the unknown parameter. We compare the proposed dual
parameter-state estimation methods with a classical robust
estimation approach, where a single global DMD model is
computed from a wide range of the uncertain parameter,
without online adaptation of the parameter estimate. The
performance of these various estimation algorithms are tested
on two PDE systems, the Burgers equation and the Navier-
Stokes equations.

The remaining of the paper is organized as follows:
Section II is dedicated to the statement of the estimation
problem. In Section III, we recall the DMD method and
present two ROM approaches, a robust ROM and polytopic
multi-ROMs approach. In Section IV, the proposed dual
parameter-state estimators are introduced. The numerical
results are reported in Section V. Finally, conclusions and
future works are discussed in Section VI.

II. PROBLEM FORMULATION
Consider the parametric discrete-time nonlinear system

zk+1 = f(zk; p), (1a)
yk = h(zk,nk), (1b)

where zk ∈ Rn and yk ∈ Rm are respectively the state
and measurement at time k, p ∈ [pmin, pmax] ⊂ R is an
uncertain physical parameter, f : Rn × R → Rn is a
nonlinear map from current state and parameter to next state,
nk ∈ Rm is observation noise, and h : Rn×Rm → Rm is a
nonlinear map from current state and noise to measurement.
In this study, we assume that the dynamics given in (1) are
obtained from a high-fidelity numerical discretization of a
nonlinear PDE, which typically requires a large number n
of continuous state variables (on the order of at least a few



hundreds). Nonetheless, our work is applicable to any high-
dimensional nonlinear system of the form (1), so long as
a linear model can provide a useful approximation of the
system at hand.

Here, we will focus on the post-transient dynamics of
(1); these are the observed dynamics once the transients
associated with the initial condition have died down. In
particular, we consider systems whose post-transient dynam-
ics are described by an attractor that is either a steady
state, a periodic limit cycle or a quasi-periodic limit cycle,
which encompasses the behavior of a large class of physical
systems. The nature of the attractor is independent of the
initial condition but depends on the value of p.

The purpose of the present work is to combine a ROM
constructed using DMD and a Kalman filter to formulate
an estimation algorithm that solves the following problem:
given a sequence of measurements {y1, · · · ,yk} from a
post-transient reference trajectory of (1), estimate the high-
dimensional state zk at current time k without knowledge
of p itself. We will consider an adaptive approach whose
goal is to estimate both the state and the parameter using an
local dynamics model that depend on the current parameter
estimate, and compare it to a robust approach whose goal is
to estimate only the state zk using a global dynamics model,
i.e., valid over an interval of p values. In the remainder of
this section, we describe the ROM methodologies forming
the basis of these two approaches.

III. REDUCED-ORDER MODELING

In order to make online estimation practical despite the
high-dimensionality of (1), the first step is to formulate a
reduced-order model (ROM) of the dynamics [6]. Inspired
by previous work [16], [7], [8], we construct a ROM by
using the proper orthogonal decomposition (POD) to project
the high-dimensional state in an appropriate reduced-order
subspace, followed by applying the dynamic mode decom-
position (DMD) to obtain a linear model for the dynamics
within the subspace. Our novelty lie in the way that we
account for multiple dynamical regimes as the physical
parameter p varies, resulting in two new methodologies to
construct a ROM in the presence of parameter uncertainty.

Since both the POD and DMD are data-driven, we begin
with a training data set of trajectories obtained by solving (1)
for a range of values of p specified by a finite set Ptrain =
{p(1), . . . , p(q)} ⊂ [pmin, pmax], resulting in a concatenated
collection of snapshots Ztrain = {Z(i)}qi=1, where each
Z(i) = {z(i)

0 , . . . ,z
(i)
m } is a post-transient trajectory of

(1a) for a specific value p(i) ∈ Ptrain. We arrange the
concatenated snapshots into two time-shifted matrices

X = {z(1)
0 , . . . ,z

(1)
m−1, . . . ,z

(q)
0 , . . . ,z

(q)
m−1}, (2a)

