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Abstract
Current generation manipulation systems operate in an open-loop fashion resulting in poor
performance in the presence of disturbances. Robust manipulation requires a robot to com-
pensate for uncertainties and errors arising due to contact in- teraction during manipulation.
Consequently, it is essential that a robot can estimate an object’s state and the relevant con-
tact states so that manipulation can be controlled precisely. However, precise object state
estimation is difficult due to occlusions and complex contact interactions during manipula-
tion. This paper presents several different manipulation tasks where a robot may have to
perform complex manipulation, which can introduce uncertainty leading to failure. To deal
with this problem, we use in-hand pose estimation using vision-based tactile sensors to adjust
our plan during manipulation. We present several different analyses for pose estimation using
vision as well as tactile sensors to evaluate the importance of different modalities for these
precision tasks. We demonstrate that using the proposed approach, we can perform the de-
sired task successfully by incorporating feedback from the tactile pose estimation framework.
See supplementary video at https://shorturl.at/eM125.
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Tactile Pose Feedback for Closed-loop Manipulation Tasks
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(a) Pivoting (c) Pose estimation and correction (d) Insertion(b) Grasping

Fig. 1: The experimental setups considered in this work. (a) A model-based planner pivots the peg using extrinsic contacts.
(b) The robot grasps the peg using a rough pose obtained through AprilTag and a camera. (c) The peg is subjected to human-
induced perturbation, wherein a human applies external force to the peg while in grsap of the robot. The robot estimates the
in-hand pose using tactile images and a learned model. (d) The robot utilizes the estimated in-hand pose to correct the pose
of the peg so that the robot can insert the peg into a hole with tight tolerances of approximately (0.5 mm).

Abstract—Current generation manipulation systems operate
in an open-loop fashion resulting in poor performance in the
presence of disturbances. Robust manipulation requires a robot to
compensate for uncertainties and errors arising due to contact in-
teraction during manipulation. Consequently, it is essential that a
robot can estimate an object’s state and the relevant contact states
so that manipulation can be controlled precisely. However, precise
object state estimation is difficult due to occlusions and complex
contact interactions during manipulation. This paper presents
several different manipulation tasks where a robot may have to
perform complex manipulation, which can introduce uncertainty
leading to failure. To deal with this problem, we use in-hand
pose estimation using vision-based tactile sensors to adjust our
plan during manipulation. We present several different analyses
for pose estimation using vision as well as tactile sensors to
evaluate the importance of different modalities for these precision
tasks. We demonstrate that using the proposed approach, we can
perform the desired task successfully by incorporating feedback
from the tactile pose estimation framework. See supplementary
video at https://shorturl.at/eM125.

I. INTRODUCTION

Humans can perform very complex manipulation tasks in
an effortless fashion due to their abilities to plan, sense, and
react quickly. Consequently, average humans are very adept
at performing a lot of dexterous manipulation tasks. It has
been the long-standing goal of robotics to design systems that
can perform robust manipulation and adjust for errors made
during execution. However, such behavior is still elusive in
most systems: they can only plan for simple manipulation, and
more importantly, operate in an open-loop fashion. Designing
closed-loop control methods for manipulation is essential for
the successful deployment of manipulation systems. In this
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paper, we make use of in-hand pose estimation using vision-
based tactile sensors to adjust to pose errors that could happen
during multi-modal manipulation tasks, where the robot has to
make and break contact with the object multiple times during
execution.

Pose estimation is a fundamental problem in robotics [1],
[2]. Despite a lot of work done in this field, it remains largely
an open research problem and there is no one solution to
it. Pose estimation is even more challenging for small-sized
objects where more precision is required for tasks (consider,
for example, the assembly of wire harnesses). Consequently,
a lot of manipulation tasks still work in open-loop in heavily-
structured environments as there is no principled method
to perform closed-loop control of manipulation tasks. More
recently, in-hand pose estimation using vision-based tactile
sensors has been proposed for manipulation.

