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Abstract
In this work, we develop and evaluate a soft actor-critic (SAC) deep reinforcement learning
(DRL) policy for station keeping of a spacecraft on a near-rectilinear halo orbit (NRHO)
in the full-ephemeris dynamics. Monte Carlo simulations show that the DRL-based NRHO
station-keeping policy maintains an approximately linear increase in delta-v at the apolune
of each revolution, with a low spread in the delta-v gradient across the samples
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DEEP REINFORCEMENT LEARNING FOR STATION KEEPING ON
NEAR RECTILINEAR HALO ORBITS

Takumi Suda*, Yuri Shimane†, Purnanand Elango‡, Avishai Weiss§

In this work, we develop and evaluate a soft actor-critic (SAC) deep reinforcement
learning (DRL) policy for station keeping of a spacecraft on a near-rectilinear halo
orbit (NRHO) in the full-ephemeris dynamics. Monte Carlo simulations show that
the DRL-based NRHO station-keeping policy maintains an approximately linear
increase in delta-v at the apolune of each revolution, with a low spread in the
delta-v gradient across the samples.

INTRODUCTION

The Lunar Orbital Platform-Gateway (LOP-G) will serve as an outpost orbiting the Moon, al-
lowing for communication with both the lunar surface and Earth. The Gateway will fly on a 9:2
resonant near-rectilinear halo orbit (NRHO) around the Earth-Moon L2 [1, 2], which means that
this orbit revolves around the Moon nine times for every two revolutions of the Moon around the
Earth. This orbit was selected for the Gateway since it can avoid solar eclipses by the Earth and the
Moon, and spends much of its time over the southern hemisphere of the Moon, where a future lunar
base is to be established. When considering perturbations such as the Sun’s gravitational attraction,
ephemeris-based planetary positions, solar radiation pressure, and lunar J2 gravitational harmonics,
the NRHO is an unstable and aperiodic trajectory. This trajectory is known as a long-horizon (LH)
reference orbit, and can be computed, e.g., via multiple shooting [3] and forward-backward shoot-
ing using the sparse solver SNOPT [4]. Due to navigational uncertainty, the Gateway will require
station-keeping maneuvers to maintain the LH reference orbit and prevent rapid divergence.

In recent years, several methodologies have been proposed for maintaining a spacecraft on an
NRHO. Spectrum-based strategies align a spacecraft with the stable subspace near the reference
trajectory [5–7]; for example, Cauchy-Green Tensor (CGT) targeting [8–11] utilizes the eigende-
composition of the CGT to bring the spacecraft towards a path contracting to the reference trajec-
tory. In contrast, target point approaches control the spacecraft state or a portion of the state at some
future time to be some desired value, see e.g., xz-plane crossing control [8, 10–15] in which the
spacecraft can be kept on the orbit by maintaining the symmetry of the orbit along the line of the
two primary attractors.

Meanwhile, machine learning technology has made significant strides in recent decades, includ-
ing in the area of optimal control via deep reinforcement learning (DRL). One key advantage of
DRL is its efficient use of computational resources. Once the neural-network-based policy has been
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trained, it can be evaluated to produce an optimal control without requiring additional computations,
which may be attractive for on-board implementation. Additionally, DRL provides the flexibility
to customize the reward function to maximize or minimize specific objectives. Finally, unlike xz-
plane crossing control or CGT targeting, which are heuristic and rely on exploiting certain features
of halo orbits, DRL can search for the optimal solution without depending on any specific charac-
teristics of the dynamics. As such, DRL has been applied to station keeping and relative motion on
ephemeris-based multi-body dynamics [16–22]. The works in [16,18] seek to calculate the optimal
maneuver for on-board implementation. DRL has been applied for multiple spacecraft rendezvous
on halo orbits in [20, 21]. In [19], the focus was on speeding up the training process. DRL has also
been used for low-thrust station-keeping control in [17,22]. LaFarge et al. [22] consider the use of a
DRL policy as a seeding scheme to classical differential correction in order to obtain an efficient and
robust low-thrust control scheme; this is applied to an experiment aimed at bringing the spacecraft
from a diverging path back to the nominal NRHO, where a traditional station-keeping approach is
insufficient.