Y = {z(1)
1 , . . . ,z(1)

m , . . . ,z
(q)
1 , . . . ,z(q)

m }. (2b)

To reduce the dimensionality of the system, we follow the
POD methodology and perform a reduced-rank SVD of the
data matrix X; that is, X ≃ UΣV T, where U ,V ∈ Rn×r

are orthogonal, Σ ∈ Rr×r is diagonal, and r is the rank of
the truncation. The columns of U , called the POD modes,
contain the r most energetic spatial structures in the data (in
an L2 sense) and therefore span an energy-optimal subspace
in which to project zk. The projection is defined by

xk = UTzk, (3)

yielding a reduced-order state xk representing the subspace
coordinates, or modal amplitudes, of zk. Conversely, zk can
be approximately recovered from xk as

zk ≃ Uxk, (4)

where equality holds only when zk is in the range of U .
To find a model for the dynamics of xk, which is vastly

cheaper to evolve than (1) when r ≪ n, we employ
the DMD, a purely data-driven algorithm that has found
numerous applications in various fields [17], [18]. In its
standard formulation, the DMD seeks a best-fit linear model
of the dynamics for a single parameter p(i) in the form of
a matrix A ∈ Rn×n such that z

(i)
k+1 ≃ Az

(i)
k for all k,

using the snapshots in Z(i). Projecting this matrix to the
columns of U results in a linear ROM xk+1 ≃ Arxk, where
Ar = UTAU ∈ Rr×r. Since this ROM is only trained using
data from a single p(i), it will produce inaccurate dynamics
for other parameter values. Thus, we introduce two variations
of DMD in order to take into account the dependence of the
dynamics on the physical parameter p.

A. Robust reduced-order model (rROM)

In the robust approach, we seek a ROM that approximately
describes the dynamics corresponding to any parameter value
p ∈ [pmin, pmax] but without explicit dependence on p. To do
so, we compute a single matrix A ∈ Rn×n such that z(i)

k+1 ≃
Az

(i)
k for all k = 0, . . . ,m−1 and for all p(i) ∈ Ptrain. The

best-fit linear model is given by A = Y X†, where X and
Y are the matrices in (2) and X† is the pseudoinverse of
X .

The relation (4) and the orthogonality of U then yield a
linear discrete-time robust ROM of the form

xk+1 = Arxk +wk, (5a)
yk = hr(xk,vk), (5b)

where Ar = UTAU ∈ Rr×r is the reduced state-
transition model and hr : Rr × Rm → Rm is the reduced
map from reduced state and noise to measurement, with
hr(xk,vk) = h(Uxk,vk). The non-Gaussian process noise
wk and observation noise vk account for the POD modes left
out of the truncated SVD of X , as well as the error incurred
by the linear approximation and effective averaging of the
dynamics over the parameter range [pmin, pmax]. Finally, zk
is recovered from xk using (4). Note that Ar can be directly
calculated as Ar = UTY V Σ−1, which avoids forming the
large n× n matrix A.



B. Adaptive polytopic reduced-order model (apROM)

In the adaptive approach, we seek a ROM that better
approximates the dynamics corresponding to various p ∈
[p1, p2] by introducing an explicit dependence on p. For the
purpose of formulating the ROM, p is assumed known but
it will later be estimated as part of the estimation algorithm.
We first construct a library of matrices {A(1), . . . ,A(q)} by
separately applying DMD to each trajectory Z(i), for all
p(i) ∈ Ptrain. Thus, for each p(i) we compute A(i) ∈ Rn×n

such that z
(i)
k+1 ≃ A(i)z

(i)
k for all k = 0, . . . ,m − 1. The

best-fit linear model is given by A(i) = Y (i)(X(i))†, where
X(i) and Y (i) are given by

X(i) = {z(i)
0 , . . . ,z

(i)
m−1}, (6a)

