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Abstract

In this work, we are interested in learning a model to separate sources that cannot be recorded
in isolation, such as parts of a ma- chine that must run simultaneously in order for the
machine to function. We assume the presence of a microphone array and knowledge of
the source locations (potentially obtained from schematics or an auxiliary sensor such as a
camera). Our method uses the source lo- cations as weak labels for learning to separate
the sources, since we cannot obtain the isolated source signals typically used as training
targets. We propose a loss function that requires the directional features computed from the
separated sources to match the true direction of arrival for each source, and also include a
reconstruction loss to ensure all frequencies are taken into account by at least one of the
separated sources output by our model. We benchmark the performance of our algorithm
using synthetic mixtures created using machine sounds from the DCASE 2021 Task 2 dataset
in challenging reverberant conditions. While reaching lower objective scores than a model
with access to isolated source signals for training, our proposed weakly-supervised model
obtains promising results and applies to industrial scenarios where collecting isolated source
signals is prohibitively expensive or impossible.
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ABSTRACT

In this work, we are interested in learning a model to separate
sources that cannot be recorded in isolation, such as parts of a ma-
chine that must run simultaneously in order for the machine to func-
tion. We assume the presence of a microphone array and knowledge
of the source locations (potentially obtained from schematics or an
auxiliary sensor such as a camera). Our method uses the source lo-
cations as weak labels for learning to separate the sources, since we
cannot obtain the isolated source signals typically used as training
targets. We propose a loss function that requires the directional fea-
tures computed from the separated sources to match the true direc-
tion of arrival for each source, and also include a reconstruction loss
to ensure all frequencies are taken into account by at least one of
the separated sources output by our model. We benchmark the per-
formance of our algorithm using synthetic mixtures created using
machine sounds from the DCASE 2021 Task 2 dataset in challeng-
ing reverberant conditions. While reaching lower objective scores
than a model with access to isolated source signals for training, our
proposed weakly-supervised model obtains promising results and
applies to industrial scenarios where collecting isolated source sig-
nals is prohibitively expensive or impossible.

Index Terms— Multichannel source separation, weak supervi-
sion, directional features, machine sound

1. INTRODUCTION

When monitoring machine performance and health, highly skilled
human operators often use their ears to listen to the sounds produced
during machine operation. As automation increases, algorithms that
use microphones to monitor machine sounds are becoming more
and more important. In light of this, there has been a surge of re-
cent interest in anomalous sound detection [1-5], where automated
algorithms determine whether sound produced during machine op-
eration is normal or anomalous. In particular, recent public chal-
lenges [6—8] have spurred research in increasingly difficult problem
setups where only normal data is available for training, and domain
shift causes changes in the sound signal unrelated to the presence or
absence of anomalous sound.

However, much of the existing literature on machine sound
analysis treats the recorded sound as being produced by a single
machine part, when in practice most industrial machinery is com-
posed of multiple sound-producing components or parts, and we
may want to monitor the health of each component individually.
In these situations, audio source separation could be a useful pre-
processing step to isolate the sound from each machine part, and
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Figure 1: Illustration of using location as weak supervision. A
microphone array observes a mixture of machine parts, and as-
sumes the precise location of each part is known. The model is
trained to output multi-channel complex spectrograms of the sepa-
rated sources by encouraging the delays of the separated sources to
align with the expected delays given the known location.

the separated sound signals from each part could then be used as in-
put to downstream processing such as anomalous sound detection or
other types of audio monitoring. While there has been tremendous
progress in deep-learning-based audio source separation, particu-
larly in the areas of speech enhancement [9], speech separation [10],
music source separation [11], and general sound separation [12,13],
the vast majority of these approaches use a fully supervised frame-
work, where a database of isolated sound signals is used to create
artificial mixture signals that the source separation model is trained
to separate using the ground-truth isolated signals as targets. How-
ever, for separating machine parts, collecting a database of isolated
signals from individual parts may not be possible, as all parts of the
machine may need to operate simultaneously for the machine to run,
and we must thus consider approaches with limited supervision.