In this work, we consider the scenario where a mission is to be flown on an NRHO, and an ef-
ficient station-keeping scheme specifically tailored for this mission is sought. As such, instead of
relying on heuristic control schemes that are “myopic” in the sense that they only use information
of the instantaneous state on the NRHO as well as some future perlinues, we aim to obtain a con-
troller that can leverage the time-span of the non-autonomous, full-ephemeris dynamics specific
to this hypothesized mission, in order to extract the maximum achievable performance in terms of
station-keeping cost. While under perfectly known deterministic dynamics and perfect state knowl-
edge, this could be posed as an open-loop trajectory optimization problem, the more realistic case
involving imperfect state knowledge and/or an imperfect model of the dynamics poses a challenge
to traditional optimization or optimal control approaches. To this end, we study the use of a DRL-
based station-keeping policy for a spacecraft on an NRHO using the Soft Actor-Critic (SAC) [23]
scheme. The DRL neural network is designed in a way that is tailored to a given mission, incorpo-
rating inputs and a value function that draw from the xz-plane crossing control scheme.

The remainder of this paper is organized as follows. First, we introduce the dynamical system
model, the construction of a baseline NRHO, along with a review of the heuristic xz-plane crossing
control. We then provide details on the proposed use of a DRL scheme for NRHO station keeping.
This is followed by results on numerical experiments involving the DRL agent as well as the xz-
plane crossing control. Finally, future work is discussed and concluding remarks are provided.

DYNAMICAL SYSTEM MODEL

This section provides a review on the dynamical system model employed in this work. A discus-
sion on the xz-plane crossing control, which is a well-known station-keeping scheme for NRHOs, is
also introduced, in order to provide a comparison to the DRL approach proposed in the subsequent
section.

N-body Equations of Motion

The spacecraft dynamics are modeled with N-body equations of motion that include the Moon,
the Earth, and the Sun, and are perturbed by the J2 spherical harmonics term of the Moon and
solar radiation pressure. This model is chosen based on a prior study on the important perturbing
accelerations for a spacecraft on a NRHO [12]. Let θ = [rT ,vT ]T ∈ R6 be the position and velocity
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state of the spacecraft; its natural dynamics is given by

ṙ = v,

v̇ = − µ

r3
r + aJ2 +

∑
i

aNi + aSRP,
(1)

where r is the position vector of the spacecraft with respect to the Moon in an inertial frame, and
the last three terms are, in order, the J2 perturbation of the Moon, the third-body perturbations of
the Earth and Sun, and the solar radiation pressure. The ephemerides of the planets are taken from
NAIF’s SPICE toolkit [24]. The expression for the perturbing accelerations can be found in [25].

Baseline NRHO in the Full-Ephemeris Model

A LH reference orbit, or baseline NRHO, is computed as a solution to (1), and is denoted as θ̂(t).
The baseline represents the nominal zero-effort path that the spacecraft is to follow. To generate
the baseline, we start with a desired periodic orbit in the circular restricted three-body problem,
and “stack” it on itself to form a multi-period initial guess to transition into the full-ephemeris
model. The transition can be done effectively with multiple shooting and is well-documented in
the literature [26]. Since the dynamics about the baseline trajectory are unstable, station-keeping
maneuvers are required.

State Uncertainty and Control Action

The control action is assumed to be applied as an impulsive change in the velocity vector ∆v,
such that at the maneuver epoch t,

v(t+) = v(t−) + ∆v. (2)

For realistic station keeping, the spacecraft only has access to a noisy state θ̃ that mimics the output
of an on-board navigation filter, and is given by

θ̃ = θ +

[
er
ev

]
, (3)

where er and ev are position and velocity errors, modeled as zero-mean Gaussian random variables
with standard deviations σr and σv.

Review of xz-plane Crossing Control Strategy

The DRL-based station keeping adopted in this work is akin to the xz-plane crossing control,
which is a well-known strategy for stabilizing a spacecraft on a NRHO [8]. We provide a brief
review of xz-plane crossing control, as well as an overview of the controller implementation. The
xz-plane crossing controller will be compared against the DRL-based station-keeping scheme that
we propose in the subsequent section.

The key idea behind the xz-plane controller is based on the observation that halo orbits in re-
stricted three-body models exhibit a symmetry about the xz-plane in the Earth-Moon rotating frame.
This necessitates that the spacecraft state at perilune and apolune of an NRHO lies on this plane,
and has a velocity vector that is perpendicular to this plane. While this condition does not exactly
hold in the full-ephemeris model, previous investigations have shown that the spacecraft may be
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kept on its quasi-periodic path if the spacecraft’s velocity vector is kept close to perpendicular at
subsequent xz-plane crossings [8, 11].