Y (i) = {z(i)
1 , . . . ,z(i)

m }. (6b)

We then construct an adaptive weighted average of these
local linear models as

Ā(p) =

q∑
i=1

wi(p)A
(i), (7)

where the weights depend on p through functions wi(p) that
need to satisfy two properties: first, all wi(p)’s must always
sum to one; second, each wi(p) must increase monotonically
with decreasing |p−p(i)|. Thus, a possible choice is to define
the weights using a ‘softmax’ function as

wi(p) =
eli(p)∑q
j=1 e

lj(p)
, (8a)

li(p) =
1

ϵ+ |p− p(i)|/∆p
, (8b)

where ∆p = pmax − pmin, and ϵ > 0 is a small number
that prevents a division by zero and additionally serves as
a control knob for the ‘sharpness’ of each weight function
wi(p) in the neighborhood of p(i); see Figure 1. In the
examples to follow, we choose ϵ = 10−2.

The relation (4) and the orthogonality of U can then be
applied to yield a linear discrete-time adaptive polytopic
ROM of the form

xk+1 = Ār(p)xk +wk, (9a)
yk = hr(xk,vk), (9b)

where Ār(p) = UTĀ(p)U ∈ Rr×r is an adaptive reduced
state-transition model and hr : Rr × Rp → Rp is the same
map as in (5b). As in the previous case of the rROM, the
non-Gaussian process noise wk and observation noise vk

account for the POD modes left out of the truncated SVD of
X , as well as the error incurred by the linear approximation.
However, the dependence of the dynamics on p is now
expressed by the weights wi(p), which push Ār(p) towards
the matrix A(i) corresponding to the parameter p(i) that is
closest to p. As before, zk is recovered from xk using (4).
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Fig. 1. Behavior of the weights wi(p) versus parameter p for different
values of ϵ in the case where pmin = 0, pmax = 1, Ptrain = {p(1) =
0.2, p(2) = 0.5, p(3) = 0.8}.

IV. ESTIMATION ALGORITHM
We now propose two state estimation strategies in the

presence of parameter uncertainty: first, an adaptive mod-
ular parameter-state estimation algorithm that combines the
adaptive polytopic ROM with two Kalman filters to estimate
separately the state and the unknown parameter; second,
an adaptive joint parameter-state estimation algorithm that
combines the adaptive polytopic ROM with a single Kalman
filter to estimate jointly the state and the unknown parameter.
Finally, we contrast the proposed adaptive estimators with
a classical robust state estimation algorithm that combines
the robust ROM with a single Kalman filter to provide an
estimate for the state.

A. Adaptive modular parameter-state estimation (apROM-
mKF)

To estimate both the reduced state xk and model parameter
p from the noisy measurement data, we first consider a
modular dual parameter-state estimation algorithm inspired
by the dual extended and unscented Kalman filters [19], [20],
[21]. In this approach, we simultaneously run two unscented
Kalman filters in parallel, one to provide a state estimate x̂k

and one to provide a parameter estimate p̂k. The state-space
representation for the state is given by the adaptive polytopic
ROM (9), while that for the parameter is given by

pk+1 = pk, (10a)
yk = hr(Ār(pk)xk−1,vk). (10b)

When running simultaneously the state and parameter filters,
we use at each time step the state estimate in the parameter
filter, and the parameter estimate in the state filter.

B. Adaptive joint parameter-state estimation (apROM-jKF)

The second approach we propose to estimate both the
reduced state xk and model parameter p is a joint parameter-



state estimation algorithm inspired by the joint extended
and unscented Kalman filters [19]. In this approach, we
construct a joint state vector x′

k = [xT
k , p

T
k ]

T. The state-space
representation for this joint state is given by a combination
of the adaptive ROM (9) and the parameter equation (10),
that is, [

xk+1

pk+1

]
=

[
Ār(p)xk +wk

pk

]
+

[
wk

uk

]
, (11a)

yk = hr(xk,vk). (11b)

We can then run a single unscented Kalman filter on the joint
state vector to recover an estimation for both the state and
the parameter.