While unsupervised separation algorithms such as those based
on MixIT [14] have achieved impressive results when all sources to
be separated are independent, they struggle with correlated sources
such as music signals. Alternatively, there is a class of weakly-
supervised separation approaches where auxiliary information such
as class activities [15], musical score [16], or video [17] is avail-
able and, when combined with an appropriate loss function, can
supervise the separation process. In this work, we assume a micro-
phone array records the sound from simultaneously operating ma-
chine parts, and the precise location of each machine part is avail-
able, either from sensors in a different modality (e.g., radar, vision)
or from schematic diagrams.
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Recently, separation conditioned on source location has begun
receiving significant attention for separating multi-channel speech
signals in fully supervised setups [18-24], and these methods have
vastly exceeded the performance of beamformers with oracle infor-
mation. Furthermore, several works train unsupervised models for
separating speech signals using multi-channel information [25-28].
Closest to our work, Saijo et al. [28] propose to train a neural sepa-
rator that estimates a time-invariant linear demixing filter, using an
unsupervised loss that matches estimated source locations and the
spatial demixing matrices. In this work, we consider a related ap-
proach, but directly estimate the separated sources using a neural
network instead of constraining ourselves to a time-invariant lin-
ear filter, and derive our loss function using the recently proposed
directional features [29], which quantify how much the observed
inter-channel phase difference between microphones at each time-
frequency bin aligns with the expected phase difference computed
using the known target location. As the main building block of our
weakly supervised loss function, each separated source output by
our model should have directional features well matched with the
true source location, and we also include a mixture reconstruction
loss to ensure the whole signal is accounted for (Fig. 1). Using a
simulated dataset of mixtures of machine sounds from the DCASE
2021 Task 2 dataset [7] in difficult reverberation conditions, we
demonstrate that our weakly supervised model learns to separate
sounds that are impossible to record in isolation.

2. METHOD
2.1. Multi-channel Source Separation

Throughout this work, we assume a P-channel audio mixture signal
y = so +s1 € RP*Y with length N samples, which is the sum of
reverberant signals so and s1, where we consider the source images
at the microphones. We consider a class of models that take as input
time-frequency (T-F) mixtures Y = STFT(y) € € CP*TXF and
estimate S; € CP*T*F for i = 0, 1. If isolated source signals are
available, then we can use the complex T-F representations of the
true source signals S; as training targets. Following [30], our fully
supervised loss function contains three mean square error terms for
the real, imaginary, and magnitude losses between S; and S..

2.2. Directional Features

In addition to using the complex multi-channel spectrogram Y as
input to the separation model, we also consider other input features.
In multi-channel scenarios [18, 20, 29], interaural phase difference
(IPD) are commonly used as spatial features, and defined as

Real-IPD? ;(Y) = ZY?) — /Y? , €R, $))

where po is the reference microphone, and the IPD is computed for
each of the non-reference microphones, i.e.,p =1,..., P — 1. To
mitigate discontinuities caused by phase wrapping, IPD features are
typically mapped to a complex number, i.e.,

IPDf,f (Y) :cos(Real—IPDif(Y)) +3 sin(Real—IPDf,f(Y)) e C.

)
When the source location L; = [z;, yi, 2] (defined relative to refer-
ence microphone po) is known, we define 7(L;, p) as the pure time
delay in seconds between a signal from a point source located at L;
traveling to microphone p and the signal traveling to po. The target
phase difference (TPD) for source 7 is defined as

TPD’;(Li) = cos(2n fr(Ls,p)) + jsin(2r fr(Ls,p)) € C. (3)
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The directional feature (DF), which serves as location conditioning
in terms of an input feature in [20], indicates whether a T-F bin
in spectrogram Y is dominated by a source at location L;, and is
defined as

dis(Y, L)

Z TPD? (

where IPD} .¢ is the complex conjugate of IPD7p . We then use
as network input the multi-channel complex spectrogram IPD, DF,
and frequency positional encodings [31] concatenated along the fea-
ture dimension.

L;)IPD}, 1(Y)eC, “)

2.3. Weakly Supervised Loss Function

When isolated sources are not available for training, one simple ob-
jective is to ensure the separated sources output by the network re-
construct the mixture. In this work, the reconstruction loss is com-
posed of two terms: the spectral loss,

2
—[Y1I[5, ®)
and the time domain spatial covariance loss,
A AT)(2
Loa = |lyy" =337 (6)

where § = iSTFT(So) + iSTFT(S,) is the estimated mixture.