Algorithm 1, adopted from [7], shows the implementation of the baseline-relative xz-plane con-
troller implemented in this work. At a given control maneuver instance, the algorithm requires
the current epoch t0, current state estimate θ̃(t0), the ephemeris information of the baseline θ̂(t), a
scalar N denoting the future perilune to be targeted, a tolerance on the targeting violation ϵ, and a
maximum number of iterations for the algorithm. The algorithm then starts by computing the time
it takes for the current estimated state to arrive at its N th perilune into the future, tp, and querying
the baseline state at the N th perilune into the future, θ̂p. While in this work perilune is used as the
targeting event, it may be replaced by the instance of xz-plane crossing in the Earth-Moon rotating
frame; whereas these two conditions are identical in the CR3BP, they do not correspond to the exact
same epoch in a full-ephemeris model. Nevertheless, no significant difference in performance was
observed from the choice of the targeting event.

Note also that the baseline state at the N th future perilune is not the baseline state at epoch
t = t0 + tp; denote the time taken by the baseline state at epoch t0 to reach its N th perilune as t̂p,

tp ̸= t̂p → θ̂p = θ̂(t0 + t̂p) ̸= θ̂(t0 + tp). (4)

Thus, the targeting scheme works by comparing the future projection of the current estimated state
against the baseline state at some future targeting event (e.g. N th perilune), which will involve a
temporal discrepancy.

The three custom functions in lines 1, 2, and 6/7 of Algorithm 1 are as follows:

• The function SEARCHPERILUNE(θ̃, N) solves an initial value problem (IVP) over t ∈ [0, (N+
1) × P ], where P is (approximate) period of the NRHO, and returns the time tp it takes for
the state θ̃ to reach the N th future perilune. Note that by propagating over N +1 periods into
the future, the N th perilune will occur before the final time of the IVP.

• The function QUERYPERILUNE(θ̂, t0, N) queries the N th future perilune from the epoch t0 of
the baseline θ̂. This can for example be a simple query of a look-up table of the epoch and
perilune states of the baseline that can be prepeared ahead of time.

• The function INERTIALTOEARTHMOONROTATING(·, t) applies the transformation from the in-
ertial to the Earth-Moon rotating frame on the state or the state transition matrix. Note that
the function also necessitates an epoch t, since the Earth-Moon rotating frame in the full-
ephemeris model is epoch-dependent.

The for-loop starting on line 4 computes the required ∆V vector via linearization, and a break
clause is added to check if the projected future perilune vx has a difference in magnitude compared
to the baseline’s corresponding future perilune vx that is below a threshold ϵ. With a threshold
ϵ = 20 m/s, the algorithm is found to converge consistently within a few iterations, and thus a
maximum number of iterations of 10 for the for-loop is found to be sufficient. The computation
of the incremental ∆v vector in line 11 has a closed form solution based the the projection of the
origin in R3 onto the intersection of two half-spaces, see [7] for detail. The additional multiplier
η > 0, η ≈ 0 in line 11 is to ensure the numerical solution of the projection problem satisfies the
break condition in line 8.
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Algorithm 1 Baseline-relative xz-plane control

Input: t0, θ̃(t0), θ̂(t), N, ϵ,maxiter

1: tp ← SEARCHPERILUNE(θ̃, N) ▷ Compute time to N th future perilune along state estimate

2: θ̂p ← QUERYPERILUNE(θ̂, t0, N) ▷ Query baseline state on N th future perilune in Earth-Moon

rotating frame

3: ∆v ← [0 0 0]⊤ ▷ Initialize ∆V vector

4: for i in maxiter do
5: θ̃p,Φp ← SOLVEIVP(θ̃, tp) ▷ Propagate current state estimate and state transition matrix until

target perilune time

6: ẋp ← INERTIALTOEARTHMOONROTATING(θ̃p, t0 + tp) ▷ Convert state from inertial frame to