C. Robust parameter estimation (rROM-KF)

For our baseline, we consider a robust state estimation
algorithm formed by combining the robust ROM (5) with an
unscented Kalman filter, or a simple vanilla Kalman filter if
the observation model is linear.

V. RESULTS

We evaluate the state estimation performance of the pro-
posed adaptive parameter-state estimation algorithms and
compare them with the robust state estimation method, for
systems governed by the nonlinear Burgers equation and
the Navier-Stokes equations in the presence of parameter
uncertainty. In all cases, we initialize the state estimate to
zero, and the parameter estimate to the mean of the values
in the training set Ptrain.

A. Burgers equation

The forced Burgers equation is a prototypical nonlinear
hyperbolic PDE that takes the form

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f(x, t), (12)

where u(x, t) is the velocity at position x ∈ [0, L] and time
t, f(x, t) is a distributed time-dependent forcing, and the
scalar ν acts like a viscosity. Here, we choose a forcing of
the form

f(x, t) = 2 sin(ωt− kx), (13)

where k = 2π/L, and we let ν and ω be related through a
scalar parameter p ∈ [0, 1] as follows:

p = ν1 + (ν2 − ν1)p, (14a)
ω = ω1 + (ω2 − ω1)p. (14b)

Thus, p can be regarded as a physical parameter that affects
the dynamics of the forced Burgers equation through both ν
and ω. We consider periodic boundary conditions and choose
L = 1, ν1 = 0.01, ν2 = 0.1, ω1 = 0.2π, ω2 = 0.4π.

We solve the forced Burgers equation using a spectral
method with n = 256 Fourier modes and a fifth-order
Runge-Kutta time integration scheme. We define the discrete-
time state vector zk ∈ Rn that contains the values of
u at n equally-spaced collocation points and at discrete
time steps t = k∆t, where ∆t = 0.05. To generate the
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Fig. 2. Relative mean square error (RMSE) of the state estimate for
different values not included in Ptrain of the unknown parameter p, for
Burgers’ equation. The simulations are repeated for 5 initial conditions of
the reference state; the shaded area indicates the standard deviation of the
RMSE. The lower bound denotes the error incurred by the projection to the
POD modes.

training dataset Ztrain used for constructing the ROM, we
compute solutions of the Burgers equation corresponding to
p(i) ∈ Ptrain = {0, 0.2, 0.4, 0.6, 0.8, 1}. For each p(i), we
discard the transient portion of the dynamics and save 2001
snapshots Z(i) = {z(i)

0 , . . . ,z
(i)
2000} in the post-transient

regime. We retain r = 10 modes when constructing the
ROM, corresponding to an-order-of-magnitude reduction in
the dimensionality of the system. In the following examples,
we consider measurement data obtained from 4 sensors
equally-spaced along the physical domain and polluted with
white noise of standard deviation 0.05.

We now utilize the adaptive and robust filters to estimate
the states using measurements coming from systems with
parameter values not contained in the training data. Figures 2
and 3 demonstrate the superior estimation accuracy with the
adaptive parameter-state estimation approaches (apROM-jKF
and apROM-mKF) compared to the robust state estimation
approach (rROM-KF). Furthermore, Figure 4 shows that
the adaptive approaches yield an accurate estimate of the
unknown model parameter for several parameter values.
Finally, Figure 5 shows the time-averaged estimation error
for parameter values both included and not included in the
training data. Generally, parameter values closer to the ends
of the training set Ptrain lead to worse errors since they take
longer to converge, as evidenced in 4.