The reconstruction loss only ensures that the sum of combined
outputs of the network is equal to the input mixture, that is, the mix-
tures are fully reconstructed and there is no loss of audio content.
However, to ensure separation, another term is required. We use a
loss based on the DF from (4), but instead of computing the IPD us-
ing the mixture Y as in (1), we use the separated source estimates
S;. Our location loss is defined as

zmcszZ(Hm do.1(Si, Li)) —

N 2
+ ||t s, i))—OHQ), ™

where d; ;(S;, L;) is the DF computed using the ith estimated
source and true location L;. This loss ensures that the separated
sources match the true locations, where dy, (Si, Li) := P + 0
when the IPDs of the separated sources match the expected phase
delays of the known source locations. The output order of the esti-
mated sources is unambiguously determined by the order of source
locations input to the network.

The total loss is given by:

L= Bspec[rspec + ﬂspat»cspal + Blocﬁlom (8)

where Bqpec, Bspa and Sioc are hyperparameters that weight each term
of the loss function. We experimentally found that Bsec = 1.0,
Bopar = le™3, and Bioc = He 2 provide the best results. An ablation
of these weights is shown in Section 4.

3. EXPERIMENTAL SETUP

3.1. Dataset

To train and evaluate our approach, we create a synthetic dataset that
emulates machines in realistic conditions. We consider a scenario



2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

Table 1: Simulation constraints for array and source placement.

Parameter Range
Distance between sources [0.5, 1.5]
Distance between sources and mic array center [0.75,2.0]
Distance between sources or mic, and room surface (0.5, 0]
Angle between mic array normal and sources [0°,30°]

where a machine with two sound generating sources are present in
a room and the microphone array can be positioned arbitrarily, but
with some constraints. This represents situations where it might
not always be possible to place the microphone array in the ideal
position (close to the machine, between the two sources), for in-
stance, due to obstacles in the room. We use an 11 element micro-
phone array harmonically spaced, similar to [30], but with spacing
in cm of [16.8, 8.4, 4.2, 2.1, 2.1, 2.1, 2.1, 4.2, 8.4, 16.8] for a to-
tal span of 67.2 cm. For each data example, we first create a vir-
tual shoebox room, with dimensions for each wall between 2 and
5 meters for small rooms, and between 4 and 10 meters for large
rooms. The height for the ceiling is drawn between 3 and 5 meters.
The acoustic properties for each surface are randomly drawn, us-
ing multi-band materials with absorption coefficients between 0.1
(mostly reflective) and 0.9 (mostly absorptive) defined at 7 octave
bands (125-8000 Hz). The absorption of each band is drawn inde-
pendently from other bands. This is an indirect method to control
reverberation time instead of setting a desired T60. Nevertheless,
this creates more realistic reverberant conditions, where the T60 is
not uniform across the whole frequency range. Once the room has
been created, the positions for the sources and microphone array
are randomly selected. These positions can be placed anywhere in
room under certain constraints, as detailed in Table 1.

Afterwards, the room impulse responses are generated using
the image source method with a high order to create the early re-
flections, and a ray tracing method for the late reverberation, using
the PyRoomAcoustics toolbox [32] for the simulations. The multi-
channel room impulse responses are then convolved with single-
channel source signals to simulate omnidirectional point sources.

In total, we generate 4 versions of the dataset: anechoic and re-
verberant, with two sets of machines as fixed sources, such that s
and s; are always the same source type: "gearbox” and “’slider” for
SetA, and “pump” and “valve” for SetB respectively. For each ex-
ample, we draw a random file of each class, and apply loudness nor-
malization between [-17, -12] LUFS independently for each source.
In total, we generate 24,000 mixtures of 10 seconds length, at 16
kHz sampling rate for a total of 66.7 hours. The mixtures are split
into train/validation/test subsets with 15000/6000/3000 examples.
All subsets have similar acoustic conditions but the source files
are different, by drawing from different sections as defined in the
DCASE2021 task 2 dataset. We use sections 1,2,3, for the train set,
sections 4,5 for validation, and section 6 for test. We consider only
normal files and discard any anomalies.