Earth-Moon rotating frame and keep only vx

7: ΦP ← INERTIALTOEARTHMOONROTATING(Φp, t0 + tp) ▷ Convert state transition matrix from

inertial frame to Earth-Moon rotating frame

8: if |ẋp − θ̂
[4]
p | ≤ ϵ then

9: break ▷ Converged

10: end if
11: ∆vincrement ← argmin

y∈R3

∥y∥2 subject to |Φ[4,4:6]
p y + (ẋp − θ̂

[4]
p )| ≤ (1− η)ϵ ▷ Compute

minimum-norm delta-v as projection on intersection of two half-spaces

12: ∆v ← ∆v +∆vincrement ▷ Update delta-v

13: end for

DEEP REINFORCEMENT LEARNING FOR NRHO STATION KEEPING

The decision-making process of the DRL is based on a Markov decision process (MDP), which
relies solely on the current state to determine the future state. Figure 1 displays the neural network
architecture of the DRL. We used Proximal Policy Optimization (PPO) [27] as the reinforcement
learning algorithm to generate the control policy. PPO can effectively learn and adapt to new tasks
in a stable manner, making it a suitable choice for our application [28].

This work considers the applicability of a DRL agent to perform station keeping assuming a pre-
defined mission and a corresponding baseline NRHO. As such, the training environment as well as
the network inputs are selected in such a way that the agent is able to leverage the variability of the
dynamics specifically over this pre-defined mission. While this gives the DRL agent the potential
to adapt to the specific time-window and out-perform heuristic-based control strategies such as the
xz-plane controller described in the previous section, this also renders the DRL policy inadequate
to be used for other epochs or other phasing locations along the NRHO. If, in contrast to our aim,
a generalized DRL policy for performing station-keeping on any arbitrary baseline NRHO at any
epoch is needed, the training data-set and the inputs must be modified from what will be described
in this section.
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Training and Testing Environment

The training and testing environment consists of a spacecraft that is inserted into a pre-computed
baseline NRHO with an initial state uncertainty based on insertion standard deviations for position
and velocity, σri and σvi . The DRL agent is then tasked to compute a station-keeping maneuver at
each revolution, given information that is computed based on a noisy state estimate θ̃. The inputs to
the network will be detailed further in the subsequent subsection. The ∆V maneuver hypothesized
from the DRL is lower bounded by ∆Vmin component-wise. The reward function is based on the
station-keeping cost at each action chosen by the actor; if the spacecraft diverges, a large penalty is
applied.

Network Architecture

In this work, a relatively “shallow” deep neural network with two hidden layers is employed. The
network uses the hyperbolic tangent tanh as the activation function. Table 1 provides a summary
of the network architecture, and a schematic is provided in Figure 1. We employ the Soft Actor-
Critic (SAC) [23] paradigm, which is regarded as one of the most efficient RL algorithm to date,
simultaneously tackling the two common issues in RL: sample inefficiency arising from on-policy
learning, and brittleness coming from the sensitivity to the hyperparameters. Specifically, SAC is
sample efficient as it is off-policy, while it has a reduced sensitivity to hyperparameters through
an augmented value function that attempts to maximize the lifetime reward and the entropy of the
policy.

Inputs Let the augmented state of the spacecraft θaug ∈ R7 comprise of the position and velocity
vectors and the elapsed mission time t. The inputs to both the actor and critic networks consists of
the augmented state estimates at the next 7 xz-plane crossings, θ̃aug(tp,i), where i = 0, 1, . . . , 6
denotes the ith future perilune, as well as the difference in the estimate and baseline augmented
states at the next 7 xz-plane crossings,

θ̃aug(tp,i)− θ̂aug(t̂p,i) =

[
θ̃(tp,i)
tp,i

]
−
[
θ̂(t̂p,i)

t̂p,i

]
, (5)

resulting in 7× 7 + 7× 7 = 98 inputs to the network.

The inclusion of t as part of the augmented state makes the network tailored specifically to the
pre-defined range of epoch along the baseline NRHO. As previously mentioned, this design choice
makes the network unable to perform at epochs other than the trained range. Instead, this allows the
network to learn the specific non-autonomous dynamics over the prescribed range, thus potentially
reducing the station-keeping cost across this mission timeline. Furthermore, by using the augmented
state difference from expression (5) as input, the network is made explicitly aware of the temporal
discrepancy at the future perilunes.