In this paper, we present the task of closed-loop peg inser-
tion where a robot has to perform non-prehensile manipulation
for grasping the peg before it can be inserted. The non-
prehensile manipulation leads to errors in the localization of
the peg due to inaccuracy in the vision system or unexpected
slipping during manipulation execution. We show through
multiple experiments that the open-loop plan seldom succeeds
in insertion. We make use of in-hand pose estimation and
localization using tactile sensors to estimate the object’s state
during grasping.

Note that in this work, we treat insertion as a placement task
that will succeed with a precise pose estimate of parts. One
can perform additional corrections using tactile and/or Force-
Torque (F/T) sensors as proposed in [3], [4], [5] but this is not
considered part of this study. We want to evaluate the accuracy
of pose-estimation methods for these tasks without making use
of additional pose-correction methods.



II. RELATED WORK

Pose estimation is a fundamental topic in robotics and thus
there has been a lot of work in this area. While vision-based
pose estimation of objects provides a rough estimate of the
pose of objects in the environment of the robot, they are
generally insufficient for a lot of precise manipulation tasks.
For example, consider the task of robotic insertion where the
robot has to insert a peg into a hole. For such tasks, localization
of parts needs to be within the tolerance of assembly (which is
generally around a few millimeters or sub-millimeters). Such
precision is difficult to achieve using vision alone [4], [3].
Consequently, vision-based tactile sensors are getting a lot of
attention in recent research for perception tasks.

Vision-based tactile sensors have been very popular recently
for the high-resolution perception capabilities these sensors
offer. They have been used for various different tasks including
insertion [3], [6], feedback control [7], [8], extrinsic contact
state estimation [9], [6], grasp stabilization [10], [11]. More
recently, they have been also used for pose estimation and
localization of objects. An illustrative example is the recent
work proposed by Bauza et al. [12], which proposes a novel
algorithm capable of predicting object type and pose by
leveraging geometric models of diverse objects. Specifically,
upon contact formation, the tactile sensors generate high-
detailed images of the contact patch, which the proposed
algorithm utilizes to identify the most probable object pose.
Similarly, in [13], authors present an interactive perception
technique for precise localization and identification in a multi-
object assembly scenario using Gelsight sensors.

Tactile sensors have previously been used for designing
various kinds of closed-loop control systems. In [3], a Re-
inforcement Learning (RL)-based insertion policy was pro-
posed which can perform insertion for objects with different
geometries. In [7], [8], feedback from tactile sensors was
used for stabilization and tracking of manipulation trajectories
during different manipulation tasks. In [9], the estimation from
tactile sensors could be used for the stable placement of an
object while minimizing frictional forces during the resulting
interaction.

In this paper, we study the use of in-hand pose estimation
using tactile sensors for closed-loop control of multi-modal
manipulation tasks where errors can accumulate due to long-
horizon nature of the tasks and various contact interactions.

III. PROBLEM STATEMENT

In this section, we present a formal statement of the problem
we study in this paper along with the related assumptions.
We consider the task of peg insertion, involving manipulation
of the pose of the peg prior to insertion, and disturbance by
a human after grasping the peg. A planar description of the
problem is shown in Fig. 2, where the robot needs to perform
non-prehensile manipulation for the initial transition (shown
as a → b). Visualization of the whole pipeline is shown in
Fig. 1. We make the following assumptions in this problem:

1) The geometry of the peg is perfectly known.

2) The frictional parameters of the different contact interac-
tions are perfectly known.

3) All objects are rigid.
4) The hole location is perfectly known to the robot.
We would like to discuss the implications of the above

assumptions briefly. Assumptions 1, 2, and 3 are very common
in model-based manipulation planning. Assumption 4 could
be relaxed for insertion problems. This can be replaced by
the design of a suitable hole detection algorithm that could be
precise in the detection of holes [5], [14]). These methods gen-
erally lead to some imprecision during insertion which can be
compensated using some methods using active exploration [3],
[5]. However, we do not consider such a feedback mechanism
here. Under the above assumptions, we try to make use of
in-hand pose estimation using tactile sensors to estimate the
error accrued during the manipulation a → b.