Figure 2 shows the distributions of key acoustic parameters
for the reverberant dataset, mainly T60, early decay time (EDT),
directo-to-reverberant ratio (DRR), and clarity index (C50) that can
have a large impact in the generalization of deep learning models
to diverse audio tasks [33]. Although most of the rooms have mod-
erate reverberation up to about 0.5 s, we include examples up to 4
seconds long. Moreover, due to the constraints set on the distance
between microphone and sources, most examples have relatively
high DRR and C50 with noticeable exceptions. Overall, the dataset
presents diverse and challenging acoustical conditions.
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Figure 2: Joint distributions of selected room acoustic parameters
of the simulated dataset. T60 and EDT in seconds, C50 and DRR
in dB. Colored by frequency band from low (dark) to high (bright).

3.2. Network Architecture and Training

Our model architecture closely follows the complex dense UNET
architecture from [20], which uses an encoder composed of alternat-
ing complex convolution layers and complex dense blocks, where
each dense block has a skip connection to the corresponding block
in the decoder. A complex bidirectional LSTM operates between
the encoder and decoder, and all convolution layers use a stride
of one in the time dimension and two in the frequency dimension
such that an input of shape C' x T x F becomes 256 x T x 1
at the input of the LSTM, where the number of frequency bins is
F = 257, and the number of channels C' depends on the number of
microphones and input features, e.g., 11 microphones, 10 IPDs, 2
DFs (one channel per source), and 10 frequency positional encod-
ing channels sums to C'=33. One minor modification we make to
the architecture from [20] is that each dense block contains a skip
connection and batch normalization as in [34]. We also use a multi-
head decoder as is commonly done in music source separation [35],
since our model outputs two sources instead of a single source as in
the speech enhancement setup from [20]. We output multi-channel
complex spectrograms instead of single-channel complex masks.

We train the model on 7" = 2.0 second chunks of STFT frames
with a batch size of 8 for 100,000 steps using the ranger opti-
mizer [36] with a learning rate of 1e-2. All STFT operations use a
window size of 512, hop size of 128, and Hann window. We evalu-
ate performance in terms of scale-invariant signal-to-distortion ratio
(SI-SDR) [37] computed using fast bss_eval [38] between the
reverberant reference source and corresponding estimate at the ref-
erence microphone selected as the microphone at the center of the
array. We report the results on the test set from the best performing
model measured by the validation loss.

4. RESULTS

Table 2 compares the SI-SDR of different approaches. We present
the results of systems trained and evaluated on two sets of machines
as sources, and two reverberation conditions, simulated as described
in Section 3. For the models evaluated in anechoic datasets, we first
notice that the fully supervised model outperforms the ideal binary
masks (IBM). This is expected because the IBM ignores the phase
information that can be modeled by the complex UNET. Second, the
weakly supervised model is less successful, but still achieves sep-
aration. Both models have lower performance when trained on the
reverberant dataset. The poor performance of the delay-and-sum
beamformer is most likely due to spatial aliasing at high frequen-
cies, poor directivity at low ones, and lack of precise null placement,
considering that the sources are often very close to each other.

For the models evaluated in the reverberant datasets, the results
are slightly different. The fully supervised model struggles to match
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Table 2: Performance in terms of mean = standard deviation of SI-SDR (dB) for different source separation approaches evaluated on datasets
with 2 different sets of machines, and 2 different acoustical conditions. SetA = [sg = gearbox, s; = slider]; SetB = [so = pump, s1 = valve].

Anechoic Reverberant
Trained on SetA SetB SetA SetB
Approach Set Reverb SI-SDRg 1 SI-SDR; T SI-SDRgp 1 SI-SDR; T SI-SDRgp 1 SI-SDR; T SI-SDRy 1 SI-SDR; 1
Mixture n/a  n/a -0.1+4.4 0.1+£44 0.1£2.5 -0.1+2.5 0.0£2.6 0.0£2.6 0.1£2.6 -0.1+2.6
Delaysum n/a n/a -3.0+7.1 -294+67 24458 24457 32451 35452 -3.1+51 -34%£53
Ideal Binary Masks n/a  n/a 8.7+54 8.8+5.3 8.8+34 8.2+33 9.0+3.3 8.9+3.2 9.1£3.3 8.7+3.2
Fully Supervised A v 15242.5 15.6+2.6 143423 144+2.0 7.7+£3.3 7.7+£3.3 74433 7.3£3.2
Fully Supervised A X 214428 236+32 1894+3.7 21.3+33 3.8+5.0 42450 3.6+4.8 4.0+4.7
WeakSup A v 4.8+34 41425 57+23 49420 1.6+£2.7 1.2+23 1.8+£2.8 14+25
WeakSup A X 7.0+3.4 7.14£3.3 77422 7.54+2.3 32+28 32+2.6 32+29 32+2.6
Fully Supervised B v 119424 123+25 11.542.0 11.7£1.7 6.5+3.0 6.5+3.1 6.4+3.0 6.3+2.9
Fully Supervised B X 19.0+£2.5 194+27 1834+2.6 18.8£2.0 42+44 4.1+£44 4.1£4.3 4.0£4.3
WeakSup B v 4.0+3.1 39+238 4.74+2.0 444+1.8 1.7£2.4 1.3+£2.3 1.7£2.4 1.1£2.2
WeakSup B X 39+39 3.74+2.6 54424 4.8+2.1 1.9+2.7 1.5+2.1 2.3+2.7 1.6+2.2