Outputs The actor network output consists of the control action, given by the ∆V vector in R3,
as well as the fire angle ϕ, which is defined based on the projection of the spacecraft’s position
vector to the yz-plane in in the Earth-Moon rotating frame,

ϕ = − atan2(z(EM), y(EM)), (6)

where y(EM) and z(EM) are resolved in the Earth-Moon rotating frame. The negative sign in front
of ϕ is to define ϕ̇ to be positive clockwise, along the direction of motion of the NRHO. Each
component of the ∆V vector is normalized such that the resulting action is bounded within −1 and
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θ̃aug(tp,1)

θ̃aug(tp,2)

θ̃aug(tp,6)

θ̃aug(tp,1)− θ̂aug(t̂p,1)

θ̃aug(tp,2)− θ̂aug(t̂p,2)

θ̃aug(tp,6)− θ̂aug(t̂p,6)

uk

Input layer Hidden layers Output layer

Figure 1: Illustration of actor network architecture. Input consists of augmented state estimates at
future perilunes, θ̃aug(tp,k) as well as their difference from the baseline’s corresponding perilune
augmented states, θ̃aug(tp,k)− θ̂aug(t̂p,k).

1 m/s, and ϕ is bounded between 165◦ and 195◦, where 180◦ corresponds to apolune. The value
function of the critic network consists of the projected 28-revolution cumulative station-keeping
cost.

NUMERICAL RESULTS

This section presents the training and testing results using the proposed DRL framework. The
spacecraft is inserted into an NRHO at apolune at the initial state given in Table 2, with an orbit
insertion error of 3-σri = 30 km and 3-σvi = 30 cm/s. We assume navigation errors of 3-σr = 1 km
and 3-σr = 1 cm/s, which is consistent with orbit determination that uses the Deep Space Network
(DSN) [29]. The maneuver magnitude is upper-bounded to be 1 m/s per axis, resulting in an upper-
bound ∆V magnitude of

√
3 m/s. The spacecraft equations of motion (1) are propagated using

Table 1: Number of neurons in each layer of actor and critic networks

Network Input layer 1st hidden layer 2nd hidden layer Output layer

Actor 98 488 244 4
Critic 98 488 244 1
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the Runge-Kutta Prince-Dormand (8,9) integrator from the GNU GSL library [30]. The training is
conducted using a batch size of 4000 samples, with up to 2.1× 105 episodes. The trained network
is then evaluated using 1000 test cases. The training and testing data both comprise of 28 NRHO
revolutions, roughly corresponding to 6 months. This duration has been chosen as a compromise
between computational cost and the number of navigation error realizations the agent sees within
a single episode; with 28 revolutions, it is possible to estimate the annual cost consistently, while
such an estimate may be inaccurate with a shorter simulation duration.

Table 2: Initial nominal state of the NRHO in the J2000 frame

Parameter Initial value
Epoch, Julian date 2459957.50
x, km -17762.62065600
y, km 33125.36549190
z, km -60760.62704894
vx, km/s 0.00086734
vy, km/s 0.07118506
vz , km/s 0.02308430
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m
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Figure 2: Reward against training episodes for the DRL training process

Performance over 28 NRHO Revolutions

First, the DRL agent’s performance on the test data set is analyzed. Figures 3 and 4 show the
performance of the DRL agent on the 1000 test cases. In Figure 3, the best, mean, and worst
cumulative ∆V over 28 revolutions are shown. It is possible to see that in all three of these cases,
the cost per revolution eventually settles to a relatively consistent maneuver cost per revolution. This
consistency can be understood as the “steady-state” station-keeping performance, and is quantified
by the gradient of the linear regression. Note that the linear regression excludes the costs arising
from the first few revolutions; the cost over these first few revolutions may be understood as a
“transient” cost, and is manifested on the larger variability of the y-intercept between the best/mean
cases compared to the worst case. A large transient cost may be incurred when the orbital injection
error is large. This variability of the transient cost is most apparent when comparing the histograms
of the gradient and the y-intercept, as shown in Figure 4; the gradient over 56 revolutions has a

8



Table 3: Statistics of station-keeping ∆V for 1000 randomly chosen initial conditions

Total over 28 revolutions
with transient, cm/s

Transient, cm/s
Steady-state (gradient
over 56 revolutions), cm/s

Min 8.8 1.8 13.1
Mean 20.4 12.2 22.8
Max 83.7 74.4 63.7

standard deviation of 4.37 cm/s, while the y-intercept has a standard deviation of 7.46 cm/s.