B. Navier-Stokes equations

The Navier-Stokes equations are a set of nonlinear PDEs
that describe the motion of fluids flows. For incompressible
fluids, the Navier-Stokes equations take the form

∂u

∂t
+ (u · ∇)u = −∇P +

1

Re
∆u, (15a)

∇ · u = 0, (15b)

where u(x, t) and P (x, t) are the velocity vector and
pressure at position x and time t, and the scalar Re is
the Reynolds number. We consider the classical problem
of a flow past a cylinder in a 2D domain, which is well
known to exhibit vortex shedding above a critical Reynolds
number Rec ∼ 40 [22]. For our study, we focus on the range
Re ∈ [50, 100]. The shedding frequency and the spacing
between consecutive vortices are both functions of Re.
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Fig. 3. State estimate û(x, t) at final time for different values not included
in Ptrain of the unknown parameter p, for Burgers’ equation.
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included in the training data (denoted test) of the unknown parameter p,
for Burgers’ equation. The simulations are repeated for 5 initial conditions
of the reference state; the shaded area indicates the standard deviation of
the RMSE. The lower bound denotes the error incurred by the projection
to the POD modes.
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Fig. 6. Relative mean square error (RMSE) of the state estimate for
different values not included in Ptrain of the unknown parameter Re,
for the Navier-Stokes equations. The simulations are repeated for 5 initial
conditions of the reference state; the shaded area indicates the standard
deviation of the RMSE. The lower bound denotes the error incurred by the
projection to the POD modes.

We solve the Navier-Stokes equations with the open source
finite volume code OpenFOAM using a mesh consisting
of 18840 nodes and a second-order implicit scheme with
time step 0.05. The discrete-time state vector zk ∈ R37680

contains the two velocity components of u at discrete time
steps t = k∆t, where we choose ∆t = 0.25. To generate
the training dataset Ztrain for constructing the ROM and
training the RL-ROE, we run simulations of the Navier-
Stokes equations for Re ∈ Ptrain = {50, 60, 70, 80, 90, 100}.
We discard the transient portion of the dynamics and save
401 snapshots Z(i) = {z(i)

0 , . . . ,z
(i)
400} in the post-transient

regime. We retain r = 20 modes when constructing the
ROM, corresponding to a three-orders-of-magnitude reduc-
tion in the dimensionality of the system. In the following
examples, we consider measurement data obtained from 4
sensors polluted with white noise of standard deviation 0.05.
Each sensor measures both components of velocity, and their
locations are indicated by the black crosses in Figure 7.

We now utilize our filters to estimate the states using mea-
surements coming from systems with parameter values not
contained in the training data. Figures 6, 7, and 9 demonstrate
the superior estimation accuracy with the adaptive parameter-
state estimation approaches (apROM-jKF and apROM-mKF)
compared to the robust state estimation approach (rROM-
KF). Furthermore, Figure 8 shows that the adaptive ap-
proaches yield an accurate estimate for the unknown model
parameter for several values of the uncertainty.

VI. CONCLUSIONS

We considered the problem of dual parameter-state es-
timation for systems modeled by PDEs with parameter
uncertainty. We proposed two adaptive dual estimators based
on a polytopic representation of the system constructed
using a library of local DMD models. We compared these
methods with a classical robust state estimator on the Burgers
and Navier-Stokes equations. The results reported here are
promising and warrant further investigations of these meth-
ods. For instance, while we have only considered cases where
the true physical parameter does not change with time, we
plan to investigate scenarios with slowly varying parameter
value. We also plan to conduct further numerical tests on the
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true parameter values are shown in dotted lines. The simulations are repeated
for 5 initial conditions of the reference state; the shaded area indicates the
standard deviation of the RMSE.
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Fig. 9. Relative mean square error (RMSE) of the state estimate averaged
over time for parameter values included in the training data and not included
in the training data (denoted test) of the unknown parameter Re, for
the Navier-Stokes equations. The simulations are repeated for 5 initial
conditions of the reference state; the shaded area indicates the standard
deviation of the RMSE. The lower bound denotes the error incurred by the
projection to the POD modes.

Navier-Stokes equations in more challenging regimes involv-
ing higher Reynolds numbers and more complex dynamics.
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