IV. METHOD

In this section, we present the approach for designing the
closed-loop manipulation system. In particular, we explain a
model-based manipulation that takes a point cloud descrip-
tion of the object geometry and physical parameters of the
environment and computes a feasible manipulation trajectory
for non-prehensile manipulation. Then we present a learning-
based method that can be used for estimating the pose of the
grasped peg using tactile images.

A. Manipulation Planning

We make use of a novel contact-implicit trajectory optimiza-
tion (CITO) for planning the proposed manipulation [15], [16],
[17], [7]. We embed the problem of contact selection during
trajectory optimization as part of the optimization [18], [19].
Details of the method are presented in the paper [18], [19]
and we briefly explain it here. The constraints that need to be
satisfied for each point on a trajectory for the particular task
are the following:

1. Bound Constraint:
qt ∈ Q, ut ∈ U , zt(y) ∈ Z ∀y ∈ Y (1)

2. Distance Complementarity Constraint:
0 ≤ zt(y) ⊥ g(qt, y) ≥ 0 ∀y ∈ Y (2)

3. Constraint on zt(y):
h(qt, y, zt(y)) ≥ 0 ∀y ∈ Y (3)

4. Constraint on Control:
c(qt, ut) ≥ 0 (4)

5. Integral Constraint:

sq,u(qt, ut) +

∫
y∈Y

sz(qt, y, zt(y))dy︸ ︷︷ ︸
=:s(qt,ut,zt;Y )

= 0 (5)

Then the full optimization problem can be written by
enforcing these constraints at all the points along the trajectory
using the mechanics of the problem in Fig. 2. We formulate
the following infinite programming with complementarity con-
straints trajectory optimization problem denoted as P (Y ):

min
q,q̇,u,z

f(q, q̇, u, z) (6a)



Fig. 2: This paper considers designing a
precise controller for manipulating the
peg from an initial state a → b → c.
The manipulation from a → b leads to
some error due to the imprecision of the
models and physical parameters, which
is compensated in b → c using pose
estimation using vision and tactile.

Fig. 3: The pivoting
manipulation problem
in SE(2) that we study
for the non-prehensile
manipulation in this
paper.

Fig. 4: A feasible trajectory computed by the CITO
planner. The colored circles denote the location
of the manipulator’s finger. As could be seen, the
manipulator maintains slipping contact with the
face of the peg during manipulation. The CITO
computes a feasible position as well as force tra-
jectory for the pivoting manipulation.

s.t. q0 = qstart, qT = qgoal (6b)

q̇t ∈ Q̇ ∀t ∈ T (6c)
qt − qt+1 + dtq̇t = 0 ∀t ∈ T (6d)
0 ≤ v(qt, q̇t, y) ⊥ h(qt, y, zt(y)) ≥ 0

∀y ∈ Y, ∀t ∈ T (6e)

where f(q, q̇, u, z) :=
∑

t∈T [fq,q̇,u(qt, q̇t, ut) +∫
y∈Y

fz(qt, y, zt(y))dy], dt is the time step duration, and
T = {0, . . . , T − 1} with T the total number of time steps
in the trajectory. For the sake of brevity, we use the notation
q = [q0, · · · , qT ], q̇ = [q̇0, · · · , q̇T−1], u = [u0, · · · , uT−1],
z = [z0, · · · , zT−1]. With a little abuse of notation, we use
zt = [zt(y) ∀y ∈ Y ] where zt(·) is the mapping and zt is a
concatenation of all the instantiated variable for all y ∈ Y .