Table 3 gives the statistics of the transient and steady-state costs from the test cases. The worst
performing case over 28 revolutions corresponds to a case with a very large transient cost of 74.4
cm/s, but with a gradient of 26.7 cm/s/(56 rev), which falls within a standard deviation from the
mean gradient. We note that a worse gradient would have a larger impact as longer station keeping
horizons are considered, thereby lessening the impact of the transient error.

We compare the results of the DRL agent’s control with an implementation of xz-plane crossing
control. We utilize the same baseline and navigation uncertainty as is used in the DRL environment,
over the same 28 revolutions. In order to isolate the “steady-state” station keeping cost from the ef-
fect of insertion errors, for the xz-plane crossing control simulations we modify the orbit insertion
error to be the same as the navigation uncertainty, i.e., 1 km and 1 cm/s. Figure 5 shows results for
the cumulative ∆V over 56 revolutions, estimated by doubling the cumulative ∆V over 28 revolu-
tions; the distribution has a mean of 165.89 cm/s and a standard deviation of 22.04 cm/s. This can be
compared directly to Figure 4a. Note that the DRL agent performance bests the xz-plane crossing
control in both consistency and magnitude, presumably due to the myopic (although generalizable)
nature of xz-plane crossing control relative to the optimized DRL agent which extracts maximum
performance on the particular baseline segment on which it is trained.

Sensitivity on Initial Insertion Error

The DRL policy is used to evaluate the sensitivity of the 28 revolution station-keeping cost on the
insertion error in position and velocity. Figures 7 and 8 show the distribution of the initial insertion
error in position and velocity spaces, respectively, for 500 randomly sampled initial insertion states,
with the color-bar denoting the total station-keeping ∆V over 28 revolutions. As can be discerned
from the figures (note the color-bar scale), the half-year station-keeping cost is more sensitive to
3-σvi = 30 cm/s velocity errors than 3-σri = 30 km position errors. Additionally, a pattern in
the station-keeping cost emerges under the random velocity errors shown in Figure 8, in that the
cost to stabilize a spacecraft at apolune with off-nominal velocity to the NRHO seems to be more
sensitive in x- (“out-of-plane”) and y-directions (“velocity”) than the z-direction (“radial”) in the
Earth-Moon rotating frame.

CONCLUSION

This work explored the use of a deep reinforcement learning (DRL) framework to plan the station-
keeping maneuvers along a given baseline NRHO in order to achieve maximum performance in
terms of station-keeping cost. The DRL network was specialized to a specific baseline NRHO
through an active selection of input parameters, namely consisting of the future perilune state esti-
mates and epochs, along with the deviation of these future perilune state estimates from the baseline
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Figure 3: Cumulative ∆V over six months based on DRL agent, shown for the best, mean, and
worst out of 1000 test samples. The best and worst regressions correspond to the test cases with
least and most costly cumulative ∆V after 28 revolutions. The mean regression corresponds to the
test case that results in the closest cumulative ∆V after 28 revolutions to the mean.
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Figure 4: Histograms showing the spread of (a) the gradient and (b) y-intercept obtained for the
linear regression based of the cumulative ∆V over 28 revolutions in 1000 samples. Note the gradient
over 56 revolutions is simply 2 times the gradient over 28 revolutions.
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Figure 6: Histogram of cumulative ∆V over 56 revolutions from 500 Monte-Carlo samples with
xz-plane crossing control (standard deviation = 22.04 cm/s)
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Figure 7: Cumulative station-keeping ∆V over 28 revolutions with zero velocity insertion error and
3-σri = 30 km random position insertion errors. Error components are resolved in the Earth-Moon
rotating frame.
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Figure 8: Cumulative station-keeping ∆V over 28 revolutions with zero position insertion error
and 3-σvi = 30 cm/s random velocity insertion errors. Error components are resolved in the Earth-
Moon rotating frame.
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in terms of position, velocity, and epoch. This network was trained and tested under orbital in-
sertion errors and navigational uncertainties. When factoring out the transient cost associated with
stabilizing the insertion error, the DRL policy provided a mean steady-state gradient of 22.8 m/s
per 56 NRHO revolutions. The DRL performance was compared to xz-plane crossing control, a
well-known heuristic control scheme, and bested it in both consistency (standard deviation of the
annual station-keep cost) and magnitude. Future work may consider the use of the DRL framework
together with a navigation filter to analyze the DRL’s effectiveness in a scenario that is closer to
actual station-keeping operation.
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