the IBM. This is possibly due to the presence of large variance in
reverberation time. In addition, the fully supervised model trained
on anechoic data fails to generalize to reverberant data. On the other
hand, the weakly supervised model also drops in performance, al-
though the drop is less severe. The weakly supervised model trained
on anechoic data generalizes better. This is most likely because this
model focuses more on location rather than content. Finally, the set
used for training has little impact.

Figure 3 shows the density scatter plots for the fully and weakly
supervised models trained on reverberant data. Both models show
the largest improvements on mixtures with low input SI-SDR. How-
ever, the weakly supervised model is less effective for those with
high input SI-SDR. Moreover, the weakly supervised model par-
ticularly struggles with inputs with high T60. This is most likely
because reverberation adds significant noise to the measured IPDs.

A SI-SDR

HEEm So= Gearbox
5, = Slider

A SI-SDR

-10 -5 0 5
Input SI-SDR [dB]

10 0.0626.1250.25 0.5 1 2 4
Input t60 [5]

Figure 3: Density scatter plots of ASI-SDR compared against (left
col.) input SI-SDR and (right col.) mean T60 at the reference mic.
(top row) Fully supervised , (bottom row) weakly supervised.

4.1. Ablations

To understand the impact of each component of our approach, we
present a limited ablation study. Table 3 shows the impact of the

Table 3: Mean SI-SDR (dB) using different location loss weights.

ﬁloc
Metric 107° 1074 1073 1072 1071t 10°
SI-SDR 1 0.0 1.0 1.6 2.5 360 213
SI-SDR; 1 -0.2 0.9 1.2 0.8 -26  -20.0

weight for the location loss B, while keeping the other weights
fixed. The best value for both sources lies between 102 and 1072,
while most other values fail to do any separation.

Table 4 shows how different input features affect both the fully
supervised and the weakly supervised approaches. The presence
of the directional feature as input is crucial to have any separation.
Otherwise the network has no other conditioning mechanism to in-
form it on which source locations we want to separate. Moreover,
the presence of other input features such as IPDs or frequency en-
codings has little impact for the supervised model, and a modest
impact in the weakly supervised case.

Table 4: Ablation of input features. All models trained and eval-
uated on the reverberant SetA dataset detailed in Section 3.1.

Features Metrics
Approach STFT IPDs DF Enco SI-SDRo 1T SI-SDR;p 1
Fully Supervised v X X X 2.04+3.8 1.9+£3.9
Fully Supervised v X v X 7.0+3.1 7.0+3.1
Fully Supervised v v X X 1.6+3.8 1.44+3.6
Fully Supervised v v /7 7 6.9+3.1 7.0+£3.2
Weak Sup 4 X X X -0.7£2.4 0.0+2.8
Weak Sup v X v X 1.6+2.7 1.2£23
Weak Sup 4 4 X X -17.1£20 -19.6+25
Weak Sup v v /v / 1.4£2.6 1.7+2.4

5. CONCLUSION

‘We presented an approach for learning to separate machine sounds
when the location (relative to a microphone array) of the source is
known, but isolated training targets are unavailable. Through exper-
iments on a difficult simulated dataset, we demonstrated promising
results, especially when reverberation conditions are favorable. In
the future, we plan to extend our approach to few-shot learning se-
tups, and incorporate more realistic sound propagation models.
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