B. In-hand pose estimation and correction

We train a model to estimate an in-hand pose of an object to
correct its pose error when grasping the object prior to inser-
tion. The model takes two tactile images from tactile sensors
attached to the two fingers I left, Iright, and estimates the pose
error in robot frame (d̂x, d̂z, d̂θ). We collect data in the real
system with random SE(2) displacements (dx, dz,dθ) from a
calibrated center pose to train the model. After estimating the
displacements, the robot corrects the pose by computing the
displacements in the local frame of the manipulator.

V. EXPERIMENTS

In this section, we present different experiments which are
conducted to answer and explain the following questions:

1) What is the accuracy of the different pose estimation
methods described in the paper?

2) What is the success rate for the planning algorithm in the
execution of the proposed task?

3) What is the success rate of the different closed-loop
control frameworks and what degree of precision could
be obtained by the different methods?

X

Y

Z

Fig. 5: Data collection setup. Left: Grippers with GelSight
Mini tactile sensors are used for data collection. A peg on the
center has grooves with cross textures on all surfaces from
which a trainable model can estimate displacement from the
center position. Right: Example tactile images.

The above questions help us understand the strengths and
weaknesses of the different modules which can be used to
design a closed-loop system for performing high-precision
manipulation tasks. In the following sections, we answer the
above questions through hardware experiments.

A. Experimental Settings

Tactile sensor. We use a commercially available GelSight
Mini [20] tactile sensor, which provides 320×240 compressed
RGB images at a rate of approximately 25 Hz, with a field of
view of 18.6× 14.3 millimeters.

Robot platform. The MELFA RV-5AS-D Assista robot, a
collaborative robot with 6 DoF, is used in this study. The tactile
sensor is mounted on the WSG-32 gripper (see Fig. 5). We use
a Force-Torque (F/T) sensor, which is mounted on the wrist
of the robot. The F/T sensor is used to implement an indirect
force controller for implementing the force trajectory obtained
from the manipulation planner. This force controller uses the
default stiffness controller of the position-controlled robot.

Design of pegs. In order to estimate the pose of the target
peg inside the gripper, a cross-shaped groove was created at



TABLE I: Average errors in estimating displace-
ments in SE(2) from the center for the three pegs
with different sizes. The results demonstrate the
regression approach achieves better performance,
specifically it achieves submillimeter errors in es-
timating displacements in translation. The numbers
in bold characters denote the best results. It is noted
that the images in M are sampled from the same
distribution with the training set.

Size Regression Contrastive

M
dx 0.01 0.46
dz 0.01 0.27
dθ 0.05 1.38

S
dx 0.32 3.21
dz 0.15 2.65
dθ 0.73 12.00

L
dx 0.10 0.73
dz 0.03 2.24
dθ 0.40 2.87

TABLE II: Task completion comparison over 10 trials for the three different
peg sizes and tolerances, and two different settings, Vertical and Tilted. In
the Vertical setting, the robot pivots the peg and then tries to insert it in
the hole. In the Tilted setting, we add disturbance by pushing or pulling the
peg with a human hand to see the robustness (see Fig. 1). Regarding the
method, Vis indicates the results with only a vision-based model, where the
pose of the peg is given by the AprilTag. The Vis + Tac corrects the in-hand
pose of the object by utilizing the tactile images and the trained model. The
numbers in bold characters denote the best results.

Vertical Tilted
Peg size Tolerance Vis Vis + Tac Vis Vis + Tac Regrasp

S
0.5 mm 0/10 10/10 0/10 8/10 10/10
1.0 mm 2/10 10/10 0/10 9/10 10/10
2.0 mm 4/10 10/10 0/10 10/10 10/10

M
0.5 mm 0/10 10/10 0/10 9/10 10/10
1.0 mm 3/10 10/10 0/10 10/10 10/10
2.0 mm 5/10 10/10 0/10 10/10 10/10

L
0.5 mm 0/10 9/10 0/10 7/10 10/10
1.0 mm 2/10 10/10 0/10 8/10 10/10
2.0 mm 3/10 10/10 0/10 10/10 10/10

the center of all surfaces of the peg as shown in Fig. 5. This
is based on the realization that the tactile sensors need some
features on the observed contact to localize. In the absence
of any such features, a perception task would most likely fail.
Three pegs of varying square sizes, namely {17, 22, 27} mm,
were fabricated via 3D printing, and we denote them as {S, M,
L}. Each peg is equipped with a head part that was 8 mm larger
in size. Additionally, corresponding holes are 3D-printed with
clearance sizes of {0.5, 1.0, 2.0} mm for each peg to assess
the efficacy of insertion performance under conditions of tight
clearances.

B. Pose estimation

First, to evaluate the in-hand pose estimation performance
on different computer vision methods, we measure the pose
estimation errors on different two loss functions: regression
(MSE) and contrastive loss [21], [22] with the same backbone
network, Vision-Transformer [23].

Settings To train the models, a dataset of 8K images was
collected from the real system, specifically using a medium-
sized (17 [mm]) peg. To generate a diverse range of images
with various possible displacements, we introduced random
displacements in SE(2), where dz and dx were drawn from a
uniform distribution U(−5, 5) [mm], and dθ was drawn from
U(−45, 45) [deg]. These displacements were added from the
center position of the peg, as illustrated in Fig. 5. To assess
the effectiveness of the trained models, an additional set of
1K images was collected for each peg, and another set of 1K
images is used for validation. These images were collected
from the same uniform distribution as the training set.

Results Table I represents the average errors in predicting
the displacements in SE(2). The regression approach outper-
forms the contrastive learning approach. Common failure case
of contrastive learning is shown in Fig. 6 in Appendix.

C. Peg insertion

Settings Next, we utilize the trained pose estimation model
for peg insertion tasks in three different settings. Vertical
setting considers peg insertion without any external pertur-
bation, resulting in a small error in the orientation of the peg
(dθ) as we consider the table flat. Tilted setting considers the
peg insertion with human perturbation as shown in Fig. 1(c),
an external force by a human hand is applied to the peg
after grasping, resulting in requiring more pose correction,
especially for the orientation θ, compared to the vertical
insertion. Finally, we also test on Regrasping setting, where
we consider the same disturbance as Tilted setting, but the
robot re-grasps the peg by placing the peg onto the table and
picks it again. This enables the peg orientation dθ to be close
to 0, resulting in easier insertion.

Results Table II shows the task completion numbers over
10 trials. The vision-based model (Vis) fails to complete the
task because the accuracy of the AprilTag is not enough
for tight insertion on both Vertical and Tilted settings. Our
method, which corrects pose errors after grasping, boosts the
performance to close to 100% even on the Tilted setting,
however, it still fails to insert especially for the large peg,
where small errors in angle have bigger effects when insertion.
We demonstrate that re-grasping the peg after placing the
onto the flat surface simplifies the task and improves the
performance to nearly 100% accuracy. See supplementary
video at https://shorturl.at/eM125.

VI. CONCLUSIONS

Most manipulation systems operate in open-loop where a
robot can not observe and react to changes in system states
from the planned trajectory. In this paper, we study a closed-
loop control framework for a high-precision assembly task
where a robot has to perform non-prehensile manipulation



before grasping a part to be assembled. We proposed in-
hand pose estimation using vision-based tactile sensors for
performing closed-loop manipulation during a multi-modal
manipulation task.
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APPENDIX

A. Failure cases in contrastive learning

The contrastive learning model has poorer performance in
estimating the pose of the peg. Specifically, it seeks to identify
the most similar image within the training set, which renders
it susceptible to outliers such as edges of corners of pegs in
the captured images that are not present in the training set,
even if the relative pose is identical. We show an example of
this in Fig. 6.
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